Abstract

Topological photonic insulators can enable the development of efficient integrated photonic devices with minimized scattering losses. The optical properties of the majority of topological structures proposed to date are fixed by designs such that no changes to their performance can be made once the device has been fabricated. However, tunability is important for many applications, including modulators, switches, and optical buffers. We therefore propose a straightforward way to dynamically control transmission in a silicon-based topological photonic crystal using all-optical free-carrier excitation that allows for fast refractive index modulation. The changes in both the real and imaginary parts of the refractive index cause a blue shift of the transmission spectrum by up to 20 nm and a reduction in transmission by approximately 85% . With the control mechanism used here, we can achieve switching times of the order of nanoseconds. The structures proposed here are compatible with the standard semiconductor industry fabrication process and operate at telecommunication wavelengths.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Topological aspects of photonic time crystals

Eran Lustig, Yonatan Sharabi, and Mordechai Segev
Optica 5(11) 1390-1395 (2018)

Optically tunable superprism effect in nonlinear photonic crystals

Nicolae C. Panoiu, Mayank Bahl, and Richard M. Osgood, Jr.
Opt. Lett. 28(24) 2503-2505 (2003)

Topological beam-splitting in photonic crystals

Mehul Makwana, Richard Craster, and Sébastien Guenneau
Opt. Express 27(11) 16088-16102 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin Hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
    [Crossref]
  2. C. L. Kane and E. J. Mele, “Quantum spin Hall effect in graphene,” Phys. Rev. Lett. 95, 226801 (2005).
    [Crossref]
  3. J. E. Moore, “The birth of topological insulators,” Nature 464, 194–198 (2010).
    [Crossref]
  4. A. B. Bernevig and T. L. Hughes, Topological Insulators and Topological Superconductors (Princeton University, 2013).
  5. G. J. Ferreira and D. Loss, “Magnetically defined qubits on 3D topological insulators,” Phys. Rev. Lett. 111, 106802 (2013).
    [Crossref]
  6. F. Katmis, V. Lauter, F. S. Nogueira, B. A. Assaf, M. E. Jamer, P. Wei, B. Satpati, J. W. Freeland, I. Eremin, D. Heiman, P. Jarillo-Herrero, and J. S. Moodera, “A high-temperature ferromagnetic topological insulating phase by proximity coupling,” Nature 533, 513–516 (2016).
    [Crossref]
  7. G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, “Experimental realization of the topological Haldane model with ultracold fermions,” Nature 515, 237–240 (2014).
    [Crossref]
  8. R. O. Umucalılar and I. Carusotto, “Artificial gauge field for photons in coupled cavity arrays,” Phys. Rev. A 84, 043804 (2011).
    [Crossref]
  9. M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys. 7, 907–912 (2011).
    [Crossref]
  10. A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12, 233–239 (2013).
    [Crossref]
  11. K. J. Fang, Z. F. Yu, and S. H. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012).
    [Crossref]
  12. M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, “Imaging topological edge states in silicon photonics,” Nat. Photonics 7, 1001–1005 (2013).
    [Crossref]
  13. M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
    [Crossref]
  14. S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W. DeGottardi, M. Hafezi, and E. Waks, “A topological quantum optics interface,” Science 359, 666–668 (2018).
    [Crossref]
  15. J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang, and Z. Liu, “Observation of topological valley transport of sound in sonic crystals,” Nat. Phys. 13, 369–374 (2017).
    [Crossref]
  16. L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8, 821–829 (2014).
    [Crossref]
  17. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
    [Crossref]
  18. K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012).
    [Crossref]
  19. L. H. Wu and X. Hu, “Scheme for achieving a topological photonic crystal by using dielectric material,” Phys. Rev. Lett. 114, 223901 (2015).
    [Crossref]
  20. T. Ma and G. Shvets, “All-Si valley-Hall photonic topological insulator,” New J. Phys. 18, 025012 (2016).
    [Crossref]
  21. X.-D. Chen, F.-L. Zhao, M. Chen, and J.-W. Dong, “Valley-contrasting physics in all-dielectric photonic crystals: orbital angular momentum and topological propagation,” Phys. Rev. B 96, 020202 (2017).
    [Crossref]
  22. J.-W. Dong, X.-D. Chen, H. Zhu, Y. Wang, and X. Zhang, “Valley photonic crystals for control of spin and topology,” Nat. Mater. 16, 298–302 (2016).
    [Crossref]
  23. M. I. Shalaev, W. Walasik, A. Tsukernik, Y. Xu, and N. M. Litchinitser, “Robust topologically protected transport in photonic crystals at telecommunication wavelengths,” Nat. Nanotechnol. 14, 31–34 (2019).
    [Crossref]
  24. M. I. Shalaev, S. Desnavi, W. Walasik, and N. M. Litchinitser, “Reconfigurable topological photonic crystal,” New J. Phys. 20, 023040 (2018).
    [Crossref]
  25. C. Li, X. Hu, W. Gao, Y. Ao, S. Chu, H. Yang, and Q. Gong, “Thermo-optical tunable ultracompact chip-integrated 1D photonic topological insulator,” Adv. Opt. Mater. 6, 1701071 (2018).
    [Crossref]
  26. S. Li, D. Zhao, H. Niu, X. Zhu, and J. Zang, “Observation of elastic topological states in soft materials,” Nat. Commun. 9, 1370 (2018).
    [Crossref]
  27. E. Saei Ghareh Naz, I. C. Fulga, L. Ma, O. G. Schmidt, and J. van den Brink, “Topological phase transition in a stretchable photonic crystal,” Phys. Rev. A 98, 033830 (2018).
    [Crossref]
  28. D. A. Dobrykh, A. V. Yulin, A. P. Slobozhanyuk, A. N. Poddubny, and Y. S. Kivshar, “Nonlinear control of electromagnetic topological edge states,” Phys. Rev. Lett. 121, 163901 (2018).
    [Crossref]
  29. D. Leykam, S. Mittal, M. Hafezi, and Y. D. Chong, “Reconfigurable topological phases in next-nearest-neighbor coupled resonator lattices,” Phys. Rev. Lett. 121, 023901 (2018).
    [Crossref]
  30. M. J. Collins, F. Zhang, R. Bojko, L. Chrostowski, and M. C. Rechtsman, “Integrated optical Dirac physics via inversion symmetry breaking,” Phys. Rev. A 94, 063827 (2016).
    [Crossref]
  31. L. Vivien and L. Pavesi, Handbook of Silicon Photonics (CRC Press, 2013).
  32. T. Kampfrath, D. M. Beggs, T. P. White, M. Burresi, D. V. Oosten, T. F. Krauss, and L. Kuipers, “Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler,” Appl. Phys. Lett. 94, 241119(2009).
    [Crossref]
  33. A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3  μm) silicon slow-light optical modulator,” Sci. Rep. 3, 3546 (2013).
    [Crossref]
  34. M. Bass, Handbook of Optics (McGraw-Hill, 2009).
  35. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
    [Crossref]
  36. R. Bruck, K. Vynck, P. Lalanne, B. Mills, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “All-optical spatial light modulator for reconfigurable silicon photonic circuits,” Optica 3, 396–402 (2016).
    [Crossref]
  37. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643–2650 (2000).
    [Crossref]
  38. R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
    [Crossref]
  39. M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, I. Brener, and A. A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
    [Crossref]
  40. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
    [Crossref]
  41. Y. Xu, J. Sun, J. Frantz, M. I. Shalaev, W. Walasik, A. Pandey, J. D. Myers, R. Y. Bekele, A. Tsukernik, J. S. Sanghera, and N. M. Litchinitser, “Reconfiguring structured light beams using nonlinear metasurfaces,” Opt. Express 26, 30930–30943 (2018).
    [Crossref]

2019 (1)

M. I. Shalaev, W. Walasik, A. Tsukernik, Y. Xu, and N. M. Litchinitser, “Robust topologically protected transport in photonic crystals at telecommunication wavelengths,” Nat. Nanotechnol. 14, 31–34 (2019).
[Crossref]

2018 (8)

M. I. Shalaev, S. Desnavi, W. Walasik, and N. M. Litchinitser, “Reconfigurable topological photonic crystal,” New J. Phys. 20, 023040 (2018).
[Crossref]

C. Li, X. Hu, W. Gao, Y. Ao, S. Chu, H. Yang, and Q. Gong, “Thermo-optical tunable ultracompact chip-integrated 1D photonic topological insulator,” Adv. Opt. Mater. 6, 1701071 (2018).
[Crossref]

S. Li, D. Zhao, H. Niu, X. Zhu, and J. Zang, “Observation of elastic topological states in soft materials,” Nat. Commun. 9, 1370 (2018).
[Crossref]

E. Saei Ghareh Naz, I. C. Fulga, L. Ma, O. G. Schmidt, and J. van den Brink, “Topological phase transition in a stretchable photonic crystal,” Phys. Rev. A 98, 033830 (2018).
[Crossref]

D. A. Dobrykh, A. V. Yulin, A. P. Slobozhanyuk, A. N. Poddubny, and Y. S. Kivshar, “Nonlinear control of electromagnetic topological edge states,” Phys. Rev. Lett. 121, 163901 (2018).
[Crossref]

D. Leykam, S. Mittal, M. Hafezi, and Y. D. Chong, “Reconfigurable topological phases in next-nearest-neighbor coupled resonator lattices,” Phys. Rev. Lett. 121, 023901 (2018).
[Crossref]

S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W. DeGottardi, M. Hafezi, and E. Waks, “A topological quantum optics interface,” Science 359, 666–668 (2018).
[Crossref]

Y. Xu, J. Sun, J. Frantz, M. I. Shalaev, W. Walasik, A. Pandey, J. D. Myers, R. Y. Bekele, A. Tsukernik, J. S. Sanghera, and N. M. Litchinitser, “Reconfiguring structured light beams using nonlinear metasurfaces,” Opt. Express 26, 30930–30943 (2018).
[Crossref]

2017 (3)

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, I. Brener, and A. A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang, and Z. Liu, “Observation of topological valley transport of sound in sonic crystals,” Nat. Phys. 13, 369–374 (2017).
[Crossref]

X.-D. Chen, F.-L. Zhao, M. Chen, and J.-W. Dong, “Valley-contrasting physics in all-dielectric photonic crystals: orbital angular momentum and topological propagation,” Phys. Rev. B 96, 020202 (2017).
[Crossref]

2016 (5)

J.-W. Dong, X.-D. Chen, H. Zhu, Y. Wang, and X. Zhang, “Valley photonic crystals for control of spin and topology,” Nat. Mater. 16, 298–302 (2016).
[Crossref]

T. Ma and G. Shvets, “All-Si valley-Hall photonic topological insulator,” New J. Phys. 18, 025012 (2016).
[Crossref]

M. J. Collins, F. Zhang, R. Bojko, L. Chrostowski, and M. C. Rechtsman, “Integrated optical Dirac physics via inversion symmetry breaking,” Phys. Rev. A 94, 063827 (2016).
[Crossref]

F. Katmis, V. Lauter, F. S. Nogueira, B. A. Assaf, M. E. Jamer, P. Wei, B. Satpati, J. W. Freeland, I. Eremin, D. Heiman, P. Jarillo-Herrero, and J. S. Moodera, “A high-temperature ferromagnetic topological insulating phase by proximity coupling,” Nature 533, 513–516 (2016).
[Crossref]

R. Bruck, K. Vynck, P. Lalanne, B. Mills, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “All-optical spatial light modulator for reconfigurable silicon photonic circuits,” Optica 3, 396–402 (2016).
[Crossref]

2015 (2)

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

L. H. Wu and X. Hu, “Scheme for achieving a topological photonic crystal by using dielectric material,” Phys. Rev. Lett. 114, 223901 (2015).
[Crossref]

2014 (2)

G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, “Experimental realization of the topological Haldane model with ultracold fermions,” Nature 515, 237–240 (2014).
[Crossref]

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8, 821–829 (2014).
[Crossref]

2013 (5)

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12, 233–239 (2013).
[Crossref]

M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, “Imaging topological edge states in silicon photonics,” Nat. Photonics 7, 1001–1005 (2013).
[Crossref]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

G. J. Ferreira and D. Loss, “Magnetically defined qubits on 3D topological insulators,” Phys. Rev. Lett. 111, 106802 (2013).
[Crossref]

A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3  μm) silicon slow-light optical modulator,” Sci. Rep. 3, 3546 (2013).
[Crossref]

2012 (2)

K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012).
[Crossref]

K. J. Fang, Z. F. Yu, and S. H. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012).
[Crossref]

2011 (3)

R. O. Umucalılar and I. Carusotto, “Artificial gauge field for photons in coupled cavity arrays,” Phys. Rev. A 84, 043804 (2011).
[Crossref]

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys. 7, 907–912 (2011).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

2010 (1)

J. E. Moore, “The birth of topological insulators,” Nature 464, 194–198 (2010).
[Crossref]

2009 (2)

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[Crossref]

T. Kampfrath, D. M. Beggs, T. P. White, M. Burresi, D. V. Oosten, T. F. Krauss, and L. Kuipers, “Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler,” Appl. Phys. Lett. 94, 241119(2009).
[Crossref]

2005 (2)

C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin Hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
[Crossref]

C. L. Kane and E. J. Mele, “Quantum spin Hall effect in graphene,” Phys. Rev. Lett. 95, 226801 (2005).
[Crossref]

2004 (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

2000 (1)

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643–2650 (2000).
[Crossref]

Ao, Y.

C. Li, X. Hu, W. Gao, Y. Ao, S. Chu, H. Yang, and Q. Gong, “Thermo-optical tunable ultracompact chip-integrated 1D photonic topological insulator,” Adv. Opt. Mater. 6, 1701071 (2018).
[Crossref]

Assaf, B. A.

F. Katmis, V. Lauter, F. S. Nogueira, B. A. Assaf, M. E. Jamer, P. Wei, B. Satpati, J. W. Freeland, I. Eremin, D. Heiman, P. Jarillo-Herrero, and J. S. Moodera, “A high-temperature ferromagnetic topological insulating phase by proximity coupling,” Nature 533, 513–516 (2016).
[Crossref]

Barik, S.

S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W. DeGottardi, M. Hafezi, and E. Waks, “A topological quantum optics interface,” Science 359, 666–668 (2018).
[Crossref]

Bass, M.

M. Bass, Handbook of Optics (McGraw-Hill, 2009).

Beggs, D. M.

A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3  μm) silicon slow-light optical modulator,” Sci. Rep. 3, 3546 (2013).
[Crossref]

T. Kampfrath, D. M. Beggs, T. P. White, M. Burresi, D. V. Oosten, T. F. Krauss, and L. Kuipers, “Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler,” Appl. Phys. Lett. 94, 241119(2009).
[Crossref]

Bekele, R. Y.

Bernevig, A. B.

A. B. Bernevig and T. L. Hughes, Topological Insulators and Topological Superconductors (Princeton University, 2013).

Bojko, R.

M. J. Collins, F. Zhang, R. Bojko, L. Chrostowski, and M. C. Rechtsman, “Integrated optical Dirac physics via inversion symmetry breaking,” Phys. Rev. A 94, 063827 (2016).
[Crossref]

Brener, I.

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, I. Brener, and A. A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Bruck, R.

R. Bruck, K. Vynck, P. Lalanne, B. Mills, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “All-optical spatial light modulator for reconfigurable silicon photonic circuits,” Optica 3, 396–402 (2016).
[Crossref]

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

Burresi, M.

T. Kampfrath, D. M. Beggs, T. P. White, M. Burresi, D. V. Oosten, T. F. Krauss, and L. Kuipers, “Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler,” Appl. Phys. Lett. 94, 241119(2009).
[Crossref]

Cai, T.

S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W. DeGottardi, M. Hafezi, and E. Waks, “A topological quantum optics interface,” Science 359, 666–668 (2018).
[Crossref]

Carusotto, I.

R. O. Umucalılar and I. Carusotto, “Artificial gauge field for photons in coupled cavity arrays,” Phys. Rev. A 84, 043804 (2011).
[Crossref]

Chen, M.

X.-D. Chen, F.-L. Zhao, M. Chen, and J.-W. Dong, “Valley-contrasting physics in all-dielectric photonic crystals: orbital angular momentum and topological propagation,” Phys. Rev. B 96, 020202 (2017).
[Crossref]

Chen, X.-D.

X.-D. Chen, F.-L. Zhao, M. Chen, and J.-W. Dong, “Valley-contrasting physics in all-dielectric photonic crystals: orbital angular momentum and topological propagation,” Phys. Rev. B 96, 020202 (2017).
[Crossref]

J.-W. Dong, X.-D. Chen, H. Zhu, Y. Wang, and X. Zhang, “Valley photonic crystals for control of spin and topology,” Nat. Mater. 16, 298–302 (2016).
[Crossref]

Chong, Y.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[Crossref]

Chong, Y. D.

D. Leykam, S. Mittal, M. Hafezi, and Y. D. Chong, “Reconfigurable topological phases in next-nearest-neighbor coupled resonator lattices,” Phys. Rev. Lett. 121, 023901 (2018).
[Crossref]

Chrostowski, L.

M. J. Collins, F. Zhang, R. Bojko, L. Chrostowski, and M. C. Rechtsman, “Integrated optical Dirac physics via inversion symmetry breaking,” Phys. Rev. A 94, 063827 (2016).
[Crossref]

Chu, S.

C. Li, X. Hu, W. Gao, Y. Ao, S. Chu, H. Yang, and Q. Gong, “Thermo-optical tunable ultracompact chip-integrated 1D photonic topological insulator,” Adv. Opt. Mater. 6, 1701071 (2018).
[Crossref]

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Collins, M. J.

M. J. Collins, F. Zhang, R. Bojko, L. Chrostowski, and M. C. Rechtsman, “Integrated optical Dirac physics via inversion symmetry breaking,” Phys. Rev. A 94, 063827 (2016).
[Crossref]

DeGottardi, W.

S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W. DeGottardi, M. Hafezi, and E. Waks, “A topological quantum optics interface,” Science 359, 666–668 (2018).
[Crossref]

Demler, E. A.

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys. 7, 907–912 (2011).
[Crossref]

Desbuquois, R.

G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, “Experimental realization of the topological Haldane model with ultracold fermions,” Nature 515, 237–240 (2014).
[Crossref]

Desnavi, S.

M. I. Shalaev, S. Desnavi, W. Walasik, and N. M. Litchinitser, “Reconfigurable topological photonic crystal,” New J. Phys. 20, 023040 (2018).
[Crossref]

Dobrykh, D. A.

D. A. Dobrykh, A. V. Yulin, A. P. Slobozhanyuk, A. N. Poddubny, and Y. S. Kivshar, “Nonlinear control of electromagnetic topological edge states,” Phys. Rev. Lett. 121, 163901 (2018).
[Crossref]

Dolgova, T. V.

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, I. Brener, and A. A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Dong, J.-W.

X.-D. Chen, F.-L. Zhao, M. Chen, and J.-W. Dong, “Valley-contrasting physics in all-dielectric photonic crystals: orbital angular momentum and topological propagation,” Phys. Rev. B 96, 020202 (2017).
[Crossref]

J.-W. Dong, X.-D. Chen, H. Zhu, Y. Wang, and X. Zhang, “Valley photonic crystals for control of spin and topology,” Nat. Mater. 16, 298–302 (2016).
[Crossref]

Dreisow, F.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Eremin, I.

F. Katmis, V. Lauter, F. S. Nogueira, B. A. Assaf, M. E. Jamer, P. Wei, B. Satpati, J. W. Freeland, I. Eremin, D. Heiman, P. Jarillo-Herrero, and J. S. Moodera, “A high-temperature ferromagnetic topological insulating phase by proximity coupling,” Nature 533, 513–516 (2016).
[Crossref]

Esslinger, T.

G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, “Experimental realization of the topological Haldane model with ultracold fermions,” Nature 515, 237–240 (2014).
[Crossref]

Fan, J.

M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, “Imaging topological edge states in silicon photonics,” Nat. Photonics 7, 1001–1005 (2013).
[Crossref]

Fan, S.

K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012).
[Crossref]

Fan, S. H.

K. J. Fang, Z. F. Yu, and S. H. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012).
[Crossref]

Fan, X.

J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang, and Z. Liu, “Observation of topological valley transport of sound in sonic crystals,” Nat. Phys. 13, 369–374 (2017).
[Crossref]

Fang, K.

K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012).
[Crossref]

Fang, K. J.

K. J. Fang, Z. F. Yu, and S. H. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012).
[Crossref]

Fedyanin, A. A.

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, I. Brener, and A. A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Ferreira, G. J.

G. J. Ferreira and D. Loss, “Magnetically defined qubits on 3D topological insulators,” Phys. Rev. Lett. 111, 106802 (2013).
[Crossref]

Flower, C.

S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W. DeGottardi, M. Hafezi, and E. Waks, “A topological quantum optics interface,” Science 359, 666–668 (2018).
[Crossref]

Frantz, J.

Freeland, J. W.

F. Katmis, V. Lauter, F. S. Nogueira, B. A. Assaf, M. E. Jamer, P. Wei, B. Satpati, J. W. Freeland, I. Eremin, D. Heiman, P. Jarillo-Herrero, and J. S. Moodera, “A high-temperature ferromagnetic topological insulating phase by proximity coupling,” Nature 533, 513–516 (2016).
[Crossref]

Fulga, I. C.

E. Saei Ghareh Naz, I. C. Fulga, L. Ma, O. G. Schmidt, and J. van den Brink, “Topological phase transition in a stretchable photonic crystal,” Phys. Rev. A 98, 033830 (2018).
[Crossref]

Gao, W.

C. Li, X. Hu, W. Gao, Y. Ao, S. Chu, H. Yang, and Q. Gong, “Thermo-optical tunable ultracompact chip-integrated 1D photonic topological insulator,” Adv. Opt. Mater. 6, 1701071 (2018).
[Crossref]

Gardes, F. Y.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

Gong, Q.

C. Li, X. Hu, W. Gao, Y. Ao, S. Chu, H. Yang, and Q. Gong, “Thermo-optical tunable ultracompact chip-integrated 1D photonic topological insulator,” Adv. Opt. Mater. 6, 1701071 (2018).
[Crossref]

Greif, D.

G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, “Experimental realization of the topological Haldane model with ultracold fermions,” Nature 515, 237–240 (2014).
[Crossref]

Hafezi, M.

S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W. DeGottardi, M. Hafezi, and E. Waks, “A topological quantum optics interface,” Science 359, 666–668 (2018).
[Crossref]

D. Leykam, S. Mittal, M. Hafezi, and Y. D. Chong, “Reconfigurable topological phases in next-nearest-neighbor coupled resonator lattices,” Phys. Rev. Lett. 121, 023901 (2018).
[Crossref]

M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, “Imaging topological edge states in silicon photonics,” Nat. Photonics 7, 1001–1005 (2013).
[Crossref]

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys. 7, 907–912 (2011).
[Crossref]

Heiman, D.

F. Katmis, V. Lauter, F. S. Nogueira, B. A. Assaf, M. E. Jamer, P. Wei, B. Satpati, J. W. Freeland, I. Eremin, D. Heiman, P. Jarillo-Herrero, and J. S. Moodera, “A high-temperature ferromagnetic topological insulating phase by proximity coupling,” Nature 533, 513–516 (2016).
[Crossref]

Hu, X.

C. Li, X. Hu, W. Gao, Y. Ao, S. Chu, H. Yang, and Q. Gong, “Thermo-optical tunable ultracompact chip-integrated 1D photonic topological insulator,” Adv. Opt. Mater. 6, 1701071 (2018).
[Crossref]

L. H. Wu and X. Hu, “Scheme for achieving a topological photonic crystal by using dielectric material,” Phys. Rev. Lett. 114, 223901 (2015).
[Crossref]

Hu, Y.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

Hughes, T. L.

A. B. Bernevig and T. L. Hughes, Topological Insulators and Topological Superconductors (Princeton University, 2013).

Jamer, M. E.

F. Katmis, V. Lauter, F. S. Nogueira, B. A. Assaf, M. E. Jamer, P. Wei, B. Satpati, J. W. Freeland, I. Eremin, D. Heiman, P. Jarillo-Herrero, and J. S. Moodera, “A high-temperature ferromagnetic topological insulating phase by proximity coupling,” Nature 533, 513–516 (2016).
[Crossref]

Jarillo-Herrero, P.

F. Katmis, V. Lauter, F. S. Nogueira, B. A. Assaf, M. E. Jamer, P. Wei, B. Satpati, J. W. Freeland, I. Eremin, D. Heiman, P. Jarillo-Herrero, and J. S. Moodera, “A high-temperature ferromagnetic topological insulating phase by proximity coupling,” Nature 533, 513–516 (2016).
[Crossref]

Joannopoulos, J. D.

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8, 821–829 (2014).
[Crossref]

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[Crossref]

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Jotzu, G.

G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, “Experimental realization of the topological Haldane model with ultracold fermions,” Nature 515, 237–240 (2014).
[Crossref]

Kampfrath, T.

T. Kampfrath, D. M. Beggs, T. P. White, M. Burresi, D. V. Oosten, T. F. Krauss, and L. Kuipers, “Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler,” Appl. Phys. Lett. 94, 241119(2009).
[Crossref]

Kane, C. L.

C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin Hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
[Crossref]

C. L. Kane and E. J. Mele, “Quantum spin Hall effect in graphene,” Phys. Rev. Lett. 95, 226801 (2005).
[Crossref]

Karasahin, A.

S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W. DeGottardi, M. Hafezi, and E. Waks, “A topological quantum optics interface,” Science 359, 666–668 (2018).
[Crossref]

Kargarian, M.

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12, 233–239 (2013).
[Crossref]

Katmis, F.

F. Katmis, V. Lauter, F. S. Nogueira, B. A. Assaf, M. E. Jamer, P. Wei, B. Satpati, J. W. Freeland, I. Eremin, D. Heiman, P. Jarillo-Herrero, and J. S. Moodera, “A high-temperature ferromagnetic topological insulating phase by proximity coupling,” Nature 533, 513–516 (2016).
[Crossref]

Ke, M.

J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang, and Z. Liu, “Observation of topological valley transport of sound in sonic crystals,” Nat. Phys. 13, 369–374 (2017).
[Crossref]

Keeler, G.

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, I. Brener, and A. A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Khanikaev, A. B.

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12, 233–239 (2013).
[Crossref]

Kivshar, Y. S.

D. A. Dobrykh, A. V. Yulin, A. P. Slobozhanyuk, A. N. Poddubny, and Y. S. Kivshar, “Nonlinear control of electromagnetic topological edge states,” Phys. Rev. Lett. 121, 163901 (2018).
[Crossref]

Krauss, T. F.

A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3  μm) silicon slow-light optical modulator,” Sci. Rep. 3, 3546 (2013).
[Crossref]

T. Kampfrath, D. M. Beggs, T. P. White, M. Burresi, D. V. Oosten, T. F. Krauss, and L. Kuipers, “Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler,” Appl. Phys. Lett. 94, 241119(2009).
[Crossref]

Kuipers, L.

A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3  μm) silicon slow-light optical modulator,” Sci. Rep. 3, 3546 (2013).
[Crossref]

T. Kampfrath, D. M. Beggs, T. P. White, M. Burresi, D. V. Oosten, T. F. Krauss, and L. Kuipers, “Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler,” Appl. Phys. Lett. 94, 241119(2009).
[Crossref]

Lalanne, P.

Lauter, V.

F. Katmis, V. Lauter, F. S. Nogueira, B. A. Assaf, M. E. Jamer, P. Wei, B. Satpati, J. W. Freeland, I. Eremin, D. Heiman, P. Jarillo-Herrero, and J. S. Moodera, “A high-temperature ferromagnetic topological insulating phase by proximity coupling,” Nature 533, 513–516 (2016).
[Crossref]

Lebrat, M.

G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, “Experimental realization of the topological Haldane model with ultracold fermions,” Nature 515, 237–240 (2014).
[Crossref]

Leykam, D.

D. Leykam, S. Mittal, M. Hafezi, and Y. D. Chong, “Reconfigurable topological phases in next-nearest-neighbor coupled resonator lattices,” Phys. Rev. Lett. 121, 023901 (2018).
[Crossref]

Li, C.

C. Li, X. Hu, W. Gao, Y. Ao, S. Chu, H. Yang, and Q. Gong, “Thermo-optical tunable ultracompact chip-integrated 1D photonic topological insulator,” Adv. Opt. Mater. 6, 1701071 (2018).
[Crossref]

Li, S.

S. Li, D. Zhao, H. Niu, X. Zhu, and J. Zang, “Observation of elastic topological states in soft materials,” Nat. Commun. 9, 1370 (2018).
[Crossref]

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Litchinitser, N. M.

M. I. Shalaev, W. Walasik, A. Tsukernik, Y. Xu, and N. M. Litchinitser, “Robust topologically protected transport in photonic crystals at telecommunication wavelengths,” Nat. Nanotechnol. 14, 31–34 (2019).
[Crossref]

Y. Xu, J. Sun, J. Frantz, M. I. Shalaev, W. Walasik, A. Pandey, J. D. Myers, R. Y. Bekele, A. Tsukernik, J. S. Sanghera, and N. M. Litchinitser, “Reconfiguring structured light beams using nonlinear metasurfaces,” Opt. Express 26, 30930–30943 (2018).
[Crossref]

M. I. Shalaev, S. Desnavi, W. Walasik, and N. M. Litchinitser, “Reconfigurable topological photonic crystal,” New J. Phys. 20, 023040 (2018).
[Crossref]

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Liu, S.

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, I. Brener, and A. A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Liu, Z.

J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang, and Z. Liu, “Observation of topological valley transport of sound in sonic crystals,” Nat. Phys. 13, 369–374 (2017).
[Crossref]

Loss, D.

G. J. Ferreira and D. Loss, “Magnetically defined qubits on 3D topological insulators,” Phys. Rev. Lett. 111, 106802 (2013).
[Crossref]

Lu, J.

J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang, and Z. Liu, “Observation of topological valley transport of sound in sonic crystals,” Nat. Phys. 13, 369–374 (2017).
[Crossref]

Lu, L.

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8, 821–829 (2014).
[Crossref]

Lukin, M. D.

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys. 7, 907–912 (2011).
[Crossref]

Lumer, Y.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Ma, L.

E. Saei Ghareh Naz, I. C. Fulga, L. Ma, O. G. Schmidt, and J. van den Brink, “Topological phase transition in a stretchable photonic crystal,” Phys. Rev. A 98, 033830 (2018).
[Crossref]

Ma, T.

T. Ma and G. Shvets, “All-Si valley-Hall photonic topological insulator,” New J. Phys. 18, 025012 (2016).
[Crossref]

MacDonald, A. H.

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12, 233–239 (2013).
[Crossref]

Mashanovich, G. Z.

R. Bruck, K. Vynck, P. Lalanne, B. Mills, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “All-optical spatial light modulator for reconfigurable silicon photonic circuits,” Optica 3, 396–402 (2016).
[Crossref]

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

Mele, E. J.

C. L. Kane and E. J. Mele, “Quantum spin Hall effect in graphene,” Phys. Rev. Lett. 95, 226801 (2005).
[Crossref]

C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin Hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
[Crossref]

Messer, M.

G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, “Experimental realization of the topological Haldane model with ultracold fermions,” Nature 515, 237–240 (2014).
[Crossref]

Migdall, A.

M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, “Imaging topological edge states in silicon photonics,” Nat. Photonics 7, 1001–1005 (2013).
[Crossref]

Mills, B.

R. Bruck, K. Vynck, P. Lalanne, B. Mills, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “All-optical spatial light modulator for reconfigurable silicon photonic circuits,” Optica 3, 396–402 (2016).
[Crossref]

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

Mittal, S.

D. Leykam, S. Mittal, M. Hafezi, and Y. D. Chong, “Reconfigurable topological phases in next-nearest-neighbor coupled resonator lattices,” Phys. Rev. Lett. 121, 023901 (2018).
[Crossref]

M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, “Imaging topological edge states in silicon photonics,” Nat. Photonics 7, 1001–1005 (2013).
[Crossref]

Miyake, H.

S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W. DeGottardi, M. Hafezi, and E. Waks, “A topological quantum optics interface,” Science 359, 666–668 (2018).
[Crossref]

Moodera, J. S.

F. Katmis, V. Lauter, F. S. Nogueira, B. A. Assaf, M. E. Jamer, P. Wei, B. Satpati, J. W. Freeland, I. Eremin, D. Heiman, P. Jarillo-Herrero, and J. S. Moodera, “A high-temperature ferromagnetic topological insulating phase by proximity coupling,” Nature 533, 513–516 (2016).
[Crossref]

Moore, J. E.

J. E. Moore, “The birth of topological insulators,” Nature 464, 194–198 (2010).
[Crossref]

Mousavi, S. H.

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12, 233–239 (2013).
[Crossref]

Muskens, O. L.

R. Bruck, K. Vynck, P. Lalanne, B. Mills, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “All-optical spatial light modulator for reconfigurable silicon photonic circuits,” Optica 3, 396–402 (2016).
[Crossref]

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

Myers, J. D.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Niu, H.

S. Li, D. Zhao, H. Niu, X. Zhu, and J. Zang, “Observation of elastic topological states in soft materials,” Nat. Commun. 9, 1370 (2018).
[Crossref]

Nogueira, F. S.

F. Katmis, V. Lauter, F. S. Nogueira, B. A. Assaf, M. E. Jamer, P. Wei, B. Satpati, J. W. Freeland, I. Eremin, D. Heiman, P. Jarillo-Herrero, and J. S. Moodera, “A high-temperature ferromagnetic topological insulating phase by proximity coupling,” Nature 533, 513–516 (2016).
[Crossref]

Nolte, S.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

Oosten, D. V.

T. Kampfrath, D. M. Beggs, T. P. White, M. Burresi, D. V. Oosten, T. F. Krauss, and L. Kuipers, “Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler,” Appl. Phys. Lett. 94, 241119(2009).
[Crossref]

Opheij, A.

A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3  μm) silicon slow-light optical modulator,” Sci. Rep. 3, 3546 (2013).
[Crossref]

Pandey, A.

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Passaro, V. M. N.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

Pavesi, L.

L. Vivien and L. Pavesi, Handbook of Silicon Photonics (CRC Press, 2013).

Pertsch, T.

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, I. Brener, and A. A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Plotnik, Y.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

Poddubny, A. N.

D. A. Dobrykh, A. V. Yulin, A. P. Slobozhanyuk, A. N. Poddubny, and Y. S. Kivshar, “Nonlinear control of electromagnetic topological edge states,” Phys. Rev. Lett. 121, 163901 (2018).
[Crossref]

Podolsky, D.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

Qiu, C.

J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang, and Z. Liu, “Observation of topological valley transport of sound in sonic crystals,” Nat. Phys. 13, 369–374 (2017).
[Crossref]

Rechtsman, M. C.

M. J. Collins, F. Zhang, R. Bojko, L. Chrostowski, and M. C. Rechtsman, “Integrated optical Dirac physics via inversion symmetry breaking,” Phys. Rev. A 94, 063827 (2016).
[Crossref]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

Reed, G. T.

R. Bruck, K. Vynck, P. Lalanne, B. Mills, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “All-optical spatial light modulator for reconfigurable silicon photonic circuits,” Optica 3, 396–402 (2016).
[Crossref]

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

Rey, I. H.

A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3  μm) silicon slow-light optical modulator,” Sci. Rep. 3, 3546 (2013).
[Crossref]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Rotenberg, N.

A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3  μm) silicon slow-light optical modulator,” Sci. Rep. 3, 3546 (2013).
[Crossref]

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Saei Ghareh Naz, E.

E. Saei Ghareh Naz, I. C. Fulga, L. Ma, O. G. Schmidt, and J. van den Brink, “Topological phase transition in a stretchable photonic crystal,” Phys. Rev. A 98, 033830 (2018).
[Crossref]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Sanghera, J. S.

Satpati, B.

F. Katmis, V. Lauter, F. S. Nogueira, B. A. Assaf, M. E. Jamer, P. Wei, B. Satpati, J. W. Freeland, I. Eremin, D. Heiman, P. Jarillo-Herrero, and J. S. Moodera, “A high-temperature ferromagnetic topological insulating phase by proximity coupling,” Nature 533, 513–516 (2016).
[Crossref]

Schmidt, O. G.

E. Saei Ghareh Naz, I. C. Fulga, L. Ma, O. G. Schmidt, and J. van den Brink, “Topological phase transition in a stretchable photonic crystal,” Phys. Rev. A 98, 033830 (2018).
[Crossref]

Segev, M.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

Shalaev, M. I.

M. I. Shalaev, W. Walasik, A. Tsukernik, Y. Xu, and N. M. Litchinitser, “Robust topologically protected transport in photonic crystals at telecommunication wavelengths,” Nat. Nanotechnol. 14, 31–34 (2019).
[Crossref]

M. I. Shalaev, S. Desnavi, W. Walasik, and N. M. Litchinitser, “Reconfigurable topological photonic crystal,” New J. Phys. 20, 023040 (2018).
[Crossref]

Y. Xu, J. Sun, J. Frantz, M. I. Shalaev, W. Walasik, A. Pandey, J. D. Myers, R. Y. Bekele, A. Tsukernik, J. S. Sanghera, and N. M. Litchinitser, “Reconfiguring structured light beams using nonlinear metasurfaces,” Opt. Express 26, 30930–30943 (2018).
[Crossref]

Shcherbakov, M. R.

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, I. Brener, and A. A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Shvets, G.

T. Ma and G. Shvets, “All-Si valley-Hall photonic topological insulator,” New J. Phys. 18, 025012 (2016).
[Crossref]

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12, 233–239 (2013).
[Crossref]

Slobozhanyuk, A. P.

D. A. Dobrykh, A. V. Yulin, A. P. Slobozhanyuk, A. N. Poddubny, and Y. S. Kivshar, “Nonlinear control of electromagnetic topological edge states,” Phys. Rev. Lett. 121, 163901 (2018).
[Crossref]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643–2650 (2000).
[Crossref]

Soljacic, M.

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8, 821–829 (2014).
[Crossref]

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[Crossref]

Staude, I.

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, I. Brener, and A. A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Sun, J.

Szameit, A.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

Taylor, J. M.

M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, “Imaging topological edge states in silicon photonics,” Nat. Photonics 7, 1001–1005 (2013).
[Crossref]

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys. 7, 907–912 (2011).
[Crossref]

Thomson, D. J.

R. Bruck, K. Vynck, P. Lalanne, B. Mills, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “All-optical spatial light modulator for reconfigurable silicon photonic circuits,” Optica 3, 396–402 (2016).
[Crossref]

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

Troia, B.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

Tse, W.-K.

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12, 233–239 (2013).
[Crossref]

Tsukernik, A.

M. I. Shalaev, W. Walasik, A. Tsukernik, Y. Xu, and N. M. Litchinitser, “Robust topologically protected transport in photonic crystals at telecommunication wavelengths,” Nat. Nanotechnol. 14, 31–34 (2019).
[Crossref]

Y. Xu, J. Sun, J. Frantz, M. I. Shalaev, W. Walasik, A. Pandey, J. D. Myers, R. Y. Bekele, A. Tsukernik, J. S. Sanghera, and N. M. Litchinitser, “Reconfiguring structured light beams using nonlinear metasurfaces,” Opt. Express 26, 30930–30943 (2018).
[Crossref]

Uehlinger, T.

G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, “Experimental realization of the topological Haldane model with ultracold fermions,” Nature 515, 237–240 (2014).
[Crossref]

Umucalilar, R. O.

R. O. Umucalılar and I. Carusotto, “Artificial gauge field for photons in coupled cavity arrays,” Phys. Rev. A 84, 043804 (2011).
[Crossref]

Vabishchevich, P. P.

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, I. Brener, and A. A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

van den Brink, J.

E. Saei Ghareh Naz, I. C. Fulga, L. Ma, O. G. Schmidt, and J. van den Brink, “Topological phase transition in a stretchable photonic crystal,” Phys. Rev. A 98, 033830 (2018).
[Crossref]

Vaskin, A.

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, I. Brener, and A. A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Vivien, L.

L. Vivien and L. Pavesi, Handbook of Silicon Photonics (CRC Press, 2013).

von der Linde, D.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643–2650 (2000).
[Crossref]

Vynck, K.

Waks, E.

S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W. DeGottardi, M. Hafezi, and E. Waks, “A topological quantum optics interface,” Science 359, 666–668 (2018).
[Crossref]

Walasik, W.

M. I. Shalaev, W. Walasik, A. Tsukernik, Y. Xu, and N. M. Litchinitser, “Robust topologically protected transport in photonic crystals at telecommunication wavelengths,” Nat. Nanotechnol. 14, 31–34 (2019).
[Crossref]

M. I. Shalaev, S. Desnavi, W. Walasik, and N. M. Litchinitser, “Reconfigurable topological photonic crystal,” New J. Phys. 20, 023040 (2018).
[Crossref]

Y. Xu, J. Sun, J. Frantz, M. I. Shalaev, W. Walasik, A. Pandey, J. D. Myers, R. Y. Bekele, A. Tsukernik, J. S. Sanghera, and N. M. Litchinitser, “Reconfiguring structured light beams using nonlinear metasurfaces,” Opt. Express 26, 30930–30943 (2018).
[Crossref]

Wang, Y.

J.-W. Dong, X.-D. Chen, H. Zhu, Y. Wang, and X. Zhang, “Valley photonic crystals for control of spin and topology,” Nat. Mater. 16, 298–302 (2016).
[Crossref]

Wang, Z.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[Crossref]

Wei, P.

F. Katmis, V. Lauter, F. S. Nogueira, B. A. Assaf, M. E. Jamer, P. Wei, B. Satpati, J. W. Freeland, I. Eremin, D. Heiman, P. Jarillo-Herrero, and J. S. Moodera, “A high-temperature ferromagnetic topological insulating phase by proximity coupling,” Nature 533, 513–516 (2016).
[Crossref]

White, T. P.

T. Kampfrath, D. M. Beggs, T. P. White, M. Burresi, D. V. Oosten, T. F. Krauss, and L. Kuipers, “Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler,” Appl. Phys. Lett. 94, 241119(2009).
[Crossref]

Wu, L. H.

L. H. Wu and X. Hu, “Scheme for achieving a topological photonic crystal by using dielectric material,” Phys. Rev. Lett. 114, 223901 (2015).
[Crossref]

Xu, Y.

M. I. Shalaev, W. Walasik, A. Tsukernik, Y. Xu, and N. M. Litchinitser, “Robust topologically protected transport in photonic crystals at telecommunication wavelengths,” Nat. Nanotechnol. 14, 31–34 (2019).
[Crossref]

Y. Xu, J. Sun, J. Frantz, M. I. Shalaev, W. Walasik, A. Pandey, J. D. Myers, R. Y. Bekele, A. Tsukernik, J. S. Sanghera, and N. M. Litchinitser, “Reconfiguring structured light beams using nonlinear metasurfaces,” Opt. Express 26, 30930–30943 (2018).
[Crossref]

Yang, H.

C. Li, X. Hu, W. Gao, Y. Ao, S. Chu, H. Yang, and Q. Gong, “Thermo-optical tunable ultracompact chip-integrated 1D photonic topological insulator,” Adv. Opt. Mater. 6, 1701071 (2018).
[Crossref]

Ye, L.

J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang, and Z. Liu, “Observation of topological valley transport of sound in sonic crystals,” Nat. Phys. 13, 369–374 (2017).
[Crossref]

Yu, Z.

K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012).
[Crossref]

Yu, Z. F.

K. J. Fang, Z. F. Yu, and S. H. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012).
[Crossref]

Yulin, A. V.

D. A. Dobrykh, A. V. Yulin, A. P. Slobozhanyuk, A. N. Poddubny, and Y. S. Kivshar, “Nonlinear control of electromagnetic topological edge states,” Phys. Rev. Lett. 121, 163901 (2018).
[Crossref]

Zang, J.

S. Li, D. Zhao, H. Niu, X. Zhu, and J. Zang, “Observation of elastic topological states in soft materials,” Nat. Commun. 9, 1370 (2018).
[Crossref]

Zeuner, J. M.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

Zhang, F.

J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang, and Z. Liu, “Observation of topological valley transport of sound in sonic crystals,” Nat. Phys. 13, 369–374 (2017).
[Crossref]

M. J. Collins, F. Zhang, R. Bojko, L. Chrostowski, and M. C. Rechtsman, “Integrated optical Dirac physics via inversion symmetry breaking,” Phys. Rev. A 94, 063827 (2016).
[Crossref]

Zhang, X.

J.-W. Dong, X.-D. Chen, H. Zhu, Y. Wang, and X. Zhang, “Valley photonic crystals for control of spin and topology,” Nat. Mater. 16, 298–302 (2016).
[Crossref]

Zhao, D.

S. Li, D. Zhao, H. Niu, X. Zhu, and J. Zang, “Observation of elastic topological states in soft materials,” Nat. Commun. 9, 1370 (2018).
[Crossref]

Zhao, F.-L.

X.-D. Chen, F.-L. Zhao, M. Chen, and J.-W. Dong, “Valley-contrasting physics in all-dielectric photonic crystals: orbital angular momentum and topological propagation,” Phys. Rev. B 96, 020202 (2017).
[Crossref]

Zhu, H.

J.-W. Dong, X.-D. Chen, H. Zhu, Y. Wang, and X. Zhang, “Valley photonic crystals for control of spin and topology,” Nat. Mater. 16, 298–302 (2016).
[Crossref]

Zhu, X.

S. Li, D. Zhao, H. Niu, X. Zhu, and J. Zang, “Observation of elastic topological states in soft materials,” Nat. Commun. 9, 1370 (2018).
[Crossref]

Zubyuk, V. V.

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, I. Brener, and A. A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Adv. Opt. Mater. (1)

C. Li, X. Hu, W. Gao, Y. Ao, S. Chu, H. Yang, and Q. Gong, “Thermo-optical tunable ultracompact chip-integrated 1D photonic topological insulator,” Adv. Opt. Mater. 6, 1701071 (2018).
[Crossref]

Appl. Phys. Lett. (1)

T. Kampfrath, D. M. Beggs, T. P. White, M. Burresi, D. V. Oosten, T. F. Krauss, and L. Kuipers, “Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler,” Appl. Phys. Lett. 94, 241119(2009).
[Crossref]

Nat. Commun. (2)

S. Li, D. Zhao, H. Niu, X. Zhu, and J. Zang, “Observation of elastic topological states in soft materials,” Nat. Commun. 9, 1370 (2018).
[Crossref]

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, I. Brener, and A. A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Nat. Mater. (2)

J.-W. Dong, X.-D. Chen, H. Zhu, Y. Wang, and X. Zhang, “Valley photonic crystals for control of spin and topology,” Nat. Mater. 16, 298–302 (2016).
[Crossref]

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12, 233–239 (2013).
[Crossref]

Nat. Nanotechnol. (1)

M. I. Shalaev, W. Walasik, A. Tsukernik, Y. Xu, and N. M. Litchinitser, “Robust topologically protected transport in photonic crystals at telecommunication wavelengths,” Nat. Nanotechnol. 14, 31–34 (2019).
[Crossref]

Nat. Photonics (6)

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

K. J. Fang, Z. F. Yu, and S. H. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012).
[Crossref]

M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, “Imaging topological edge states in silicon photonics,” Nat. Photonics 7, 1001–1005 (2013).
[Crossref]

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8, 821–829 (2014).
[Crossref]

K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Nat. Phys. (2)

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys. 7, 907–912 (2011).
[Crossref]

J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang, and Z. Liu, “Observation of topological valley transport of sound in sonic crystals,” Nat. Phys. 13, 369–374 (2017).
[Crossref]

Nature (6)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

F. Katmis, V. Lauter, F. S. Nogueira, B. A. Assaf, M. E. Jamer, P. Wei, B. Satpati, J. W. Freeland, I. Eremin, D. Heiman, P. Jarillo-Herrero, and J. S. Moodera, “A high-temperature ferromagnetic topological insulating phase by proximity coupling,” Nature 533, 513–516 (2016).
[Crossref]

G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, “Experimental realization of the topological Haldane model with ultracold fermions,” Nature 515, 237–240 (2014).
[Crossref]

J. E. Moore, “The birth of topological insulators,” Nature 464, 194–198 (2010).
[Crossref]

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[Crossref]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

New J. Phys. (2)

M. I. Shalaev, S. Desnavi, W. Walasik, and N. M. Litchinitser, “Reconfigurable topological photonic crystal,” New J. Phys. 20, 023040 (2018).
[Crossref]

T. Ma and G. Shvets, “All-Si valley-Hall photonic topological insulator,” New J. Phys. 18, 025012 (2016).
[Crossref]

Opt. Express (1)

Optica (1)

Phys. Rev. A (3)

M. J. Collins, F. Zhang, R. Bojko, L. Chrostowski, and M. C. Rechtsman, “Integrated optical Dirac physics via inversion symmetry breaking,” Phys. Rev. A 94, 063827 (2016).
[Crossref]

E. Saei Ghareh Naz, I. C. Fulga, L. Ma, O. G. Schmidt, and J. van den Brink, “Topological phase transition in a stretchable photonic crystal,” Phys. Rev. A 98, 033830 (2018).
[Crossref]

R. O. Umucalılar and I. Carusotto, “Artificial gauge field for photons in coupled cavity arrays,” Phys. Rev. A 84, 043804 (2011).
[Crossref]

Phys. Rev. B (2)

X.-D. Chen, F.-L. Zhao, M. Chen, and J.-W. Dong, “Valley-contrasting physics in all-dielectric photonic crystals: orbital angular momentum and topological propagation,” Phys. Rev. B 96, 020202 (2017).
[Crossref]

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643–2650 (2000).
[Crossref]

Phys. Rev. Lett. (6)

D. A. Dobrykh, A. V. Yulin, A. P. Slobozhanyuk, A. N. Poddubny, and Y. S. Kivshar, “Nonlinear control of electromagnetic topological edge states,” Phys. Rev. Lett. 121, 163901 (2018).
[Crossref]

D. Leykam, S. Mittal, M. Hafezi, and Y. D. Chong, “Reconfigurable topological phases in next-nearest-neighbor coupled resonator lattices,” Phys. Rev. Lett. 121, 023901 (2018).
[Crossref]

G. J. Ferreira and D. Loss, “Magnetically defined qubits on 3D topological insulators,” Phys. Rev. Lett. 111, 106802 (2013).
[Crossref]

C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin Hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
[Crossref]

C. L. Kane and E. J. Mele, “Quantum spin Hall effect in graphene,” Phys. Rev. Lett. 95, 226801 (2005).
[Crossref]

L. H. Wu and X. Hu, “Scheme for achieving a topological photonic crystal by using dielectric material,” Phys. Rev. Lett. 114, 223901 (2015).
[Crossref]

Sci. Rep. (1)

A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3  μm) silicon slow-light optical modulator,” Sci. Rep. 3, 3546 (2013).
[Crossref]

Science (1)

S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W. DeGottardi, M. Hafezi, and E. Waks, “A topological quantum optics interface,” Science 359, 666–668 (2018).
[Crossref]

Other (3)

A. B. Bernevig and T. L. Hughes, Topological Insulators and Topological Superconductors (Princeton University, 2013).

M. Bass, Handbook of Optics (McGraw-Hill, 2009).

L. Vivien and L. Pavesi, Handbook of Silicon Photonics (CRC Press, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Principle of operation. Tuning of transmission of the topological PC is enabled by refractive index modulation (see panel c) due to optically induced FC excitation (see panel b). (a) NIR probe light was coupled to the chip by an input diffraction grating, then split in two parts, where half goes to the topological PC and another part is used as a reference. The transmitted light is out-coupled from the chip by a pair of diffraction gratings. The PC is illuminated by an ultra-violet (UV) pump beam to control the refractive index of Si. (b) Two mechanisms of the FC excitation: single-photon absorption (SPA) occurs when the photon energy exceeds the bandgap size, and electrons are excited directly from the valence band to the conduction band; two-photon absorption (TPA) happens when two photons are absorbed simultaneously, and the electron is excited to the conduction band. (c) Band diagram for the hexagonal PC slab with two triangular holes per unit cell. The inset shows the geometry of the unit cell. The parameters used are a0=423nm, h=270nm, d1=0.4a0, and d2=0.6a0, and the effective refractive index of Si is assumed to be nSi,eff=2.965. Illumination of the sample with a UV pump beam induces a refractive index change in the semiconductor material. Assuming the index change of Δn=0.1, the bandgap position is shifted towards higher frequencies (shorter wavelength). The inset shows the zoomed in picture of the band diagram in the vicinity of the bandgap. UV illumination can be used to control the spectral position of the bandgap and, correspondingly, the operation frequencies of the PC.
Fig. 2.
Fig. 2. Bandgap position control by PC illumination. (b) Transmittance spectrum for the trapezoidal-shaped interface in topological PC as a function of the refractive index change in Si. For efficient guiding, two conditions have to be satisfied: (i) the edge state must exist, while (ii) no bulk states should be present at the guided frequency. (a), (c) Band diagrams for the super-cell periodic in the x direction (see the inset) that contains two parts with different orientations of large and small triangles. The interface between the two parts is located in the middle of the structure (in the y direction). The position of the high-transmittance region is shifted towards shorter wavelengths upon reduction of the refractive index. The width of the bandgap is also decreased due to the reduction of the index contrast. (d), (e) Energy-density distributions for pump illumination turned ON and OFF marked in panel (b) by the green and cyan dots, respectively. For the ON state, the transmittance is reduced at the wavelength λ=1642nm compared to the off state.
Fig. 3.
Fig. 3. All-optical transmission control for topological edge states. (a) Schematics of the experimental setup. Light from a Ti:sapphire laser is fed into two OPAs to generate the pump and probe beams. Relative arrival times of the pump (UV) and probe (NIR) pulses are controlled by a delay line. The two beams are combined by a dichroic mirror and routed towards the sample by a BS. Light is focused on the sample by an infinity-corrected objective lens; a 4f system is used for sample imaging and transmission measurements. (b), (c) Experimentally measured and numerically simulated transmission spectra for various levels of the pump fluence. Refractive index change in the numerical analysis was fitted assuming a Gaussian spatial distribution of the index with parameters corresponding to the pump-beam size used in experiments. The transmission-peak position shifts by 20 nm towards shorter wavelengths (blue shift) at the highest pump fluence, while the peak transmission is reduced by around 85%. The transmissions for the trapezoidal and straight paths are similar, indicating lossless light propagation around sharp turns as a manifestation of the topological protection. (d), (e) Scanning electron microscopy images of two sample types measured in the experiment having the straight edge and the one with four turns. Green dashed lines show the predicted light-propagation paths. (f) FC-lifetime measurement based on the dependence of the normalized transmission on the delay between the pump and probe pulses. Red curve shows the measured data, and the blue one shows the fitted transmission with FC lifetime τ=600ps.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔϵFC(Feff)=[ωp(Feff)ω]211+i1ωτD,
Neh(Feff)=2πFeffhω(α+βFeff22πt0),