Abstract

In the well-known stimulated Brillouin scattering (SBS) process, spontaneous acoustic phonons in materials are stimulated by laser light and scatter the latter into a Stokes sideband. SBS becomes more pronounced in optical fibers and has been harnessed to amplify optical signals and even achieve lasing. Exploitation of SBS has recently surged on integrated photonics platforms, as simultaneous confinement of photons and phonons in waveguides leads to drastically enhanced interaction. Instead of being optically stimulated, coherent phonons can also be electromechanically excited with very high efficiency, as has been exploited in radio frequency acoustic filters. Here, we demonstrate electromechanically excited Brillouin scattering in integrated optomechanical waveguides made of piezoelectric material aluminum nitride (AlN). Acoustic phonons of 16 GHz in frequency are excited with nanofabricated electromechanical transducers to scatter counterpropagating photons in the waveguide into a single anti-Stokes sideband. We show that phase-matching conditions of Brillouin scattering can be tuned by varying both the optical wavelength and the acoustic frequency to realize tunable single-sideband modulation. Combining Brillouin scattering photonics with nanoelectromechanical systems, our approach provides an efficient interface between microwave and optical photons that will be important for microwave photonics and potentially quantum transduction.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits

Benjamin J. Eggleton, Christopher G. Poulton, and Ravi Pant
Adv. Opt. Photon. 5(4) 536-587 (2013)

Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12  GHz

Huan Li, Semere A. Tadesse, Qiyu Liu, and Mo Li
Optica 2(9) 826-831 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène,” Ann. Phys. 9, 88–122 (1922).
    [Crossref]
  2. R. Chiao, C. Townes, and B. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
    [Crossref]
  3. C. Quate, C. Wilkinson, and D. Winslow, “Interaction of light and microwave sound,” Proc. IEEE 53, 1604–1623 (1965).
    [Crossref]
  4. R. Adler, “Interaction between light and sound,” IEEE Spectrum 4, 42–54 (1967).
    [Crossref]
  5. D. Heiman, D. Hamilton, and R. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583–6592 (1979).
    [Crossref]
  6. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  7. E. Garmire, “Perspectives on stimulated Brillouin scattering,” New J. Phys. 19, 011003 (2017).
    [Crossref]
  8. E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
    [Crossref]
  9. R. Shelby, M. Levenson, and P. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
    [Crossref]
  10. M. S. Kang, A. Brenn, and P. St.J. Russell, “All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber,” Phys. Rev. Lett. 105, 153901 (2010).
    [Crossref]
  11. J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
    [Crossref]
  12. R. Pant, C. G. Poulton, D. Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19, 8285–8290 (2011).
    [Crossref]
  13. P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
    [Crossref]
  14. R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
    [Crossref]
  15. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
    [Crossref]
  16. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
    [Crossref]
  17. G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
    [Crossref]
  18. G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
    [Crossref]
  19. B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon. 5, 536–587 (2013).
    [Crossref]
  20. H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
    [Crossref]
  21. J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
    [Crossref]
  22. D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2, 76–83 (2015).
    [Crossref]
  23. M. Merklein, I. V. Kabakova, T. F. S. Büttner, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
    [Crossref]
  24. E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
    [Crossref]
  25. N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360, 1113–1116 (2018).
    [Crossref]
  26. C. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications (Academic, 1998).
  27. D. P. Morgan, Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing (Academic, 2007).
  28. K. Yamanouchi and Y. Satoh, “Ultra low-insertion-loss surface acoustic wave filters using unidirectional interdigital transducers with grating SAW substrates,” Jpn. J. Appl. Phys. 44, 4532–4534 (2005).
    [Crossref]
  29. R. Lu, T. Manzameque, Y. Yang, and S. Gong, “S0-mode lithium niobate acoustic delay lines with 1 dB insertion loss,” in IEEE International Ultrasonics Symposium (IUS) (IEEE, 2018), pp. 1–9.
  30. M. K. Ekström, T. Aref, J. Runeson, J. Björck, I. Boström, and P. Delsing, “Surface acoustic wave unidirectional transducers for quantum applications,” Appl. Phys. Lett. 110, 073105 (2017).
    [Crossref]
  31. C. S. Tsai, “Integrated acousto-optic device modules and applications,” in Guided-Wave Acousto-Optics (Springer, 1990), pp. 273–316.
  32. L. Kuhn, P. Heidrich, and E. Lean, “Optical guided wave mode conversion by an acoustic surface wave,” Appl. Phys. Lett. 19, 428–430 (1971).
    [Crossref]
  33. Y. Ohmachi and J. Noda, “LiNbO3 TE-TM mode converter using collinear acoustooptic interaction,” IEEE J. Quantum Electron. 13, 43–46 (1977).
    [Crossref]
  34. A. M. Matteo, C. S. Tsai, and N. Do, “Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO/sub 3/waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 16–28 (2000).
    [Crossref]
  35. D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photonics 12, 91–97 (2018).
    [Crossref]
  36. W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “High-Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).
    [Crossref]
  37. C. Xiong, W. H. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett. 12, 3562–3568 (2012).
    [Crossref]
  38. S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5, 5402 (2014).
    [Crossref]
  39. H. Li, S. A. Tadesse, Q. Liu, and M. Li, “Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12 GHz,” Optica 2, 826–831 (2015).
    [Crossref]
  40. L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photonics 10, 766–770 (2016).
    [Crossref]
  41. S. A. Tadesse, H. Li, Q. Liu, and M. Li, “Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band,” Appl. Phys. Lett. 107, 201113 (2015).
    [Crossref]
  42. M. de Lima, M. Beck, R. Hey, and P. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89, 121104 (2006).
    [Crossref]
  43. D. C. Malocha, “Evolution of the SAW transducer for communication systems,” in Ultrasonics Symposium (IEEE, 2004), pp. 302–310.
  44. M. M. de Lima and P. V. Santos, “Modulation of photonic structures by surface acoustic waves,” Rep. Prog. Phys. 68, 1639–1701 (2005).
    [Crossref]
  45. H. Engan, “Surface acoustic wave multielectrode transducers,” IEEE Trans. Sonics Ultrason. 22, 395–401 (1975).
    [Crossref]
  46. M. M. de Lima, F. Alsina, W. Seidel, and P. V. Santos, “Focusing of surface-acoustic-wave fields on (100) GaAs surfaces,” J. Appl. Phys. 94, 7848–7855 (2003).
    [Crossref]
  47. J. D. Larson, P. D. Bradley, S. Wartenberg, and R. C. Ruby, “Modified Butterworth-Van Dyke circuit for FBAR resonators and automated measurement system,” in Ultrasonics Symposium (IEEE, 2000), pp. 863–868.
  48. I. Camara, B. Croset, L. Largeau, P. Rovillain, L. Thevenard, and J.-Y. Duquesne, “Vector network analyzer measurement of the amplitude of an electrically excited surface acoustic wave and validation by X-ray diffraction,” J. Appl. Phys. 121, 044503 (2017).
    [Crossref]
  49. C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Stimulated Brillouin scattering in integrated photonic waveguides: forces, scattering mechanisms, and coupled-mode analysis,” Phys. Rev. A 92, 013836 (2015).
    [Crossref]
  50. R. Van Laer, R. Baets, and D. Van Thourhout, “Unifying Brillouin scattering and cavity optomechanics,” Phys. Rev. A 93, 053828 (2016).
    [Crossref]
  51. P. Rakich and F. Marquardt, “Quantum theory of continuum optomechanics,” New J. Phys. 20, 045005 (2018).
    [Crossref]
  52. R. C. Williamson and R. D. Esman, “RF photonics,” J. Lightwave Technol. 26, 1145–1153 (2008).
    [Crossref]
  53. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [Crossref]
  54. P. S. Devgan, D. P. Brown, and R. L. Nelson, “RF performance of single sideband modulation versus dual sideband modulation in a photonic link,” J. Lightwave Technol. 33, 1888–1895 (2015).
    [Crossref]
  55. D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
    [Crossref]
  56. M. J. A. Schuetz, E. M. Kessler, G. Giedke, L. M. K. Vandersypen, M. D. Lukin, and J. I. Cirac, “Universal quantum transducers based on surface acoustic waves,” Phys. Rev. X 5, 031031 (2015).
    [Crossref]
  57. R. Manenti, M. J. Peterer, A. Nersisyan, E. B. Magnusson, A. Patterson, and P. J. Leek, “Surface acoustic wave resonators in the quantum regime,” Phys. Rev. B 93, 041411 (2016).
    [Crossref]

2019 (1)

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
[Crossref]

2018 (3)

P. Rakich and F. Marquardt, “Quantum theory of continuum optomechanics,” New J. Phys. 20, 045005 (2018).
[Crossref]

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360, 1113–1116 (2018).
[Crossref]

D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photonics 12, 91–97 (2018).
[Crossref]

2017 (3)

M. K. Ekström, T. Aref, J. Runeson, J. Björck, I. Boström, and P. Delsing, “Surface acoustic wave unidirectional transducers for quantum applications,” Appl. Phys. Lett. 110, 073105 (2017).
[Crossref]

E. Garmire, “Perspectives on stimulated Brillouin scattering,” New J. Phys. 19, 011003 (2017).
[Crossref]

I. Camara, B. Croset, L. Largeau, P. Rovillain, L. Thevenard, and J.-Y. Duquesne, “Vector network analyzer measurement of the amplitude of an electrically excited surface acoustic wave and validation by X-ray diffraction,” J. Appl. Phys. 121, 044503 (2017).
[Crossref]

2016 (4)

R. Van Laer, R. Baets, and D. Van Thourhout, “Unifying Brillouin scattering and cavity optomechanics,” Phys. Rev. A 93, 053828 (2016).
[Crossref]

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photonics 10, 766–770 (2016).
[Crossref]

R. Manenti, M. J. Peterer, A. Nersisyan, E. B. Magnusson, A. Patterson, and P. J. Leek, “Surface acoustic wave resonators in the quantum regime,” Phys. Rev. B 93, 041411 (2016).
[Crossref]

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

2015 (8)

D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2, 76–83 (2015).
[Crossref]

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

H. Li, S. A. Tadesse, Q. Liu, and M. Li, “Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12 GHz,” Optica 2, 826–831 (2015).
[Crossref]

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

M. J. A. Schuetz, E. M. Kessler, G. Giedke, L. M. K. Vandersypen, M. D. Lukin, and J. I. Cirac, “Universal quantum transducers based on surface acoustic waves,” Phys. Rev. X 5, 031031 (2015).
[Crossref]

P. S. Devgan, D. P. Brown, and R. L. Nelson, “RF performance of single sideband modulation versus dual sideband modulation in a photonic link,” J. Lightwave Technol. 33, 1888–1895 (2015).
[Crossref]

S. A. Tadesse, H. Li, Q. Liu, and M. Li, “Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band,” Appl. Phys. Lett. 107, 201113 (2015).
[Crossref]

C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Stimulated Brillouin scattering in integrated photonic waveguides: forces, scattering mechanisms, and coupled-mode analysis,” Phys. Rev. A 92, 013836 (2015).
[Crossref]

2014 (2)

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5, 5402 (2014).
[Crossref]

2013 (3)

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon. 5, 536–587 (2013).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
[Crossref]

2012 (4)

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
[Crossref]

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “High-Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).
[Crossref]

C. Xiong, W. H. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett. 12, 3562–3568 (2012).
[Crossref]

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[Crossref]

2011 (2)

R. Pant, C. G. Poulton, D. Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19, 8285–8290 (2011).
[Crossref]

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref]

2010 (1)

M. S. Kang, A. Brenn, and P. St.J. Russell, “All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber,” Phys. Rev. Lett. 105, 153901 (2010).
[Crossref]

2009 (2)

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[Crossref]

2008 (1)

2006 (1)

M. de Lima, M. Beck, R. Hey, and P. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89, 121104 (2006).
[Crossref]

2005 (3)

M. M. de Lima and P. V. Santos, “Modulation of photonic structures by surface acoustic waves,” Rep. Prog. Phys. 68, 1639–1701 (2005).
[Crossref]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref]

K. Yamanouchi and Y. Satoh, “Ultra low-insertion-loss surface acoustic wave filters using unidirectional interdigital transducers with grating SAW substrates,” Jpn. J. Appl. Phys. 44, 4532–4534 (2005).
[Crossref]

2003 (1)

M. M. de Lima, F. Alsina, W. Seidel, and P. V. Santos, “Focusing of surface-acoustic-wave fields on (100) GaAs surfaces,” J. Appl. Phys. 94, 7848–7855 (2003).
[Crossref]

2000 (1)

A. M. Matteo, C. S. Tsai, and N. Do, “Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO/sub 3/waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 16–28 (2000).
[Crossref]

1985 (1)

R. Shelby, M. Levenson, and P. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

1979 (1)

D. Heiman, D. Hamilton, and R. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583–6592 (1979).
[Crossref]

1977 (1)

Y. Ohmachi and J. Noda, “LiNbO3 TE-TM mode converter using collinear acoustooptic interaction,” IEEE J. Quantum Electron. 13, 43–46 (1977).
[Crossref]

1975 (1)

H. Engan, “Surface acoustic wave multielectrode transducers,” IEEE Trans. Sonics Ultrason. 22, 395–401 (1975).
[Crossref]

1972 (1)

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[Crossref]

1971 (1)

L. Kuhn, P. Heidrich, and E. Lean, “Optical guided wave mode conversion by an acoustic surface wave,” Appl. Phys. Lett. 19, 428–430 (1971).
[Crossref]

1967 (1)

R. Adler, “Interaction between light and sound,” IEEE Spectrum 4, 42–54 (1967).
[Crossref]

1965 (1)

C. Quate, C. Wilkinson, and D. Winslow, “Interaction of light and microwave sound,” Proc. IEEE 53, 1604–1623 (1965).
[Crossref]

1964 (1)

R. Chiao, C. Townes, and B. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
[Crossref]

1922 (1)

L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène,” Ann. Phys. 9, 88–122 (1922).
[Crossref]

Adler, R.

R. Adler, “Interaction between light and sound,” IEEE Spectrum 4, 42–54 (1967).
[Crossref]

Alsina, F.

M. M. de Lima, F. Alsina, W. Seidel, and P. V. Santos, “Focusing of surface-acoustic-wave fields on (100) GaAs surfaces,” J. Appl. Phys. 94, 7848–7855 (2003).
[Crossref]

Aref, T.

M. K. Ekström, T. Aref, J. Runeson, J. Björck, I. Boström, and P. Delsing, “Surface acoustic wave unidirectional transducers for quantum applications,” Appl. Phys. Lett. 110, 073105 (2017).
[Crossref]

Baets, R.

R. Van Laer, R. Baets, and D. Van Thourhout, “Unifying Brillouin scattering and cavity optomechanics,” Phys. Rev. A 93, 053828 (2016).
[Crossref]

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

Bahl, G.

D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photonics 12, 91–97 (2018).
[Crossref]

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
[Crossref]

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref]

Bayer, P.

R. Shelby, M. Levenson, and P. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Beck, M.

M. de Lima, M. Beck, R. Hey, and P. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89, 121104 (2006).
[Crossref]

Behunin, R. O.

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360, 1113–1116 (2018).
[Crossref]

Beugnot, J.-C.

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

Björck, J.

M. K. Ekström, T. Aref, J. Runeson, J. Björck, I. Boström, and P. Delsing, “Surface acoustic wave unidirectional transducers for quantum applications,” Appl. Phys. Lett. 110, 073105 (2017).
[Crossref]

Boström, I.

M. K. Ekström, T. Aref, J. Runeson, J. Björck, I. Boström, and P. Delsing, “Surface acoustic wave unidirectional transducers for quantum applications,” Appl. Phys. Lett. 110, 073105 (2017).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Bradley, P. D.

J. D. Larson, P. D. Bradley, S. Wartenberg, and R. C. Ruby, “Modified Butterworth-Van Dyke circuit for FBAR resonators and automated measurement system,” in Ultrasonics Symposium (IEEE, 2000), pp. 863–868.

Brenn, A.

M. S. Kang, A. Brenn, and P. St.J. Russell, “All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber,” Phys. Rev. Lett. 105, 153901 (2010).
[Crossref]

Brillouin, L.

L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène,” Ann. Phys. 9, 88–122 (1922).
[Crossref]

Brown, D. P.

Büttner, T. F. S.

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

Camacho, R.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[Crossref]

Camara, I.

I. Camara, B. Croset, L. Largeau, P. Rovillain, L. Thevenard, and J.-Y. Duquesne, “Vector network analyzer measurement of the amplitude of an electrically excited surface acoustic wave and validation by X-ray diffraction,” J. Appl. Phys. 121, 044503 (2017).
[Crossref]

Campbell, C.

C. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications (Academic, 1998).

Capmany, J.

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
[Crossref]

Carmon, T.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
[Crossref]

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref]

Cheng, R.

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photonics 10, 766–770 (2016).
[Crossref]

Chiao, R.

R. Chiao, C. Townes, and B. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
[Crossref]

Choi, D. Y.

Choi, D.-Y.

D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2, 76–83 (2015).
[Crossref]

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

Cirac, J. I.

M. J. A. Schuetz, E. M. Kessler, G. Giedke, L. M. K. Vandersypen, M. D. Lukin, and J. I. Cirac, “Universal quantum transducers based on surface acoustic waves,” Phys. Rev. X 5, 031031 (2015).
[Crossref]

Cox, J. A.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Croset, B.

I. Camara, B. Croset, L. Largeau, P. Rovillain, L. Thevenard, and J.-Y. Duquesne, “Vector network analyzer measurement of the amplitude of an electrically excited surface acoustic wave and validation by X-ray diffraction,” J. Appl. Phys. 121, 044503 (2017).
[Crossref]

Davids, P.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[Crossref]

de Lima, M.

M. de Lima, M. Beck, R. Hey, and P. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89, 121104 (2006).
[Crossref]

de Lima, M. M.

M. M. de Lima and P. V. Santos, “Modulation of photonic structures by surface acoustic waves,” Rep. Prog. Phys. 68, 1639–1701 (2005).
[Crossref]

M. M. de Lima, F. Alsina, W. Seidel, and P. V. Santos, “Focusing of surface-acoustic-wave fields on (100) GaAs surfaces,” J. Appl. Phys. 94, 7848–7855 (2003).
[Crossref]

Delsing, P.

M. K. Ekström, T. Aref, J. Runeson, J. Björck, I. Boström, and P. Delsing, “Surface acoustic wave unidirectional transducers for quantum applications,” Appl. Phys. Lett. 110, 073105 (2017).
[Crossref]

Devgan, P. S.

Do, N.

A. M. Matteo, C. S. Tsai, and N. Do, “Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO/sub 3/waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 16–28 (2000).
[Crossref]

Duquesne, J.-Y.

I. Camara, B. Croset, L. Largeau, P. Rovillain, L. Thevenard, and J.-Y. Duquesne, “Vector network analyzer measurement of the amplitude of an electrically excited surface acoustic wave and validation by X-ray diffraction,” J. Appl. Phys. 121, 044503 (2017).
[Crossref]

Eggleton, B. J.

Ekström, M. K.

M. K. Ekström, T. Aref, J. Runeson, J. Björck, I. Boström, and P. Delsing, “Surface acoustic wave unidirectional transducers for quantum applications,” Appl. Phys. Lett. 110, 073105 (2017).
[Crossref]

Engan, H.

H. Engan, “Surface acoustic wave multielectrode transducers,” IEEE Trans. Sonics Ultrason. 22, 395–401 (1975).
[Crossref]

Esman, R. D.

Fan, L.

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photonics 10, 766–770 (2016).
[Crossref]

Garmire, E.

E. Garmire, “Perspectives on stimulated Brillouin scattering,” New J. Phys. 19, 011003 (2017).
[Crossref]

Giedke, G.

M. J. A. Schuetz, E. M. Kessler, G. Giedke, L. M. K. Vandersypen, M. D. Lukin, and J. I. Cirac, “Universal quantum transducers based on surface acoustic waves,” Phys. Rev. X 5, 031031 (2015).
[Crossref]

Gong, S.

R. Lu, T. Manzameque, Y. Yang, and S. Gong, “S0-mode lithium niobate acoustic delay lines with 1 dB insertion loss,” in IEEE International Ultrasonics Symposium (IUS) (IEEE, 2018), pp. 1–9.

Guo, X.

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photonics 10, 766–770 (2016).
[Crossref]

Hamilton, D.

D. Heiman, D. Hamilton, and R. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583–6592 (1979).
[Crossref]

Han, X.

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photonics 10, 766–770 (2016).
[Crossref]

Heidrich, P.

L. Kuhn, P. Heidrich, and E. Lean, “Optical guided wave mode conversion by an acoustic surface wave,” Appl. Phys. Lett. 19, 428–430 (1971).
[Crossref]

Heiman, D.

D. Heiman, D. Hamilton, and R. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583–6592 (1979).
[Crossref]

Hellwarth, R.

D. Heiman, D. Hamilton, and R. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583–6592 (1979).
[Crossref]

Hey, R.

M. de Lima, M. Beck, R. Hey, and P. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89, 121104 (2006).
[Crossref]

Hile, S.

Ippen, E. P.

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[Crossref]

Jarecki, R.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Kabakova, I. V.

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

Kang, M. S.

M. S. Kang, A. Brenn, and P. St.J. Russell, “All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber,” Phys. Rev. Lett. 105, 153901 (2010).
[Crossref]

Kessler, E. M.

M. J. A. Schuetz, E. M. Kessler, G. Giedke, L. M. K. Vandersypen, M. D. Lukin, and J. I. Cirac, “Universal quantum transducers based on surface acoustic waves,” Phys. Rev. X 5, 031031 (2015).
[Crossref]

Kim, S.

D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photonics 12, 91–97 (2018).
[Crossref]

Kippenberg, T. J.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref]

Kittlaus, E. A.

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360, 1113–1116 (2018).
[Crossref]

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

Kuhn, L.

L. Kuhn, P. Heidrich, and E. Lean, “Optical guided wave mode conversion by an acoustic surface wave,” Appl. Phys. Lett. 19, 428–430 (1971).
[Crossref]

Kuyken, B.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

Largeau, L.

I. Camara, B. Croset, L. Largeau, P. Rovillain, L. Thevenard, and J.-Y. Duquesne, “Vector network analyzer measurement of the amplitude of an electrically excited surface acoustic wave and validation by X-ray diffraction,” J. Appl. Phys. 121, 044503 (2017).
[Crossref]

Larson, J. D.

J. D. Larson, P. D. Bradley, S. Wartenberg, and R. C. Ruby, “Modified Butterworth-Van Dyke circuit for FBAR resonators and automated measurement system,” in Ultrasonics Symposium (IEEE, 2000), pp. 863–868.

Laude, V.

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

Lean, E.

L. Kuhn, P. Heidrich, and E. Lean, “Optical guided wave mode conversion by an acoustic surface wave,” Appl. Phys. Lett. 19, 428–430 (1971).
[Crossref]

Lebrun, S.

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

Lee, H.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
[Crossref]

Leek, P. J.

R. Manenti, M. J. Peterer, A. Nersisyan, E. B. Magnusson, A. Patterson, and P. J. Leek, “Surface acoustic wave resonators in the quantum regime,” Phys. Rev. B 93, 041411 (2016).
[Crossref]

Levenson, M.

R. Shelby, M. Levenson, and P. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Li, E.

Li, H.

H. Li, S. A. Tadesse, Q. Liu, and M. Li, “Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12 GHz,” Optica 2, 826–831 (2015).
[Crossref]

S. A. Tadesse, H. Li, Q. Liu, and M. Li, “Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band,” Appl. Phys. Lett. 107, 201113 (2015).
[Crossref]

Li, J.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
[Crossref]

Li, M.

S. A. Tadesse, H. Li, Q. Liu, and M. Li, “Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band,” Appl. Phys. Lett. 107, 201113 (2015).
[Crossref]

H. Li, S. A. Tadesse, Q. Liu, and M. Li, “Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12 GHz,” Optica 2, 826–831 (2015).
[Crossref]

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5, 5402 (2014).
[Crossref]

Liu, Q.

S. A. Tadesse, H. Li, Q. Liu, and M. Li, “Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band,” Appl. Phys. Lett. 107, 201113 (2015).
[Crossref]

H. Li, S. A. Tadesse, Q. Liu, and M. Li, “Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12 GHz,” Optica 2, 826–831 (2015).
[Crossref]

Lu, R.

R. Lu, T. Manzameque, Y. Yang, and S. Gong, “S0-mode lithium niobate acoustic delay lines with 1 dB insertion loss,” in IEEE International Ultrasonics Symposium (IUS) (IEEE, 2018), pp. 1–9.

Lukin, M. D.

M. J. A. Schuetz, E. M. Kessler, G. Giedke, L. M. K. Vandersypen, M. D. Lukin, and J. I. Cirac, “Universal quantum transducers based on surface acoustic waves,” Phys. Rev. X 5, 031031 (2015).
[Crossref]

Luther-Davies, B.

Madden, S. J.

Magnusson, E. B.

R. Manenti, M. J. Peterer, A. Nersisyan, E. B. Magnusson, A. Patterson, and P. J. Leek, “Surface acoustic wave resonators in the quantum regime,” Phys. Rev. B 93, 041411 (2016).
[Crossref]

Maillotte, H.

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

Malocha, D. C.

D. C. Malocha, “Evolution of the SAW transducer for communication systems,” in Ultrasonics Symposium (IEEE, 2004), pp. 302–310.

Manenti, R.

R. Manenti, M. J. Peterer, A. Nersisyan, E. B. Magnusson, A. Patterson, and P. J. Leek, “Surface acoustic wave resonators in the quantum regime,” Phys. Rev. B 93, 041411 (2016).
[Crossref]

Manzameque, T.

R. Lu, T. Manzameque, Y. Yang, and S. Gong, “S0-mode lithium niobate acoustic delay lines with 1 dB insertion loss,” in IEEE International Ultrasonics Symposium (IUS) (IEEE, 2018), pp. 1–9.

Marpaung, D.

Marquardt, F.

P. Rakich and F. Marquardt, “Quantum theory of continuum optomechanics,” New J. Phys. 20, 045005 (2018).
[Crossref]

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
[Crossref]

Matteo, A. M.

A. M. Matteo, C. S. Tsai, and N. Do, “Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO/sub 3/waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 16–28 (2000).
[Crossref]

Mcfarlane, H.

Merklein, M.

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

Morgan, D. P.

D. P. Morgan, Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing (Academic, 2007).

Morrison, B.

Nelson, R. L.

Nersisyan, A.

R. Manenti, M. J. Peterer, A. Nersisyan, E. B. Magnusson, A. Patterson, and P. J. Leek, “Surface acoustic wave resonators in the quantum regime,” Phys. Rev. B 93, 041411 (2016).
[Crossref]

Noda, J.

Y. Ohmachi and J. Noda, “LiNbO3 TE-TM mode converter using collinear acoustooptic interaction,” IEEE J. Quantum Electron. 13, 43–46 (1977).
[Crossref]

Ohmachi, Y.

Y. Ohmachi and J. Noda, “LiNbO3 TE-TM mode converter using collinear acoustooptic interaction,” IEEE J. Quantum Electron. 13, 43–46 (1977).
[Crossref]

Olsson, R. H.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Otterstrom, N. T.

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360, 1113–1116 (2018).
[Crossref]

Pagani, M.

Pant, R.

Patterson, A.

R. Manenti, M. J. Peterer, A. Nersisyan, E. B. Magnusson, A. Patterson, and P. J. Leek, “Surface acoustic wave resonators in the quantum regime,” Phys. Rev. B 93, 041411 (2016).
[Crossref]

Pauliat, G.

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

Pernice, W. H.

C. Xiong, W. H. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett. 12, 3562–3568 (2012).
[Crossref]

Pernice, W. H. P.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “High-Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).
[Crossref]

Peterer, M. J.

R. Manenti, M. J. Peterer, A. Nersisyan, E. B. Magnusson, A. Patterson, and P. J. Leek, “Surface acoustic wave resonators in the quantum regime,” Phys. Rev. B 93, 041411 (2016).
[Crossref]

Poot, M.

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photonics 10, 766–770 (2016).
[Crossref]

Poulton, C. G.

Qiu, W.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Quate, C.

C. Quate, C. Wilkinson, and D. Winslow, “Interaction of light and microwave sound,” Proc. IEEE 53, 1604–1623 (1965).
[Crossref]

Rakich, P.

P. Rakich and F. Marquardt, “Quantum theory of continuum optomechanics,” New J. Phys. 20, 045005 (2018).
[Crossref]

Rakich, P. T.

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360, 1113–1116 (2018).
[Crossref]

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[Crossref]

Reinke, C.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[Crossref]

Rokhsari, H.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref]

Rovillain, P.

I. Camara, B. Croset, L. Largeau, P. Rovillain, L. Thevenard, and J.-Y. Duquesne, “Vector network analyzer measurement of the amplitude of an electrically excited surface acoustic wave and validation by X-ray diffraction,” J. Appl. Phys. 121, 044503 (2017).
[Crossref]

Ruby, R. C.

J. D. Larson, P. D. Bradley, S. Wartenberg, and R. C. Ruby, “Modified Butterworth-Van Dyke circuit for FBAR resonators and automated measurement system,” in Ultrasonics Symposium (IEEE, 2000), pp. 863–868.

Runeson, J.

M. K. Ekström, T. Aref, J. Runeson, J. Björck, I. Boström, and P. Delsing, “Surface acoustic wave unidirectional transducers for quantum applications,” Appl. Phys. Lett. 110, 073105 (2017).
[Crossref]

Russell, P. St.J.

M. S. Kang, A. Brenn, and P. St.J. Russell, “All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber,” Phys. Rev. Lett. 105, 153901 (2010).
[Crossref]

Santos, P.

M. de Lima, M. Beck, R. Hey, and P. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89, 121104 (2006).
[Crossref]

Santos, P. V.

M. M. de Lima and P. V. Santos, “Modulation of photonic structures by surface acoustic waves,” Rep. Prog. Phys. 68, 1639–1701 (2005).
[Crossref]

M. M. de Lima, F. Alsina, W. Seidel, and P. V. Santos, “Focusing of surface-acoustic-wave fields on (100) GaAs surfaces,” J. Appl. Phys. 94, 7848–7855 (2003).
[Crossref]

Satoh, Y.

K. Yamanouchi and Y. Satoh, “Ultra low-insertion-loss surface acoustic wave filters using unidirectional interdigital transducers with grating SAW substrates,” Jpn. J. Appl. Phys. 44, 4532–4534 (2005).
[Crossref]

Schuck, C.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “High-Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).
[Crossref]

Schuetz, M. J. A.

M. J. A. Schuetz, E. M. Kessler, G. Giedke, L. M. K. Vandersypen, M. D. Lukin, and J. I. Cirac, “Universal quantum transducers based on surface acoustic waves,” Phys. Rev. X 5, 031031 (2015).
[Crossref]

Seidel, W.

M. M. de Lima, F. Alsina, W. Seidel, and P. V. Santos, “Focusing of surface-acoustic-wave fields on (100) GaAs surfaces,” J. Appl. Phys. 94, 7848–7855 (2003).
[Crossref]

Shelby, R.

R. Shelby, M. Levenson, and P. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Shin, H.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Sohn, D. B.

D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photonics 12, 91–97 (2018).
[Crossref]

Starbuck, A.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Steel, M. J.

C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Stimulated Brillouin scattering in integrated photonic waveguides: forces, scattering mechanisms, and coupled-mode analysis,” Phys. Rev. A 92, 013836 (2015).
[Crossref]

Stoicheff, B.

R. Chiao, C. Townes, and B. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
[Crossref]

Stolen, R. H.

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[Crossref]

Sylvestre, T.

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

Tadesse, S. A.

S. A. Tadesse, H. Li, Q. Liu, and M. Li, “Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band,” Appl. Phys. Lett. 107, 201113 (2015).
[Crossref]

H. Li, S. A. Tadesse, Q. Liu, and M. Li, “Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12 GHz,” Optica 2, 826–831 (2015).
[Crossref]

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5, 5402 (2014).
[Crossref]

Tang, H. X.

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photonics 10, 766–770 (2016).
[Crossref]

C. Xiong, W. H. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett. 12, 3562–3568 (2012).
[Crossref]

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “High-Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).
[Crossref]

Thevenard, L.

I. Camara, B. Croset, L. Largeau, P. Rovillain, L. Thevenard, and J.-Y. Duquesne, “Vector network analyzer measurement of the amplitude of an electrically excited surface acoustic wave and validation by X-ray diffraction,” J. Appl. Phys. 121, 044503 (2017).
[Crossref]

Thevenaz, L.

Tomes, M.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
[Crossref]

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

Townes, C.

R. Chiao, C. Townes, and B. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
[Crossref]

Tsai, C. S.

A. M. Matteo, C. S. Tsai, and N. Do, “Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO/sub 3/waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 16–28 (2000).
[Crossref]

C. S. Tsai, “Integrated acousto-optic device modules and applications,” in Guided-Wave Acousto-Optics (Springer, 1990), pp. 273–316.

Vahala, K. J.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
[Crossref]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref]

Van Laer, R.

R. Van Laer, R. Baets, and D. Van Thourhout, “Unifying Brillouin scattering and cavity optomechanics,” Phys. Rev. A 93, 053828 (2016).
[Crossref]

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

Van Thourhout, D.

R. Van Laer, R. Baets, and D. Van Thourhout, “Unifying Brillouin scattering and cavity optomechanics,” Phys. Rev. A 93, 053828 (2016).
[Crossref]

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

Vandersypen, L. M. K.

M. J. A. Schuetz, E. M. Kessler, G. Giedke, L. M. K. Vandersypen, M. D. Lukin, and J. I. Cirac, “Universal quantum transducers based on surface acoustic waves,” Phys. Rev. X 5, 031031 (2015).
[Crossref]

Wang, Z.

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360, 1113–1116 (2018).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[Crossref]

Wartenberg, S.

J. D. Larson, P. D. Bradley, S. Wartenberg, and R. C. Ruby, “Modified Butterworth-Van Dyke circuit for FBAR resonators and automated measurement system,” in Ultrasonics Symposium (IEEE, 2000), pp. 863–868.

Wilkinson, C.

C. Quate, C. Wilkinson, and D. Winslow, “Interaction of light and microwave sound,” Proc. IEEE 53, 1604–1623 (1965).
[Crossref]

Williamson, R. C.

Winslow, D.

C. Quate, C. Wilkinson, and D. Winslow, “Interaction of light and microwave sound,” Proc. IEEE 53, 1604–1623 (1965).
[Crossref]

Wolff, C.

C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Stimulated Brillouin scattering in integrated photonic waveguides: forces, scattering mechanisms, and coupled-mode analysis,” Phys. Rev. A 92, 013836 (2015).
[Crossref]

Xiong, C.

C. Xiong, W. H. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett. 12, 3562–3568 (2012).
[Crossref]

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “High-Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).
[Crossref]

Yamanouchi, K.

K. Yamanouchi and Y. Satoh, “Ultra low-insertion-loss surface acoustic wave filters using unidirectional interdigital transducers with grating SAW substrates,” Jpn. J. Appl. Phys. 44, 4532–4534 (2005).
[Crossref]

Yang, L.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref]

Yang, Y.

R. Lu, T. Manzameque, Y. Yang, and S. Gong, “S0-mode lithium niobate acoustic delay lines with 1 dB insertion loss,” in IEEE International Ultrasonics Symposium (IUS) (IEEE, 2018), pp. 1–9.

Yao, J.

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
[Crossref]

Yao, J. P.

Zehnpfennig, J.

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref]

Zou, C.-L.

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photonics 10, 766–770 (2016).
[Crossref]

Adv. Opt. Photon. (1)

Ann. Phys. (1)

L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène,” Ann. Phys. 9, 88–122 (1922).
[Crossref]

Appl. Phys. Lett. (6)

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[Crossref]

M. K. Ekström, T. Aref, J. Runeson, J. Björck, I. Boström, and P. Delsing, “Surface acoustic wave unidirectional transducers for quantum applications,” Appl. Phys. Lett. 110, 073105 (2017).
[Crossref]

L. Kuhn, P. Heidrich, and E. Lean, “Optical guided wave mode conversion by an acoustic surface wave,” Appl. Phys. Lett. 19, 428–430 (1971).
[Crossref]

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “High-Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).
[Crossref]

S. A. Tadesse, H. Li, Q. Liu, and M. Li, “Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band,” Appl. Phys. Lett. 107, 201113 (2015).
[Crossref]

M. de Lima, M. Beck, R. Hey, and P. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89, 121104 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. Ohmachi and J. Noda, “LiNbO3 TE-TM mode converter using collinear acoustooptic interaction,” IEEE J. Quantum Electron. 13, 43–46 (1977).
[Crossref]

IEEE Spectrum (1)

R. Adler, “Interaction between light and sound,” IEEE Spectrum 4, 42–54 (1967).
[Crossref]

IEEE Trans. Sonics Ultrason. (1)

H. Engan, “Surface acoustic wave multielectrode transducers,” IEEE Trans. Sonics Ultrason. 22, 395–401 (1975).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

A. M. Matteo, C. S. Tsai, and N. Do, “Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO/sub 3/waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 16–28 (2000).
[Crossref]

J. Appl. Phys. (2)

M. M. de Lima, F. Alsina, W. Seidel, and P. V. Santos, “Focusing of surface-acoustic-wave fields on (100) GaAs surfaces,” J. Appl. Phys. 94, 7848–7855 (2003).
[Crossref]

I. Camara, B. Croset, L. Largeau, P. Rovillain, L. Thevenard, and J.-Y. Duquesne, “Vector network analyzer measurement of the amplitude of an electrically excited surface acoustic wave and validation by X-ray diffraction,” J. Appl. Phys. 121, 044503 (2017).
[Crossref]

J. Lightwave Technol. (3)

Jpn. J. Appl. Phys. (1)

K. Yamanouchi and Y. Satoh, “Ultra low-insertion-loss surface acoustic wave filters using unidirectional interdigital transducers with grating SAW substrates,” Jpn. J. Appl. Phys. 44, 4532–4534 (2005).
[Crossref]

Nano Lett. (1)

C. Xiong, W. H. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett. 12, 3562–3568 (2012).
[Crossref]

Nat. Commun. (6)

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5, 5402 (2014).
[Crossref]

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
[Crossref]

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref]

Nat. Photonics (5)

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photonics 12, 91–97 (2018).
[Crossref]

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
[Crossref]

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photonics 10, 766–770 (2016).
[Crossref]

Nat. Phys. (1)

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
[Crossref]

New J. Phys. (2)

E. Garmire, “Perspectives on stimulated Brillouin scattering,” New J. Phys. 19, 011003 (2017).
[Crossref]

P. Rakich and F. Marquardt, “Quantum theory of continuum optomechanics,” New J. Phys. 20, 045005 (2018).
[Crossref]

Opt. Express (1)

Optica (2)

Phys. Rev. A (2)

C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Stimulated Brillouin scattering in integrated photonic waveguides: forces, scattering mechanisms, and coupled-mode analysis,” Phys. Rev. A 92, 013836 (2015).
[Crossref]

R. Van Laer, R. Baets, and D. Van Thourhout, “Unifying Brillouin scattering and cavity optomechanics,” Phys. Rev. A 93, 053828 (2016).
[Crossref]

Phys. Rev. B (3)

R. Manenti, M. J. Peterer, A. Nersisyan, E. B. Magnusson, A. Patterson, and P. J. Leek, “Surface acoustic wave resonators in the quantum regime,” Phys. Rev. B 93, 041411 (2016).
[Crossref]

R. Shelby, M. Levenson, and P. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

D. Heiman, D. Hamilton, and R. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583–6592 (1979).
[Crossref]

Phys. Rev. Lett. (4)

R. Chiao, C. Townes, and B. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
[Crossref]

M. S. Kang, A. Brenn, and P. St.J. Russell, “All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber,” Phys. Rev. Lett. 105, 153901 (2010).
[Crossref]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

Phys. Rev. X (2)

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[Crossref]

M. J. A. Schuetz, E. M. Kessler, G. Giedke, L. M. K. Vandersypen, M. D. Lukin, and J. I. Cirac, “Universal quantum transducers based on surface acoustic waves,” Phys. Rev. X 5, 031031 (2015).
[Crossref]

Proc. IEEE (1)

C. Quate, C. Wilkinson, and D. Winslow, “Interaction of light and microwave sound,” Proc. IEEE 53, 1604–1623 (1965).
[Crossref]

Rep. Prog. Phys. (1)

M. M. de Lima and P. V. Santos, “Modulation of photonic structures by surface acoustic waves,” Rep. Prog. Phys. 68, 1639–1701 (2005).
[Crossref]

Science (1)

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360, 1113–1116 (2018).
[Crossref]

Other (7)

C. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications (Academic, 1998).

D. P. Morgan, Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing (Academic, 2007).

R. Lu, T. Manzameque, Y. Yang, and S. Gong, “S0-mode lithium niobate acoustic delay lines with 1 dB insertion loss,” in IEEE International Ultrasonics Symposium (IUS) (IEEE, 2018), pp. 1–9.

C. S. Tsai, “Integrated acousto-optic device modules and applications,” in Guided-Wave Acousto-Optics (Springer, 1990), pp. 273–316.

R. W. Boyd, Nonlinear Optics (Academic, 2008).

J. D. Larson, P. D. Bradley, S. Wartenberg, and R. C. Ruby, “Modified Butterworth-Van Dyke circuit for FBAR resonators and automated measurement system,” in Ultrasonics Symposium (IEEE, 2000), pp. 863–868.

D. C. Malocha, “Evolution of the SAW transducer for communication systems,” in Ultrasonics Symposium (IEEE, 2004), pp. 302–310.

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental Information

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Electromechanical Brillouin scattering in an OM waveguide. (a) Schematic illustration of an OM waveguide. The acoustic wave is excited with the IDT and propagates in the forward direction to scatter the backward-propagating optical carrier into the ASB. (b) Simplified dispersion diagram of the optical mode in the waveguide. The acoustic mode (orange line) that satisfies the phase-matching conditions scatters the backward-propagating optical mode (red line) to the forward mode (blue line). (c)–(e) Finite-element simulation results of the acoustic S0 mode, displayed in (c) displacement, and (d) piezoelectric potential, and (e) the optical TE0 mode.
Fig. 2.
Fig. 2. Ultrahigh frequency transducer exciting acoustic wave to an OM waveguide. (a) SEM image of the device, featuring the suspended OM waveguide and the curved IDT to excite and focus acoustic wave. Inset, zoom-in view of the IDT, showing the split-finger design with an electrode width of 187.5 nm; (b) detailed view of the optical input to the OM waveguide, which uses a taper to convert a rib waveguide to a fully suspended ridge waveguide; (c) equivalent circuit model of the IDT acoustic transducer with component values extracted from the data in (d) and (e); (d) microwave reflectance ( S 11 parameter) measurement of the IDT, showing a strong acoustic mode at 16.2 GHz; (e) vectoral analysis of the IDT plotted on a Smith chart. The on-resonance impedance is 12.57 j 30.85 ohm .
Fig. 3.
Fig. 3. Experimental demonstration of electromechanical Brillouin scattering. (a) Diagram of the measurement setup; (b) spectra of the Brillouin scattered optical signal, showing a single ASB offset from the carrier by 16.4 GHz. Inset, the ASB power versus input RF power. At relatively high RF power, the dependence becomes superlinear. (c)–(e). 2D plot of the ASB power when both the optical wavelength and the RF are scanned, measured from devices with waveguide dimension of (c)  5 μm × 100 μm , (d)  5 μm × 500 μm , and (e)  0.8 μm × 600 μm , respectively. Lower panels show the cross-sectional plot along the white dashed line in the upper panel. Solid blue lines are guides for the eye. The ASB power peaks along the phase-matching curve are marked with the blue dashed line.
Fig. 4.
Fig. 4. RF photonic link using electromechanical Brillouin scattering. (a) Schematics for transmitting RF signals using homodyne and heterodyne demodulation schemes; (b) measurement results when the homodyne scheme is used. Left panel, the transmission band is tunable over a range of 200 MHz along the phase-matching curve [Fig. 3(d)] when the optical carrier wavelength is tuned. Right panel, the phase of the transmitted signal is preserved as the received signal shows a full phase tuning between ± π / 2 within the transmission band; (c) measurement results when the heterodyne scheme is used. The heterodyne scheme is immune to phase-scrambling during the transmission. The transmission band is also tunable over a range of > 300 MHz by changing the optical carrier wavelength.