Abstract

Demonstrating a device that efficiently connects light, motion, and microwaves is an outstanding challenge in classical and quantum photonics. We make significant progress in this direction by demonstrating a photonic crystal resonator on thin-film lithium niobate (LN) that simultaneously supports high-Q optical and mechanical modes, and where the mechanical modes are coupled piezoelectrically to microwaves. For optomechanical coupling, we leverage the photoelastic effect in LN by optimizing the device parameters to realize coupling rates g0/2π120kHz. An optomechanical cooperativity C>1 is achieved leading to phonon lasing. Electrodes on the nanoresonator piezoelectrically drive mechanical waves on the beam that are then read out optically allowing direct observation of the phononic bandgap. Quantum coupling efficiency of η108 from the input microwave port to the localized mechanical resonance is measured. Improvements of the microwave circuit and electrode geometry can increase this efficiency and bring integrated ultra-low-power modulators and quantum microwave-to-optical converters closer to reality.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Diamond optomechanical crystals

Michael J. Burek, Justin D. Cohen, Seán M. Meenehan, Nayera El-Sawah, Cleaven Chia, Thibaud Ruelle, Srujan Meesala, Jake Rochman, Haig A. Atikian, Matthew Markham, Daniel J. Twitchen, Mikhail D. Lukin, Oskar Painter, and Marko Lončar
Optica 3(12) 1404-1411 (2016)

High-quality lithium niobate photonic crystal nanocavities

Hanxiao Liang, Rui Luo, Yang He, Haowei Jiang, and Qiang Lin
Optica 4(10) 1251-1258 (2017)

Optomechanics with one-dimensional gallium phosphide photonic crystal cavities

Katharina Schneider, Yannick Baumgartner, Simon Hönl, Pol Welter, Herwig Hahn, Dalziel J. Wilson, Lukas Czornomaz, and Paul Seidler
Optica 6(5) 577-584 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
    [Crossref]
  2. A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
    [Crossref]
  3. J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
    [Crossref]
  4. J. D. Cohen, S. M. Meenehan, G. S. MacCabe, S. Gröblacher, A. H. Safavi-Naeini, F. Marsili, M. D. Shaw, and O. Painter, “Phonon counting and intensity interferometry of a nanomechanical resonator,” Nature 520, 522–525 (2015).
    [Crossref]
  5. I. Marinković, A. Wallucks, R. Riedinger, S. Hong, M. Aspelmeyer, and S. Gröblacher, “Optomechanical bell test,” Phys. Rev. Lett. 121, 220404 (2018).
    [Crossref]
  6. K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett. 105, 220501 (2010).
    [Crossref]
  7. K. Fang, M. H. Matheny, X. Luan, and O. Painter, “Optical transduction and routing of microwave phonons in cavity-optomechanical circuits,” Nat. Photonics 10, 489–496 (2016).
    [Crossref]
  8. K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13, 465–471 (2017).
    [Crossref]
  9. R. N. Patel, Z. Wang, W. Jiang, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “Single-mode phononic wire,” Phys. Rev. Lett. 121, 040501 (2018).
    [Crossref]
  10. R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).
    [Crossref]
  11. J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
    [Crossref]
  12. D. Weinstein and S. A. Bhave, “The resonant body transistor,” Nano Lett. 10, 1234–1237 (2010).
    [Crossref]
  13. R. Van Laer, R. N. Patel, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Electrical driving of x-band mechanical waves in a silicon photonic circuit,” APL Photon. 3, 086102 (2018).
    [Crossref]
  14. M. Kalaee, M. Mirhosseini, P. B. Dieterle, M. Peruzzo, J. M. Fink, and O. Painter, “Quantum electromechanics of a hypersonic crystal,” Nat. Nanotechnol. 14, 334–339 (2019).
    [Crossref]
  15. W. Pernice, C. Xiong, C. Schuck, and H. Tang, “High-Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).
    [Crossref]
  16. L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
    [Crossref]
  17. J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).
    [Crossref]
  18. A. Vainsencher, K. Satzinger, G. Peairs, and A. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109, 033107 (2016).
    [Crossref]
  19. L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98, 113108 (2011).
    [Crossref]
  20. K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1, 414–420 (2014).
    [Crossref]
  21. K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. photonics 10, 346–352 (2016).
    [Crossref]
  22. M. Forsch, R. Stockill, A. Wallucks, I. Marinkovic, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate,” arXiv:1812.07588 (2018).
  23. H. Ramp, B. Hauer, K. Balram, T. Clark, K. Srinivasan, and J. Davis, “Elimination of thermomechanical noise in piezoelectric optomechanical crystals,” arXiv:1812.09417 (2018).
  24. M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett. 104, 141104 (2014).
    [Crossref]
  25. K. Schneider, P. Welter, Y. Baumgartner, S. Hönl, H. Hahn, L. Czornomaz, and P. Seidler, “Optomechanics with one-dimensional gallium phosphide photonic crystal cavities,” Proc. SPIE 10359, 103590K (2017).
    [Crossref]
  26. P. Arrangoiz-Arriola, E. A. Wollack, M. Pechal, J. D. Witmer, J. T. Hill, and A. H. Safavi-Naeini, “Coupling a superconducting quantum circuit to a phononic crystal defect cavity,” Phys. Rev. X 8, 031007 (2018).
    [Crossref]
  27. L. Shao, S. Maity, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. Gadalla, M. Zhang, C. Wang, and M. Lončar, “High-Q gigahertz surface acoustic wave cavity on lithium niobate,” arXiv:1901.09080 (2019).
  28. H. Liang, R. Luo, Y. He, H. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4, 1251 (2017).
    [Crossref]
  29. M. Li, H. Liang, R. Luo, Y. He, and Q. Lin, “High-Q two-dimensional lithium niobate photonic crystal slab nanoresonators,” arXiv:1806.04755 (2018).
  30. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
    [Crossref]
  31. A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon-photon translator,” New J. Phys. 13, 013017 (2011).
    [Crossref]
  32. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
    [Crossref]
  33. A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics,” Optica 6, 213–232 (2019).
    [Crossref]
  34. T. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
    [Crossref]
  35. W. C. Jiang and Q. Lin, “Chip-scale cavity optomechanics in lithium niobate,” Sci. Rep. 6, 36920 (2016).
    [Crossref]
  36. A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
    [Crossref]
  37. L. R. Sletten, B. A. Moores, J. J. Viennot, and K. W. Lehnert, “Resolving phonon Fock states in a multimode cavity with a double-slit qubit,” arXiv:1902.06344 (2019).
  38. P. Arrangoiz-Arriola, E. A. Wollack, Z. Wang, M. Pechal, W. Jiang, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Resolving the energy levels of a nanomechanical oscillator,” arXiv:1902.04681 (2019).
  39. J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
    [Crossref]
  40. C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
    [Crossref]
  41. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
    [Crossref]
  42. P. Arrangoiz-Arriola and A. H. Safavi-Naeini, “Engineering interactions between superconducting qubits and phononic nanostructures,” Phys. Rev. A 94, 063864 (2016).
    [Crossref]
  43. C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973(2017).
    [Crossref]
  44. H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, and Q. Lin, “Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities,” Appl. Phys. Lett. 113, 021104 (2018).
    [Crossref]
  45. C. Inc., “Comsol multiphysics 5.0,” https://www.comsol.com .
  46. R. N. Patel, C. J. Sarabalis, W. Jiang, J. T. Hill, and A. H. Safavi-Naeini, “Engineering phonon leakage in nanomechanical resonators,” Phys. Rev. Appl. 8, 041001 (2017).
    [Crossref]
  47. A. H. Safavi-Naeini and O. Painter, “Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab,” Opt. Express 18, 14926–14943 (2010).
    [Crossref]
  48. H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. express 17, 24261–24268 (2009).
    [Crossref]
  49. G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
    [Crossref]
  50. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
    [Crossref]
  51. H. Hartung, E.-B. Kley, A. Tünnermann, T. Gischkat, F. Schrempel, and W. Wesch, “Fabrication of ridge waveguides in zinc-substituted lithium niobate by means of ion-beam enhanced etching,” Opt. Lett. 33, 2320–2322 (2008).
    [Crossref]
  52. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
    [Crossref]
  53. I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26, 897–904 (2018).
    [Crossref]
  54. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. Route, M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNb03,” Appl. Phys. Lett. 78, 1970–1972 (2001).
    [Crossref]
  55. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
    [Crossref]
  56. A. H. Safavi-Naeini, T. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
    [Crossref]
  57. F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nat. Commun. 3, 987 (2012).
    [Crossref]
  58. A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, J. Chan, S. Gröblacher, and O. Painter, “Two-dimensional phononic-photonic band gap optomechanical crystal cavity,” Phys. Rev. Lett. 112, 153603 (2014).
    [Crossref]
  59. N. Samkharadze, A. Bruno, P. Scarlino, G. Zheng, D. DiVincenzo, L. DiCarlo, and L. Vandersypen, “High-kinetic-inductance superconducting nanowire resonators for circuit QED in a magnetic field,” Phys. Rev. Appl. 5, 044004 (2016).
    [Crossref]
  60. S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalaee, P. Dieterle, O. Painter, and J. Fink, “Mechanical on-chip microwave circulator,” Nat. Commun. 8, 953 (2017).
    [Crossref]
  61. S. M. Meenehan, J. D. Cohen, S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, M. Aspelmeyer, and O. Painter, “Silicon optomechanical crystal resonator at millikelvin temperatures,” Phys. Rev. A 90, 011803 (2014).
    [Crossref]

2019 (2)

M. Kalaee, M. Mirhosseini, P. B. Dieterle, M. Peruzzo, J. M. Fink, and O. Painter, “Quantum electromechanics of a hypersonic crystal,” Nat. Nanotechnol. 14, 334–339 (2019).
[Crossref]

A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics,” Optica 6, 213–232 (2019).
[Crossref]

2018 (10)

I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26, 897–904 (2018).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

R. N. Patel, Z. Wang, W. Jiang, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “Single-mode phononic wire,” Phys. Rev. Lett. 121, 040501 (2018).
[Crossref]

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).
[Crossref]

I. Marinković, A. Wallucks, R. Riedinger, S. Hong, M. Aspelmeyer, and S. Gröblacher, “Optomechanical bell test,” Phys. Rev. Lett. 121, 220404 (2018).
[Crossref]

R. Van Laer, R. N. Patel, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Electrical driving of x-band mechanical waves in a silicon photonic circuit,” APL Photon. 3, 086102 (2018).
[Crossref]

P. Arrangoiz-Arriola, E. A. Wollack, M. Pechal, J. D. Witmer, J. T. Hill, and A. H. Safavi-Naeini, “Coupling a superconducting quantum circuit to a phononic crystal defect cavity,” Phys. Rev. X 8, 031007 (2018).
[Crossref]

H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, and Q. Lin, “Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities,” Appl. Phys. Lett. 113, 021104 (2018).
[Crossref]

2017 (8)

R. N. Patel, C. J. Sarabalis, W. Jiang, J. T. Hill, and A. H. Safavi-Naeini, “Engineering phonon leakage in nanomechanical resonators,” Phys. Rev. Appl. 8, 041001 (2017).
[Crossref]

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref]

K. Schneider, P. Welter, Y. Baumgartner, S. Hönl, H. Hahn, L. Czornomaz, and P. Seidler, “Optomechanics with one-dimensional gallium phosphide photonic crystal cavities,” Proc. SPIE 10359, 103590K (2017).
[Crossref]

K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13, 465–471 (2017).
[Crossref]

S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalaee, P. Dieterle, O. Painter, and J. Fink, “Mechanical on-chip microwave circulator,” Nat. Commun. 8, 953 (2017).
[Crossref]

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973(2017).
[Crossref]

H. Liang, R. Luo, Y. He, H. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4, 1251 (2017).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

2016 (6)

P. Arrangoiz-Arriola and A. H. Safavi-Naeini, “Engineering interactions between superconducting qubits and phononic nanostructures,” Phys. Rev. A 94, 063864 (2016).
[Crossref]

N. Samkharadze, A. Bruno, P. Scarlino, G. Zheng, D. DiVincenzo, L. DiCarlo, and L. Vandersypen, “High-kinetic-inductance superconducting nanowire resonators for circuit QED in a magnetic field,” Phys. Rev. Appl. 5, 044004 (2016).
[Crossref]

K. Fang, M. H. Matheny, X. Luan, and O. Painter, “Optical transduction and routing of microwave phonons in cavity-optomechanical circuits,” Nat. Photonics 10, 489–496 (2016).
[Crossref]

A. Vainsencher, K. Satzinger, G. Peairs, and A. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109, 033107 (2016).
[Crossref]

K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. photonics 10, 346–352 (2016).
[Crossref]

W. C. Jiang and Q. Lin, “Chip-scale cavity optomechanics in lithium niobate,” Sci. Rep. 6, 36920 (2016).
[Crossref]

2015 (1)

J. D. Cohen, S. M. Meenehan, G. S. MacCabe, S. Gröblacher, A. H. Safavi-Naeini, F. Marsili, M. D. Shaw, and O. Painter, “Phonon counting and intensity interferometry of a nanomechanical resonator,” Nature 520, 522–525 (2015).
[Crossref]

2014 (6)

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett. 104, 141104 (2014).
[Crossref]

A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, J. Chan, S. Gröblacher, and O. Painter, “Two-dimensional phononic-photonic band gap optomechanical crystal cavity,” Phys. Rev. Lett. 112, 153603 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
[Crossref]

K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1, 414–420 (2014).
[Crossref]

S. M. Meenehan, J. D. Cohen, S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, M. Aspelmeyer, and O. Painter, “Silicon optomechanical crystal resonator at millikelvin temperatures,” Phys. Rev. A 90, 011803 (2014).
[Crossref]

2013 (2)

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
[Crossref]

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).
[Crossref]

2012 (6)

W. Pernice, C. Xiong, C. Schuck, and H. Tang, “High-Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).
[Crossref]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
[Crossref]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nat. Commun. 3, 987 (2012).
[Crossref]

2011 (4)

A. H. Safavi-Naeini, T. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon-photon translator,” New J. Phys. 13, 013017 (2011).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98, 113108 (2011).
[Crossref]

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

2010 (5)

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett. 105, 220501 (2010).
[Crossref]

D. Weinstein and S. A. Bhave, “The resonant body transistor,” Nano Lett. 10, 1234–1237 (2010).
[Crossref]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

A. H. Safavi-Naeini and O. Painter, “Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab,” Opt. Express 18, 14926–14943 (2010).
[Crossref]

2009 (1)

2008 (1)

2005 (1)

T. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]

2001 (1)

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. Route, M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNb03,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[Crossref]

Alegre, T. M.

A. H. Safavi-Naeini, T. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Alegre, T. P. M.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

Alexandrovski, A.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. Route, M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNb03,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[Crossref]

Andrade, N.

Ansmann, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Arcizet, O.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Arrangoiz-Arriola, P.

P. Arrangoiz-Arriola, E. A. Wollack, M. Pechal, J. D. Witmer, J. T. Hill, and A. H. Safavi-Naeini, “Coupling a superconducting quantum circuit to a phononic crystal defect cavity,” Phys. Rev. X 8, 031007 (2018).
[Crossref]

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref]

P. Arrangoiz-Arriola and A. H. Safavi-Naeini, “Engineering interactions between superconducting qubits and phononic nanostructures,” Phys. Rev. A 94, 063864 (2016).
[Crossref]

P. Arrangoiz-Arriola, E. A. Wollack, Z. Wang, M. Pechal, W. Jiang, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Resolving the energy levels of a nanomechanical oscillator,” arXiv:1902.04681 (2019).

Aspelmeyer, M.

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).
[Crossref]

I. Marinković, A. Wallucks, R. Riedinger, S. Hong, M. Aspelmeyer, and S. Gröblacher, “Optomechanical bell test,” Phys. Rev. Lett. 121, 220404 (2018).
[Crossref]

S. M. Meenehan, J. D. Cohen, S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, M. Aspelmeyer, and O. Painter, “Silicon optomechanical crystal resonator at millikelvin temperatures,” Phys. Rev. A 90, 011803 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Atikian, H. A.

Awschalom, D. D.

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).
[Crossref]

Baets, R.

Baker, C.

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98, 113108 (2011).
[Crossref]

Balram, K.

H. Ramp, B. Hauer, K. Balram, T. Clark, K. Srinivasan, and J. Davis, “Elimination of thermomechanical noise in piezoelectric optomechanical crystals,” arXiv:1812.09417 (2018).

Balram, K. C.

K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. photonics 10, 346–352 (2016).
[Crossref]

K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1, 414–420 (2014).
[Crossref]

Barclay, P. E.

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett. 104, 141104 (2014).
[Crossref]

Barzanjeh, S.

S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalaee, P. Dieterle, O. Painter, and J. Fink, “Mechanical on-chip microwave circulator,” Nat. Commun. 8, 953 (2017).
[Crossref]

Baumgartner, Y.

K. Schneider, P. Welter, Y. Baumgartner, S. Hönl, H. Hahn, L. Czornomaz, and P. Seidler, “Optomechanics with one-dimensional gallium phosphide photonic crystal cavities,” Proc. SPIE 10359, 103590K (2017).
[Crossref]

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Bhave, S. A.

D. Weinstein and S. A. Bhave, “The resonant body transistor,” Nano Lett. 10, 1234–1237 (2010).
[Crossref]

Bialczak, R. C.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Bochmann, J.

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).
[Crossref]

Bruno, A.

N. Samkharadze, A. Bruno, P. Scarlino, G. Zheng, D. DiVincenzo, L. DiCarlo, and L. Vandersypen, “High-kinetic-inductance superconducting nanowire resonators for circuit QED in a magnetic field,” Phys. Rev. Appl. 5, 044004 (2016).
[Crossref]

Burek, M. J.

Carmon, T.

T. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]

Chan, J.

A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, J. Chan, S. Gröblacher, and O. Painter, “Two-dimensional phononic-photonic band gap optomechanical crystal cavity,” Phys. Rev. Lett. 112, 153603 (2014).
[Crossref]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
[Crossref]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

A. H. Safavi-Naeini, T. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Chang, D. E.

A. H. Safavi-Naeini, T. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Chen, X.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, and Q. Lin, “Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities,” Appl. Phys. Lett. 113, 021104 (2018).
[Crossref]

Chen, Y.

H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, and Q. Lin, “Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities,” Appl. Phys. Lett. 113, 021104 (2018).
[Crossref]

Cheng, R.

Cho, S. U.

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nat. Commun. 3, 987 (2012).
[Crossref]

Clark, T.

H. Ramp, B. Hauer, K. Balram, T. Clark, K. Srinivasan, and J. Davis, “Elimination of thermomechanical noise in piezoelectric optomechanical crystals,” arXiv:1812.09417 (2018).

Cleland, A.

A. Vainsencher, K. Satzinger, G. Peairs, and A. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109, 033107 (2016).
[Crossref]

Cleland, A. N.

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).
[Crossref]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Clerk, A. A.

K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13, 465–471 (2017).
[Crossref]

Cohen, J. D.

J. D. Cohen, S. M. Meenehan, G. S. MacCabe, S. Gröblacher, A. H. Safavi-Naeini, F. Marsili, M. D. Shaw, and O. Painter, “Phonon counting and intensity interferometry of a nanomechanical resonator,” Nature 520, 522–525 (2015).
[Crossref]

S. M. Meenehan, J. D. Cohen, S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, M. Aspelmeyer, and O. Painter, “Silicon optomechanical crystal resonator at millikelvin temperatures,” Phys. Rev. A 90, 011803 (2014).
[Crossref]

Czornomaz, L.

K. Schneider, P. Welter, Y. Baumgartner, S. Hönl, H. Hahn, L. Czornomaz, and P. Seidler, “Optomechanics with one-dimensional gallium phosphide photonic crystal cavities,” Proc. SPIE 10359, 103590K (2017).
[Crossref]

Davanço, M.

Davanço, M. I.

K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. photonics 10, 346–352 (2016).
[Crossref]

Davis, J.

H. Ramp, B. Hauer, K. Balram, T. Clark, K. Srinivasan, and J. Davis, “Elimination of thermomechanical noise in piezoelectric optomechanical crystals,” arXiv:1812.09417 (2018).

Deléglise, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Desiatov, B.

DiCarlo, L.

N. Samkharadze, A. Bruno, P. Scarlino, G. Zheng, D. DiVincenzo, L. DiCarlo, and L. Vandersypen, “High-kinetic-inductance superconducting nanowire resonators for circuit QED in a magnetic field,” Phys. Rev. Appl. 5, 044004 (2016).
[Crossref]

Dieterle, P.

S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalaee, P. Dieterle, O. Painter, and J. Fink, “Mechanical on-chip microwave circulator,” Nat. Commun. 8, 953 (2017).
[Crossref]

Dieterle, P. B.

M. Kalaee, M. Mirhosseini, P. B. Dieterle, M. Peruzzo, J. M. Fink, and O. Painter, “Quantum electromechanics of a hypersonic crystal,” Nat. Nanotechnol. 14, 334–339 (2019).
[Crossref]

Ding, L.

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98, 113108 (2011).
[Crossref]

DiVincenzo, D.

N. Samkharadze, A. Bruno, P. Scarlino, G. Zheng, D. DiVincenzo, L. DiCarlo, and L. Vandersypen, “High-kinetic-inductance superconducting nanowire resonators for circuit QED in a magnetic field,” Phys. Rev. Appl. 5, 044004 (2016).
[Crossref]

Ducci, S.

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98, 113108 (2011).
[Crossref]

Eichenfield, M.

A. H. Safavi-Naeini, T. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Fan, L.

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
[Crossref]

Fang, K.

K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13, 465–471 (2017).
[Crossref]

K. Fang, M. H. Matheny, X. Luan, and O. Painter, “Optical transduction and routing of microwave phonons in cavity-optomechanical circuits,” Nat. Photonics 10, 489–496 (2016).
[Crossref]

Favero, I.

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98, 113108 (2011).
[Crossref]

Fejer, M.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. Route, M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNb03,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[Crossref]

Fejer, M. M.

Fink, J.

S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalaee, P. Dieterle, O. Painter, and J. Fink, “Mechanical on-chip microwave circulator,” Nat. Commun. 8, 953 (2017).
[Crossref]

Fink, J. M.

M. Kalaee, M. Mirhosseini, P. B. Dieterle, M. Peruzzo, J. M. Fink, and O. Painter, “Quantum electromechanics of a hypersonic crystal,” Nat. Nanotechnol. 14, 334–339 (2019).
[Crossref]

Fiore, A.

M. Forsch, R. Stockill, A. Wallucks, I. Marinkovic, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate,” arXiv:1812.07588 (2018).

Forsch, M.

M. Forsch, R. Stockill, A. Wallucks, I. Marinkovic, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate,” arXiv:1812.07588 (2018).

Foulon, G.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. Route, M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNb03,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[Crossref]

Furukawa, Y.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. Route, M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNb03,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[Crossref]

Gadalla, M.

L. Shao, S. Maity, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. Gadalla, M. Zhang, C. Wang, and M. Lončar, “High-Q gigahertz surface acoustic wave cavity on lithium niobate,” arXiv:1901.09080 (2019).

Gärtner, C.

M. Forsch, R. Stockill, A. Wallucks, I. Marinkovic, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate,” arXiv:1812.07588 (2018).

Gavartin, E.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Gischkat, T.

Gröblacher, S.

I. Marinković, A. Wallucks, R. Riedinger, S. Hong, M. Aspelmeyer, and S. Gröblacher, “Optomechanical bell test,” Phys. Rev. Lett. 121, 220404 (2018).
[Crossref]

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).
[Crossref]

J. D. Cohen, S. M. Meenehan, G. S. MacCabe, S. Gröblacher, A. H. Safavi-Naeini, F. Marsili, M. D. Shaw, and O. Painter, “Phonon counting and intensity interferometry of a nanomechanical resonator,” Nature 520, 522–525 (2015).
[Crossref]

S. M. Meenehan, J. D. Cohen, S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, M. Aspelmeyer, and O. Painter, “Silicon optomechanical crystal resonator at millikelvin temperatures,” Phys. Rev. A 90, 011803 (2014).
[Crossref]

A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, J. Chan, S. Gröblacher, and O. Painter, “Two-dimensional phononic-photonic band gap optomechanical crystal cavity,” Phys. Rev. Lett. 112, 153603 (2014).
[Crossref]

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

M. Forsch, R. Stockill, A. Wallucks, I. Marinkovic, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate,” arXiv:1812.07588 (2018).

Guenter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

Guo, G.-C.

Hahn, H.

K. Schneider, P. Welter, Y. Baumgartner, S. Hönl, H. Hahn, L. Czornomaz, and P. Seidler, “Optomechanics with one-dimensional gallium phosphide photonic crystal cavities,” Proc. SPIE 10359, 103590K (2017).
[Crossref]

Hakonen, P. J.

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nat. Commun. 3, 987 (2012).
[Crossref]

Hartung, H.

Hauer, B.

H. Ramp, B. Hauer, K. Balram, T. Clark, K. Srinivasan, and J. Davis, “Elimination of thermomechanical noise in piezoelectric optomechanical crystals,” arXiv:1812.09417 (2018).

He, Y.

H. Liang, R. Luo, Y. He, H. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4, 1251 (2017).
[Crossref]

M. Li, H. Liang, R. Luo, Y. He, and Q. Lin, “High-Q two-dimensional lithium niobate photonic crystal slab nanoresonators,” arXiv:1806.04755 (2018).

Heikkilä, T. T.

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nat. Commun. 3, 987 (2012).
[Crossref]

Hill, J. T.

R. N. Patel, Z. Wang, W. Jiang, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “Single-mode phononic wire,” Phys. Rev. Lett. 121, 040501 (2018).
[Crossref]

P. Arrangoiz-Arriola, E. A. Wollack, M. Pechal, J. D. Witmer, J. T. Hill, and A. H. Safavi-Naeini, “Coupling a superconducting quantum circuit to a phononic crystal defect cavity,” Phys. Rev. X 8, 031007 (2018).
[Crossref]

R. N. Patel, C. J. Sarabalis, W. Jiang, J. T. Hill, and A. H. Safavi-Naeini, “Engineering phonon leakage in nanomechanical resonators,” Phys. Rev. Appl. 8, 041001 (2017).
[Crossref]

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref]

A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, J. Chan, S. Gröblacher, and O. Painter, “Two-dimensional phononic-photonic band gap optomechanical crystal cavity,” Phys. Rev. Lett. 112, 153603 (2014).
[Crossref]

S. M. Meenehan, J. D. Cohen, S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, M. Aspelmeyer, and O. Painter, “Silicon optomechanical crystal resonator at millikelvin temperatures,” Phys. Rev. A 90, 011803 (2014).
[Crossref]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
[Crossref]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

A. H. Safavi-Naeini, T. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Hofheinz, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Hong, S.

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).
[Crossref]

I. Marinković, A. Wallucks, R. Riedinger, S. Hong, M. Aspelmeyer, and S. Gröblacher, “Optomechanical bell test,” Phys. Rev. Lett. 121, 220404 (2018).
[Crossref]

Hönl, S.

K. Schneider, P. Welter, Y. Baumgartner, S. Hönl, H. Hahn, L. Czornomaz, and P. Seidler, “Optomechanics with one-dimensional gallium phosphide photonic crystal cavities,” Proc. SPIE 10359, 103590K (2017).
[Crossref]

Hryciw, A. C.

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett. 104, 141104 (2014).
[Crossref]

Hu, H.

G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. express 17, 24261–24268 (2009).
[Crossref]

Huang, I.-C.

Jankowski, M.

Jiang, H.

H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, and Q. Lin, “Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities,” Appl. Phys. Lett. 113, 021104 (2018).
[Crossref]

H. Liang, R. Luo, Y. He, H. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4, 1251 (2017).
[Crossref]

Jiang, W.

R. N. Patel, Z. Wang, W. Jiang, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “Single-mode phononic wire,” Phys. Rev. Lett. 121, 040501 (2018).
[Crossref]

R. N. Patel, C. J. Sarabalis, W. Jiang, J. T. Hill, and A. H. Safavi-Naeini, “Engineering phonon leakage in nanomechanical resonators,” Phys. Rev. Appl. 8, 041001 (2017).
[Crossref]

P. Arrangoiz-Arriola, E. A. Wollack, Z. Wang, M. Pechal, W. Jiang, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Resolving the energy levels of a nanomechanical oscillator,” arXiv:1902.04681 (2019).

Jiang, W. C.

W. C. Jiang and Q. Lin, “Chip-scale cavity optomechanics in lithium niobate,” Sci. Rep. 6, 36920 (2016).
[Crossref]

Kalaee, M.

M. Kalaee, M. Mirhosseini, P. B. Dieterle, M. Peruzzo, J. M. Fink, and O. Painter, “Quantum electromechanics of a hypersonic crystal,” Nat. Nanotechnol. 14, 334–339 (2019).
[Crossref]

S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalaee, P. Dieterle, O. Painter, and J. Fink, “Mechanical on-chip microwave circulator,” Nat. Commun. 8, 953 (2017).
[Crossref]

Kippenberg, T.

T. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Kitamura, K.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. Route, M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNb03,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[Crossref]

Kley, E.-B.

Krasnokutska, I.

Krause, A.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Langrock, C.

Lehnert, K. W.

L. R. Sletten, B. A. Moores, J. J. Viennot, and K. W. Lehnert, “Resolving phonon Fock states in a multimode cavity with a double-slit qubit,” arXiv:1902.06344 (2019).

Lemaitre, A.

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98, 113108 (2011).
[Crossref]

Lenander, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Leo, G.

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98, 113108 (2011).
[Crossref]

Li, M.

M. Li, H. Liang, R. Luo, Y. He, and Q. Lin, “High-Q two-dimensional lithium niobate photonic crystal slab nanoresonators,” arXiv:1806.04755 (2018).

Li, X.

Liang, H.

H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, and Q. Lin, “Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities,” Appl. Phys. Lett. 113, 021104 (2018).
[Crossref]

H. Liang, R. Luo, Y. He, H. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4, 1251 (2017).
[Crossref]

M. Li, H. Liang, R. Luo, Y. He, and Q. Lin, “High-Q two-dimensional lithium niobate photonic crystal slab nanoresonators,” arXiv:1806.04755 (2018).

Lim, J. Y.

Lin, Q.

H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, and Q. Lin, “Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities,” Appl. Phys. Lett. 113, 021104 (2018).
[Crossref]

H. Liang, R. Luo, Y. He, H. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4, 1251 (2017).
[Crossref]

W. C. Jiang and Q. Lin, “Chip-scale cavity optomechanics in lithium niobate,” Sci. Rep. 6, 36920 (2016).
[Crossref]

A. H. Safavi-Naeini, T. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

M. Li, H. Liang, R. Luo, Y. He, and Q. Lin, “High-Q two-dimensional lithium niobate photonic crystal slab nanoresonators,” arXiv:1806.04755 (2018).

Lin, Z.

Lipson, M.

Loncar, M.

Löschnauer, C.

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).
[Crossref]

Luan, X.

K. Fang, M. H. Matheny, X. Luan, and O. Painter, “Optical transduction and routing of microwave phonons in cavity-optomechanical circuits,” Nat. Photonics 10, 489–496 (2016).
[Crossref]

Lucero, E.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Lukin, M. D.

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett. 105, 220501 (2010).
[Crossref]

Luo, J.

K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13, 465–471 (2017).
[Crossref]

Luo, R.

H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, and Q. Lin, “Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities,” Appl. Phys. Lett. 113, 021104 (2018).
[Crossref]

H. Liang, R. Luo, Y. He, H. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4, 1251 (2017).
[Crossref]

M. Li, H. Liang, R. Luo, Y. He, and Q. Lin, “High-Q two-dimensional lithium niobate photonic crystal slab nanoresonators,” arXiv:1806.04755 (2018).

MacCabe, G. S.

J. D. Cohen, S. M. Meenehan, G. S. MacCabe, S. Gröblacher, A. H. Safavi-Naeini, F. Marsili, M. D. Shaw, and O. Painter, “Phonon counting and intensity interferometry of a nanomechanical resonator,” Nature 520, 522–525 (2015).
[Crossref]

Maity, S.

L. Shao, S. Maity, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. Gadalla, M. Zhang, C. Wang, and M. Lončar, “High-Q gigahertz surface acoustic wave cavity on lithium niobate,” arXiv:1901.09080 (2019).

Marandi, A.

Marinkovic, I.

I. Marinković, A. Wallucks, R. Riedinger, S. Hong, M. Aspelmeyer, and S. Gröblacher, “Optomechanical bell test,” Phys. Rev. Lett. 121, 220404 (2018).
[Crossref]

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).
[Crossref]

M. Forsch, R. Stockill, A. Wallucks, I. Marinkovic, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate,” arXiv:1812.07588 (2018).

Marquardt, F.

K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13, 465–471 (2017).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Marsili, F.

J. D. Cohen, S. M. Meenehan, G. S. MacCabe, S. Gröblacher, A. H. Safavi-Naeini, F. Marsili, M. D. Shaw, and O. Painter, “Phonon counting and intensity interferometry of a nanomechanical resonator,” Nature 520, 522–525 (2015).
[Crossref]

Martinis, J. M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Massel, F.

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nat. Commun. 3, 987 (2012).
[Crossref]

Matheny, M. H.

K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13, 465–471 (2017).
[Crossref]

K. Fang, M. H. Matheny, X. Luan, and O. Painter, “Optical transduction and routing of microwave phonons in cavity-optomechanical circuits,” Nat. Photonics 10, 489–496 (2016).
[Crossref]

McKenna, T. P.

R. Van Laer, R. N. Patel, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Electrical driving of x-band mechanical waves in a silicon photonic circuit,” APL Photon. 3, 086102 (2018).
[Crossref]

P. Arrangoiz-Arriola, E. A. Wollack, Z. Wang, M. Pechal, W. Jiang, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Resolving the energy levels of a nanomechanical oscillator,” arXiv:1902.04681 (2019).

Meenehan, S.

A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, J. Chan, S. Gröblacher, and O. Painter, “Two-dimensional phononic-photonic band gap optomechanical crystal cavity,” Phys. Rev. Lett. 112, 153603 (2014).
[Crossref]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
[Crossref]

Meenehan, S. M.

J. D. Cohen, S. M. Meenehan, G. S. MacCabe, S. Gröblacher, A. H. Safavi-Naeini, F. Marsili, M. D. Shaw, and O. Painter, “Phonon counting and intensity interferometry of a nanomechanical resonator,” Nature 520, 522–525 (2015).
[Crossref]

S. M. Meenehan, J. D. Cohen, S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, M. Aspelmeyer, and O. Painter, “Silicon optomechanical crystal resonator at millikelvin temperatures,” Phys. Rev. A 90, 011803 (2014).
[Crossref]

Metelmann, A.

K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13, 465–471 (2017).
[Crossref]

Mirhosseini, M.

M. Kalaee, M. Mirhosseini, P. B. Dieterle, M. Peruzzo, J. M. Fink, and O. Painter, “Quantum electromechanics of a hypersonic crystal,” Nat. Nanotechnol. 14, 334–339 (2019).
[Crossref]

Mitchell, M.

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett. 104, 141104 (2014).
[Crossref]

Moores, B. A.

L. R. Sletten, B. A. Moores, J. J. Viennot, and K. W. Lehnert, “Resolving phonon Fock states in a multimode cavity with a double-slit qubit,” arXiv:1902.06344 (2019).

Neeley, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Norte, R. A.

M. Forsch, R. Stockill, A. Wallucks, I. Marinkovic, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate,” arXiv:1812.07588 (2018).

O’Connell, A. D.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Painter, O.

M. Kalaee, M. Mirhosseini, P. B. Dieterle, M. Peruzzo, J. M. Fink, and O. Painter, “Quantum electromechanics of a hypersonic crystal,” Nat. Nanotechnol. 14, 334–339 (2019).
[Crossref]

S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalaee, P. Dieterle, O. Painter, and J. Fink, “Mechanical on-chip microwave circulator,” Nat. Commun. 8, 953 (2017).
[Crossref]

K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13, 465–471 (2017).
[Crossref]

K. Fang, M. H. Matheny, X. Luan, and O. Painter, “Optical transduction and routing of microwave phonons in cavity-optomechanical circuits,” Nat. Photonics 10, 489–496 (2016).
[Crossref]

J. D. Cohen, S. M. Meenehan, G. S. MacCabe, S. Gröblacher, A. H. Safavi-Naeini, F. Marsili, M. D. Shaw, and O. Painter, “Phonon counting and intensity interferometry of a nanomechanical resonator,” Nature 520, 522–525 (2015).
[Crossref]

S. M. Meenehan, J. D. Cohen, S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, M. Aspelmeyer, and O. Painter, “Silicon optomechanical crystal resonator at millikelvin temperatures,” Phys. Rev. A 90, 011803 (2014).
[Crossref]

A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, J. Chan, S. Gröblacher, and O. Painter, “Two-dimensional phononic-photonic band gap optomechanical crystal cavity,” Phys. Rev. Lett. 112, 153603 (2014).
[Crossref]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
[Crossref]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon-photon translator,” New J. Phys. 13, 013017 (2011).
[Crossref]

A. H. Safavi-Naeini, T. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

A. H. Safavi-Naeini and O. Painter, “Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab,” Opt. Express 18, 14926–14943 (2010).
[Crossref]

Patel, R. N.

R. N. Patel, Z. Wang, W. Jiang, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “Single-mode phononic wire,” Phys. Rev. Lett. 121, 040501 (2018).
[Crossref]

R. Van Laer, R. N. Patel, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Electrical driving of x-band mechanical waves in a silicon photonic circuit,” APL Photon. 3, 086102 (2018).
[Crossref]

R. N. Patel, C. J. Sarabalis, W. Jiang, J. T. Hill, and A. H. Safavi-Naeini, “Engineering phonon leakage in nanomechanical resonators,” Phys. Rev. Appl. 8, 041001 (2017).
[Crossref]

Peairs, G.

A. Vainsencher, K. Satzinger, G. Peairs, and A. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109, 033107 (2016).
[Crossref]

Pechal, M.

P. Arrangoiz-Arriola, E. A. Wollack, M. Pechal, J. D. Witmer, J. T. Hill, and A. H. Safavi-Naeini, “Coupling a superconducting quantum circuit to a phononic crystal defect cavity,” Phys. Rev. X 8, 031007 (2018).
[Crossref]

P. Arrangoiz-Arriola, E. A. Wollack, Z. Wang, M. Pechal, W. Jiang, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Resolving the energy levels of a nanomechanical oscillator,” arXiv:1902.04681 (2019).

Pernice, W.

W. Pernice, C. Xiong, C. Schuck, and H. Tang, “High-Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).
[Crossref]

Peruzzo, A.

Peruzzo, M.

M. Kalaee, M. Mirhosseini, P. B. Dieterle, M. Peruzzo, J. M. Fink, and O. Painter, “Quantum electromechanics of a hypersonic crystal,” Nat. Nanotechnol. 14, 334–339 (2019).
[Crossref]

S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalaee, P. Dieterle, O. Painter, and J. Fink, “Mechanical on-chip microwave circulator,” Nat. Commun. 8, 953 (2017).
[Crossref]

Pirkkalainen, J.-M.

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nat. Commun. 3, 987 (2012).
[Crossref]

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

Puma, E.

L. Shao, S. Maity, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. Gadalla, M. Zhang, C. Wang, and M. Lončar, “High-Q gigahertz surface acoustic wave cavity on lithium niobate,” arXiv:1901.09080 (2019).

Rabl, P.

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett. 105, 220501 (2010).
[Crossref]

Ramp, H.

H. Ramp, B. Hauer, K. Balram, T. Clark, K. Srinivasan, and J. Davis, “Elimination of thermomechanical noise in piezoelectric optomechanical crystals,” arXiv:1812.09417 (2018).

Ren, X.-F.

Ricken, R.

Riedinger, R.

I. Marinković, A. Wallucks, R. Riedinger, S. Hong, M. Aspelmeyer, and S. Gröblacher, “Optomechanical bell test,” Phys. Rev. Lett. 121, 220404 (2018).
[Crossref]

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).
[Crossref]

Rivière, R.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Rokhsari, H.

T. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]

Route, R.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. Route, M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNb03,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[Crossref]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics,” Optica 6, 213–232 (2019).
[Crossref]

R. N. Patel, Z. Wang, W. Jiang, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “Single-mode phononic wire,” Phys. Rev. Lett. 121, 040501 (2018).
[Crossref]

P. Arrangoiz-Arriola, E. A. Wollack, M. Pechal, J. D. Witmer, J. T. Hill, and A. H. Safavi-Naeini, “Coupling a superconducting quantum circuit to a phononic crystal defect cavity,” Phys. Rev. X 8, 031007 (2018).
[Crossref]

R. Van Laer, R. N. Patel, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Electrical driving of x-band mechanical waves in a silicon photonic circuit,” APL Photon. 3, 086102 (2018).
[Crossref]

R. N. Patel, C. J. Sarabalis, W. Jiang, J. T. Hill, and A. H. Safavi-Naeini, “Engineering phonon leakage in nanomechanical resonators,” Phys. Rev. Appl. 8, 041001 (2017).
[Crossref]

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref]

P. Arrangoiz-Arriola and A. H. Safavi-Naeini, “Engineering interactions between superconducting qubits and phononic nanostructures,” Phys. Rev. A 94, 063864 (2016).
[Crossref]

J. D. Cohen, S. M. Meenehan, G. S. MacCabe, S. Gröblacher, A. H. Safavi-Naeini, F. Marsili, M. D. Shaw, and O. Painter, “Phonon counting and intensity interferometry of a nanomechanical resonator,” Nature 520, 522–525 (2015).
[Crossref]

A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, J. Chan, S. Gröblacher, and O. Painter, “Two-dimensional phononic-photonic band gap optomechanical crystal cavity,” Phys. Rev. Lett. 112, 153603 (2014).
[Crossref]

S. M. Meenehan, J. D. Cohen, S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, M. Aspelmeyer, and O. Painter, “Silicon optomechanical crystal resonator at millikelvin temperatures,” Phys. Rev. A 90, 011803 (2014).
[Crossref]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
[Crossref]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon-photon translator,” New J. Phys. 13, 013017 (2011).
[Crossref]

A. H. Safavi-Naeini, T. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

A. H. Safavi-Naeini and O. Painter, “Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab,” Opt. Express 18, 14926–14943 (2010).
[Crossref]

P. Arrangoiz-Arriola, E. A. Wollack, Z. Wang, M. Pechal, W. Jiang, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Resolving the energy levels of a nanomechanical oscillator,” arXiv:1902.04681 (2019).

Samkharadze, N.

N. Samkharadze, A. Bruno, P. Scarlino, G. Zheng, D. DiVincenzo, L. DiCarlo, and L. Vandersypen, “High-kinetic-inductance superconducting nanowire resonators for circuit QED in a magnetic field,” Phys. Rev. Appl. 5, 044004 (2016).
[Crossref]

Sank, D.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Sarabalis, C. J.

R. N. Patel, Z. Wang, W. Jiang, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “Single-mode phononic wire,” Phys. Rev. Lett. 121, 040501 (2018).
[Crossref]

R. N. Patel, C. J. Sarabalis, W. Jiang, J. T. Hill, and A. H. Safavi-Naeini, “Engineering phonon leakage in nanomechanical resonators,” Phys. Rev. Appl. 8, 041001 (2017).
[Crossref]

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref]

Satzinger, K.

A. Vainsencher, K. Satzinger, G. Peairs, and A. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109, 033107 (2016).
[Crossref]

Scarlino, P.

N. Samkharadze, A. Bruno, P. Scarlino, G. Zheng, D. DiVincenzo, L. DiCarlo, and L. Vandersypen, “High-kinetic-inductance superconducting nanowire resonators for circuit QED in a magnetic field,” Phys. Rev. Appl. 5, 044004 (2016).
[Crossref]

Scherer, A.

T. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]

Schliesser, A.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Schneider, K.

K. Schneider, P. Welter, Y. Baumgartner, S. Hönl, H. Hahn, L. Czornomaz, and P. Seidler, “Optomechanics with one-dimensional gallium phosphide photonic crystal cavities,” Proc. SPIE 10359, 103590K (2017).
[Crossref]

Schrempel, F.

Schuck, C.

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
[Crossref]

W. Pernice, C. Xiong, C. Schuck, and H. Tang, “High-Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).
[Crossref]

Seidler, P.

K. Schneider, P. Welter, Y. Baumgartner, S. Hönl, H. Hahn, L. Czornomaz, and P. Seidler, “Optomechanics with one-dimensional gallium phosphide photonic crystal cavities,” Proc. SPIE 10359, 103590K (2017).
[Crossref]

Senellart, P.

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98, 113108 (2011).
[Crossref]

Shams-Ansari, A.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

L. Shao, S. Maity, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. Gadalla, M. Zhang, C. Wang, and M. Lončar, “High-Q gigahertz surface acoustic wave cavity on lithium niobate,” arXiv:1901.09080 (2019).

Shao, L.

L. Shao, S. Maity, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. Gadalla, M. Zhang, C. Wang, and M. Lončar, “High-Q gigahertz surface acoustic wave cavity on lithium niobate,” arXiv:1901.09080 (2019).

Shaw, M. D.

J. D. Cohen, S. M. Meenehan, G. S. MacCabe, S. Gröblacher, A. H. Safavi-Naeini, F. Marsili, M. D. Shaw, and O. Painter, “Phonon counting and intensity interferometry of a nanomechanical resonator,” Nature 520, 522–525 (2015).
[Crossref]

Sillanpää, M. A.

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nat. Commun. 3, 987 (2012).
[Crossref]

Sletten, L. R.

L. R. Sletten, B. A. Moores, J. J. Viennot, and K. W. Lehnert, “Resolving phonon Fock states in a multimode cavity with a double-slit qubit,” arXiv:1902.06344 (2019).

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. express 17, 24261–24268 (2009).
[Crossref]

Sohn, Y.-I.

L. Shao, S. Maity, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. Gadalla, M. Zhang, C. Wang, and M. Lončar, “High-Q gigahertz surface acoustic wave cavity on lithium niobate,” arXiv:1901.09080 (2019).

Song, J. D.

K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. photonics 10, 346–352 (2016).
[Crossref]

K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1, 414–420 (2014).
[Crossref]

Sørensen, A. S.

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett. 105, 220501 (2010).
[Crossref]

Srinivasan, K.

K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. photonics 10, 346–352 (2016).
[Crossref]

K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1, 414–420 (2014).
[Crossref]

H. Ramp, B. Hauer, K. Balram, T. Clark, K. Srinivasan, and J. Davis, “Elimination of thermomechanical noise in piezoelectric optomechanical crystals,” arXiv:1812.09417 (2018).

M. Forsch, R. Stockill, A. Wallucks, I. Marinkovic, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate,” arXiv:1812.07588 (2018).

Stannigel, K.

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett. 105, 220501 (2010).
[Crossref]

Stark, P.

Stern, B.

Stockill, R.

M. Forsch, R. Stockill, A. Wallucks, I. Marinkovic, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate,” arXiv:1812.07588 (2018).

Sun, X.

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
[Crossref]

Tambasco, J.-L. J.

Tang, H.

W. Pernice, C. Xiong, C. Schuck, and H. Tang, “High-Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).
[Crossref]

Tang, H. X.

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
[Crossref]

Tünnermann, A.

Vahala, K.

T. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]

Vainsencher, A.

A. Vainsencher, K. Satzinger, G. Peairs, and A. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109, 033107 (2016).
[Crossref]

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).
[Crossref]

Valery, J. A.

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref]

Van Laer, R.

A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics,” Optica 6, 213–232 (2019).
[Crossref]

R. Van Laer, R. N. Patel, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Electrical driving of x-band mechanical waves in a silicon photonic circuit,” APL Photon. 3, 086102 (2018).
[Crossref]

van Otten, F.

M. Forsch, R. Stockill, A. Wallucks, I. Marinkovic, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate,” arXiv:1812.07588 (2018).

Van Thourhout, D.

Vandersypen, L.

N. Samkharadze, A. Bruno, P. Scarlino, G. Zheng, D. DiVincenzo, L. DiCarlo, and L. Vandersypen, “High-kinetic-inductance superconducting nanowire resonators for circuit QED in a magnetic field,” Phys. Rev. Appl. 5, 044004 (2016).
[Crossref]

Venkataraman, V.

Viennot, J. J.

L. R. Sletten, B. A. Moores, J. J. Viennot, and K. W. Lehnert, “Resolving phonon Fock states in a multimode cavity with a double-slit qubit,” arXiv:1902.06344 (2019).

Wallucks, A.

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).
[Crossref]

I. Marinković, A. Wallucks, R. Riedinger, S. Hong, M. Aspelmeyer, and S. Gröblacher, “Optomechanical bell test,” Phys. Rev. Lett. 121, 220404 (2018).
[Crossref]

M. Forsch, R. Stockill, A. Wallucks, I. Marinkovic, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate,” arXiv:1812.07588 (2018).

Wang, C.

Wang, H.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Wang, Z.

R. N. Patel, Z. Wang, W. Jiang, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “Single-mode phononic wire,” Phys. Rev. Lett. 121, 040501 (2018).
[Crossref]

P. Arrangoiz-Arriola, E. A. Wollack, Z. Wang, M. Pechal, W. Jiang, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Resolving the energy levels of a nanomechanical oscillator,” arXiv:1902.04681 (2019).

Weides, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Weinstein, D.

D. Weinstein and S. A. Bhave, “The resonant body transistor,” Nano Lett. 10, 1234–1237 (2010).
[Crossref]

Weis, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Welter, P.

K. Schneider, P. Welter, Y. Baumgartner, S. Hönl, H. Hahn, L. Czornomaz, and P. Seidler, “Optomechanics with one-dimensional gallium phosphide photonic crystal cavities,” Proc. SPIE 10359, 103590K (2017).
[Crossref]

Wenner, J.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Wesch, W.

Winger, M.

A. H. Safavi-Naeini, T. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Winzer, P.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Witmer, J. D.

P. Arrangoiz-Arriola, E. A. Wollack, M. Pechal, J. D. Witmer, J. T. Hill, and A. H. Safavi-Naeini, “Coupling a superconducting quantum circuit to a phononic crystal defect cavity,” Phys. Rev. X 8, 031007 (2018).
[Crossref]

R. Van Laer, R. N. Patel, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Electrical driving of x-band mechanical waves in a silicon photonic circuit,” APL Photon. 3, 086102 (2018).
[Crossref]

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref]

P. Arrangoiz-Arriola, E. A. Wollack, Z. Wang, M. Pechal, W. Jiang, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Resolving the energy levels of a nanomechanical oscillator,” arXiv:1902.04681 (2019).

Wollack, E. A.

P. Arrangoiz-Arriola, E. A. Wollack, M. Pechal, J. D. Witmer, J. T. Hill, and A. H. Safavi-Naeini, “Coupling a superconducting quantum circuit to a phononic crystal defect cavity,” Phys. Rev. X 8, 031007 (2018).
[Crossref]

P. Arrangoiz-Arriola, E. A. Wollack, Z. Wang, M. Pechal, W. Jiang, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Resolving the energy levels of a nanomechanical oscillator,” arXiv:1902.04681 (2019).

Wu, L.

L. Shao, S. Maity, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. Gadalla, M. Zhang, C. Wang, and M. Lončar, “High-Q gigahertz surface acoustic wave cavity on lithium niobate,” arXiv:1901.09080 (2019).

Wulf, M.

S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalaee, P. Dieterle, O. Painter, and J. Fink, “Mechanical on-chip microwave circulator,” Nat. Commun. 8, 953 (2017).
[Crossref]

Xiong, C.

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
[Crossref]

W. Pernice, C. Xiong, C. Schuck, and H. Tang, “High-Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).
[Crossref]

Xiong, X.

Zhang, M.

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

L. Shao, S. Maity, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. Gadalla, M. Zhang, C. Wang, and M. Lončar, “High-Q gigahertz surface acoustic wave cavity on lithium niobate,” arXiv:1901.09080 (2019).

Zheng, G.

N. Samkharadze, A. Bruno, P. Scarlino, G. Zheng, D. DiVincenzo, L. DiCarlo, and L. Vandersypen, “High-kinetic-inductance superconducting nanowire resonators for circuit QED in a magnetic field,” Phys. Rev. Appl. 5, 044004 (2016).
[Crossref]

Zoller, P.

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett. 105, 220501 (2010).
[Crossref]

APL Photon. (1)

R. Van Laer, R. N. Patel, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Electrical driving of x-band mechanical waves in a silicon photonic circuit,” APL Photon. 3, 086102 (2018).
[Crossref]

Appl. Phys. Lett. (8)

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
[Crossref]

W. Pernice, C. Xiong, C. Schuck, and H. Tang, “High-Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).
[Crossref]

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
[Crossref]

A. Vainsencher, K. Satzinger, G. Peairs, and A. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109, 033107 (2016).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98, 113108 (2011).
[Crossref]

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett. 104, 141104 (2014).
[Crossref]

H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, and Q. Lin, “Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities,” Appl. Phys. Lett. 113, 021104 (2018).
[Crossref]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. Route, M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNb03,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[Crossref]

Laser Photon. Rev. (1)

G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

Nano Lett. (1)

D. Weinstein and S. A. Bhave, “The resonant body transistor,” Nano Lett. 10, 1234–1237 (2010).
[Crossref]

Nat. Commun. (3)

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nat. Commun. 3, 987 (2012).
[Crossref]

S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalaee, P. Dieterle, O. Painter, and J. Fink, “Mechanical on-chip microwave circulator,” Nat. Commun. 8, 953 (2017).
[Crossref]

Nat. Nanotechnol. (1)

M. Kalaee, M. Mirhosseini, P. B. Dieterle, M. Peruzzo, J. M. Fink, and O. Painter, “Quantum electromechanics of a hypersonic crystal,” Nat. Nanotechnol. 14, 334–339 (2019).
[Crossref]

Nat. Photonics (1)

K. Fang, M. H. Matheny, X. Luan, and O. Painter, “Optical transduction and routing of microwave phonons in cavity-optomechanical circuits,” Nat. Photonics 10, 489–496 (2016).
[Crossref]

K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. photonics 10, 346–352 (2016).
[Crossref]

Nat. Phys. (2)

K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13, 465–471 (2017).
[Crossref]

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).
[Crossref]

Nature (6)

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

J. D. Cohen, S. M. Meenehan, G. S. MacCabe, S. Gröblacher, A. H. Safavi-Naeini, F. Marsili, M. D. Shaw, and O. Painter, “Phonon counting and intensity interferometry of a nanomechanical resonator,” Nature 520, 522–525 (2015).
[Crossref]

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).
[Crossref]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

A. H. Safavi-Naeini, T. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

New J. Phys. (1)

A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon-photon translator,” New J. Phys. 13, 013017 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Optica (5)

Phys. Rev. A (2)

P. Arrangoiz-Arriola and A. H. Safavi-Naeini, “Engineering interactions between superconducting qubits and phononic nanostructures,” Phys. Rev. A 94, 063864 (2016).
[Crossref]

S. M. Meenehan, J. D. Cohen, S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, M. Aspelmeyer, and O. Painter, “Silicon optomechanical crystal resonator at millikelvin temperatures,” Phys. Rev. A 90, 011803 (2014).
[Crossref]

Phys. Rev. Appl. (2)

N. Samkharadze, A. Bruno, P. Scarlino, G. Zheng, D. DiVincenzo, L. DiCarlo, and L. Vandersypen, “High-kinetic-inductance superconducting nanowire resonators for circuit QED in a magnetic field,” Phys. Rev. Appl. 5, 044004 (2016).
[Crossref]

R. N. Patel, C. J. Sarabalis, W. Jiang, J. T. Hill, and A. H. Safavi-Naeini, “Engineering phonon leakage in nanomechanical resonators,” Phys. Rev. Appl. 8, 041001 (2017).
[Crossref]

Phys. Rev. Lett. (6)

A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, J. Chan, S. Gröblacher, and O. Painter, “Two-dimensional phononic-photonic band gap optomechanical crystal cavity,” Phys. Rev. Lett. 112, 153603 (2014).
[Crossref]

I. Marinković, A. Wallucks, R. Riedinger, S. Hong, M. Aspelmeyer, and S. Gröblacher, “Optomechanical bell test,” Phys. Rev. Lett. 121, 220404 (2018).
[Crossref]

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett. 105, 220501 (2010).
[Crossref]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

R. N. Patel, Z. Wang, W. Jiang, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “Single-mode phononic wire,” Phys. Rev. Lett. 121, 040501 (2018).
[Crossref]

T. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]

Phys. Rev. X (1)

P. Arrangoiz-Arriola, E. A. Wollack, M. Pechal, J. D. Witmer, J. T. Hill, and A. H. Safavi-Naeini, “Coupling a superconducting quantum circuit to a phononic crystal defect cavity,” Phys. Rev. X 8, 031007 (2018).
[Crossref]

Proc. SPIE (1)

K. Schneider, P. Welter, Y. Baumgartner, S. Hönl, H. Hahn, L. Czornomaz, and P. Seidler, “Optomechanics with one-dimensional gallium phosphide photonic crystal cavities,” Proc. SPIE 10359, 103590K (2017).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Sci. Rep. (2)

W. C. Jiang and Q. Lin, “Chip-scale cavity optomechanics in lithium niobate,” Sci. Rep. 6, 36920 (2016).
[Crossref]

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref]

Science (1)

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Other (7)

C. Inc., “Comsol multiphysics 5.0,” https://www.comsol.com .

L. R. Sletten, B. A. Moores, J. J. Viennot, and K. W. Lehnert, “Resolving phonon Fock states in a multimode cavity with a double-slit qubit,” arXiv:1902.06344 (2019).

P. Arrangoiz-Arriola, E. A. Wollack, Z. Wang, M. Pechal, W. Jiang, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Resolving the energy levels of a nanomechanical oscillator,” arXiv:1902.04681 (2019).

M. Forsch, R. Stockill, A. Wallucks, I. Marinkovic, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate,” arXiv:1812.07588 (2018).

H. Ramp, B. Hauer, K. Balram, T. Clark, K. Srinivasan, and J. Davis, “Elimination of thermomechanical noise in piezoelectric optomechanical crystals,” arXiv:1812.09417 (2018).

L. Shao, S. Maity, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. Gadalla, M. Zhang, C. Wang, and M. Lončar, “High-Q gigahertz surface acoustic wave cavity on lithium niobate,” arXiv:1901.09080 (2019).

M. Li, H. Liang, R. Luo, Y. He, and Q. Lin, “High-Q two-dimensional lithium niobate photonic crystal slab nanoresonators,” arXiv:1806.04755 (2018).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental Document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. One-dimensional optomechanical crystal (OMC) design. (a) Unit cell geometry of the nanobeam OMC, showing definitions of the parameters. (b) Unit cell geometry of the 1D phononic shield. The direction of the periodicity is perpendicular to the direction of the nanobeam. The (c) optical and (d) mechanical band structure of the nanobeam unit cell. The bands are classified by y symmetry (red) and y antisymmetry (blue). In (c), the gray-shaded region represents the continuum of radiation modes. The pink-shaded regions highlight the bandgap for (c) quasi-TE optical modes and (d) symmetric mechanical modes. The dashed black lines correspond to the localized fundamental TE optical mode and the mechanical breathing mode of the nanobeam, respectively. (e) Mechanical band structure of the 1D phononic shield unit cell, showing a complete bandgap around 2 GHz. (f) Variations of unit cell parameters along the nanobeam. w1 is kept constant for all unit cells. (g) Ey component of the optical mode. (h) Displacement field of the breathing mode. The global and material coordinates are shown (see text for description). (i) Scanning electron micrograph (SEM) of the fabricated device. Left: one row of devices with different nanobeam orientations, taken before the aluminum liftoff step. Middle: top view of one device, taken before the release step. The device consists of the tapered coupler, reflector, and two nanobeams side-coupled to the reflector. The 1D phononic shields are visible between the nanobeams and the four circular anchors. Top-right: top view of the 1D phononic shield region, showing both the LN pattern and the Al electrodes. Misalignment on the order of 20100nm is visible. Bottom-right: SEM of the nanobeam-reflector coupling region.
Fig. 2.
Fig. 2. Measurement setup and optical mode characterization. (a) Simplified diagram of the measurement setup. Two LN optomechanical crystals are side-coupled to a reflector. The reflection spectrum is recorded for optical characterization. The thermal mechanical motion of the nanobeam encoded in the optical noise power spectrum is measured by the realtime spectrum analyzer (RSA). A weak optical side band is generated with the vector network analyzer (VNA) and electro-optic modulator (EOM) for coherent spectroscopy. The mechanical motion can be also piezoelectrically driven, and the transduced optical sidebands are measured by the high-speed photodetector and the VNA. (b) Optical reflection spectrum of an LN OMC. A zoomed-in wavelength sweep shows a loaded optical quality factor Q=2.5×105 and corresponding intrinsic quality factor Qi=3.5×105 (inset: blue, data; red, fit). Variable optical attenuator (VOA), erbium-doped fiber amplifier (EDFA), fiber polarization controller (FPC).
Fig. 3.
Fig. 3. EIT and optomechanical backaction measurements. (a) Power spectral density of the mechanical motion induced optical sideband. Measured spectrum with same optical power and different detunings are shown with corresponding cooperativities, vertically displaced for viewing purposes. When a pump laser beam is blue-detuned near Δωm, mechanical lasing results as the cooperativity exceeds unity. The spectrum without mechanical lasing is fitted (red) for the total mechanical linewidth γtot. (b) Total mechanical linewidth versus intracavity photon numbers under different conditions (blue, Δ=ωm; red, Δ=ωm). For the low temperature results, one OMC without the 1D phononic shield (no PS) is measured for comparison (Δ). (c) Measured phase response of the optical probe beam at low power pump with detuning Δ=ωm at low temperature (blue dots) and fit (red line). Inset: zoom-in data and fit near the transparency window. (d) Effective optomechanical coupling rate G extracted from the EIT responses at low temperature versus the square root of intracavity photon numbers nc. High-power optical pump at detunings ωm<Δ<0 is adopted to achieve high nc without introducing mechanical lasing. Linear fits for high nc (orange) and low nc (yellow) measurements are both shown for comparison. Inset: detail of the low nc region, with data from both blue (blue)- and red (red)-detuned pump.
Fig. 4.
Fig. 4. Piezo-optomechanical measurements. (a) Optical readout of electro-optically and piezoelectrically driven optical sideband for different pump detunings. Broad electro-optic effect induced peak shifts when changing pump detuning, while mechanical responses stay at the same frequency. The gray-shaded area corresponds to the simulated mechanical bandgap of the nanobeam mirror unit cell. The mechanical response outside the bandgap is disordered but repeatable. (b) Piezo-optomechanical response near the upper bandgap edge. (c) Peaks of the response match well with the thermal mechanical peaks from the power spectral density, corresponding to the localized mechanical breathing modes of the nanobeam.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

γOM=G2(κκ2/4+(Δωm)2κκ2/4+(Δ+ωm)2),
γOM=G2κκ2/4+(Δ+ωm)2.
β=γecini(ωmωμ)+γtot/2,
α=iGβi(Δωμ)+κ/2.