Abstract

Multidimensional coherent spectroscopy is a powerful tool for understanding the ultrafast dynamics of complex quantum systems. To fully characterize the nonlinear optical response of a system, multiple pulse sequences must be recorded and quantitatively compared. We present a new single-scan method that enables rapid and parallel acquisition of all unique pulse sequences corresponding to first- and third-order degenerate wave-mixing processes. Signals are recorded with shot-noise limited detection, enabling acquisition times of 2minutes with 100zs phase stability and 8 orders of dynamic range, in a collinear geometry, on a single-pixel detector. We demonstrate this method using quantum well excitons, and quantitative analysis reveals new insights into the bosonic nature of excitons. This scheme may enable rapid and scalable analysis of unique chemical signatures, metrology of optical susceptibilities, nonperturbative coherent control, and the implementation of quantum information protocols using multidimensional spectroscopy.

Full Article  |  PDF Article
OSA Recommended Articles
Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure

Gaël Nardin, Travis M. Autry, Kevin L. Silverman, and S. T. Cundiff
Opt. Express 21(23) 28617-28627 (2013)

Dynamics of excitons in individual InAs quantum dots revealed in four-wave mixing spectroscopy

Q. Mermillod, D. Wigger, V. Delmonte, D. E. Reiter, C. Schneider, M. Kamp, S. Höfling, W. Langbein, T. Kuhn, G. Nogues, and J. Kasprzak
Optica 3(4) 377-384 (2016)

Isolating quantum coherence using coherent multi-dimensional spectroscopy with spectrally shaped pulses

Jonathan O Tollerud, Christopher R Hall, and Jeffrey A Davis
Opt. Express 22(6) 6719-6733 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon, 1990).
  2. G. Nardin, T. M. Autry, G. Moody, R. Singh, H. Li, and S. T. Cundiff, “Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: collinear and non-collinear approaches,” J. Appl. Phys. 117, 112804 (2015).
    [Crossref]
  3. P. C. Chen, “An introduction to coherent multidimensional spectroscopy,” Appl. Spectrosc. 70, 1937–1951 (2016).
    [Crossref]
  4. J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
    [Crossref]
  5. J. D. Hybl, A. A. Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 6606–6622 (2001).
    [Crossref]
  6. E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
    [Crossref]
  7. K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
    [Crossref]
  8. V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. USA 110, 1203–1208 (2013).
    [Crossref]
  9. G. Nardin, G. Moody, R. Singh, T. M. Autry, H. Li, F. Morier-Genoud, and S. T. Cundiff, “Coherent excitonic coupling in an asymmetric double InGaAs quantum well arises from many-body effects,” Phys. Rev. Lett. 112, 046402 (2014).
    [Crossref]
  10. G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent coupling of excitons and trions in a photoexcited CdTe/CdMgTe quantum well,” Phys. Rev. Lett. 112, 097401 (2014).
    [Crossref]
  11. N. Takemura, S. Trebaol, M. D. Anderson, V. Kohnle, Y. Léger, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, “Two-dimensional Fourier transform spectroscopy of exciton-polaritons and their interactions,” Phys. Rev. B 92, 125415 (2015).
    [Crossref]
  12. D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett. 104, 117401 (2010).
    [Crossref]
  13. D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Three-dimensional electronic spectroscopy of excitons in GaAs quantum wells,” J. Chem. Phys. 131, 144510 (2009).
    [Crossref]
  14. E. Collini and G. D. Scholes, “Coherent intrachain energy migration in a conjugated polymer at room temperature,” Science 323, 369–373 (2009).
    [Crossref]
  15. A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).
  16. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
    [Crossref]
  17. G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446, 782–786 (2007).
    [Crossref]
  18. H. Lee, Y.-C. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: protein protection of excitonic coherence,” Science 316, 1462–1465 (2007).
    [Crossref]
  19. J. J. Loparo, S. T. Roberts, and A. Tokmakoff, “Multidimensional infrared spectroscopy of water. II. Hydrogen bond switching dynamics,” J. Chem. Phys. 125, 194522 (2006).
    [Crossref]
  20. S. Garrett-Roe, F. Perakis, F. Rao, and P. Hamm, “Three-dimensional infrared spectroscopy of isotope-substituted liquid water reveals heterogeneous dynamics,” J. Phys. Chem. B 115, 6976–6984 (2011).
    [Crossref]
  21. M. Thämer, L. D. Marco, K. Ramasesha, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR spectroscopy of the excess proton in liquid water,” Science 350, 78–82 (2015).
    [Crossref]
  22. G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
    [Crossref]
  23. K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, “Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2,” Nano Lett. 16, 5109–5113 (2016).
    [Crossref]
  24. K. Hao, L. Xu, F. Wu, P. Nagler, K. Tran, X. Ma, C. Schüller, T. Korn, A. H. MacDonald, G. Moody, and X. Li, “Trion valley coherence in monolayer semiconductors,” 2D Mater. 4, 025105 (2017).
    [Crossref]
  25. S. T. Cundiff and S. Mukamel, “Optical multidimensional coherent spectroscopy,” Phys. Today 66(7), 44–49 (2013).
    [Crossref]
  26. D. Hayes and G. S. Engel, “Extracting the excitonic Hamiltonian of the Fenna-Matthews-Olson complex using three-dimensional third-order electronic spectroscopy,” Biophys. J. 100, 2043–2052 (2011).
    [Crossref]
  27. J. A. Davis, C. R. Hall, L. V. Dao, K. A. Nugent, H. M. Quiney, H. H. Tan, and C. Jagadish, “Three-dimensional electronic spectroscopy of excitons in asymmetric double quantum wells,” J. Chem. Phys. 135, 044510 (2011).
    [Crossref]
  28. H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
    [Crossref]
  29. M. Titze and H. Li, “Interpretation of optical three-dimensional coherent spectroscopy,” Phys. Rev. A 96, 032508 (2017).
    [Crossref]
  30. S. Mueller, S. Draeger, X. Ma, M. Hensen, T. Kenneweg, W. Pfeiffer, and T. Brixner, “Fluorescence-detected two-quantum and one-quantum–two-quantum 2D electronic spectroscopy,” J. Phys. Chem. Lett. 9, 1964–1969 (2018).
    [Crossref]
  31. L. Yang, I. V. Schweigert, S. T. Cundiff, and S. Mukamel, “Two-dimensional optical spectroscopy of excitons in semiconductor quantum wells: Liouville-space pathway analysis,” Phys. Rev. B 75, 125302 (2007).
    [Crossref]
  32. W. Langbein and B. Patton, “Heterodyne spectral interferometry for multidimensional nonlinear spectroscopy of individual quantum systems,” Opt. Lett. 31, 1151–1153 (2006).
    [Crossref]
  33. J. Kasprzak, B. Patton, V. Savona, and W. Langbein, “Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging,” Nat. Photonics 5, 57–63 (2011).
    [Crossref]
  34. F. Albert, K. Sivalertporn, J. Kasprzak, M. Strauß, C. Schneider, S. Höfling, M. Kamp, A. Forchel, S. Reitzenstein, E. A. Muljarov, and W. Langbein, “Microcavity controlled coupling of excitonic qubits,” Nat. Commun. 4, 1747 (2013).
    [Crossref]
  35. E. W. Martin and S. T. Cundiff, “Inducing coherent quantum dot interactions,” Phys. Rev. B 97, 081301 (2018).
    [Crossref]
  36. M. Gessner, F. Schlawin, and A. Buchleitner, “Probing polariton dynamics in trapped ions with phase-coherent two-dimensional spectroscopy,” J. Chem. Phys. 142, 212439 (2015).
    [Crossref]
  37. F. Schlawin, M. Gessner, S. Mukamel, and A. Buchleitner, “Nonlinear spectroscopy of trapped ions,” Phys. Rev. A 90, 023603 (2014).
    [Crossref]
  38. M. Gessner, F. Schlawin, H. Häffner, S. Mukamel, and A. Buchleitner, “Nonlinear spectroscopy of controllable many-body quantum systems,” New J. Phys. 16, 092001 (2014).
    [Crossref]
  39. J. Yuen-Zhou, J. J. Krich, M. Mohseni, and A. Aspuru-Guzik, “Quantum state and process tomography of energy transfer systems via ultrafast spectroscopy,” Proc. Natl. Acad. Sci. USA 108, 17615–17620 (2011).
    [Crossref]
  40. J. Yuen-Zhou and A. Aspuru-Guzik, “Quantum process tomography of excitonic dimers from two-dimensional electronic spectroscopy. I. General theory and application to homodimers,” J. Chem. Phys. 134, 134505 (2011).
    [Crossref]
  41. J. Yuen-Zhou, D. H. Arias, D. M. Eisele, C. P. Steiner, J. J. Krich, M. G. Bawendi, K. A. Nelson, and A. Aspuru-Guzik, “Coherent exciton dynamics in supramolecular light-harvesting nanotubes revealed by ultrafast quantum process tomography,” ACS Nano 8, 5527–5534 (2014).
    [Crossref]
  42. L. A. Pachon, A. H. Marcus, and A. Aspuru-Guzik, “Quantum process tomography by 2D fluorescence spectroscopy,” J. Chem. Phys. 142, 212442 (2015).
    [Crossref]
  43. H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in GaAs,” Phys. Rev. Lett. 71, 1261–1264 (1993).
    [Crossref]
  44. T. F. Albrecht, K. Bott, T. Meier, A. Schulze, M. Koch, S. T. Cundiff, J. Feldmann, W. Stolz, P. Thomas, S. W. Koch, and E. O. Göbel, “Disorder mediated biexcitonic beats in semiconductor quantum wells,” Phys. Rev. B 54, 4436–4439 (1996).
    [Crossref]
  45. C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82, 3112–3115 (1999).
    [Crossref]
  46. Y. P. Svirko, M. Shirane, H. Suzuura, and M. Kuwata-Gonokami, “Four-wave mixing theory at the excitonic resonance: weakly interacting Boson model,” J. Phys. Soc. Jpn. 68, 674–682 (1999).
    [Crossref]
  47. T. Meier, S. W. Koch, M. Phillips, and H. Wang, “Strong coupling of heavy- and light-hole excitons induced by many-body correlations,” Phys. Rev. B 62, 12605–12608 (2000).
    [Crossref]
  48. S. Weiser, T. Meier, J. Möbius, A. Euteneuer, E. J. Mayer, W. Stolz, M. Hofmann, W. W. Rühle, P. Thomas, and S. W. Koch, “Disorder-induced dephasing in semiconductors,” Phys. Rev. B 61, 13088–13098 (2000).
    [Crossref]
  49. M. Kuwata-Gonokami, T. Aoki, C. Ramkumar, R. Shimano, and Y. Svirko, “Role of exciton–exciton interaction on resonant third-order nonlinear optical responses,” J. Lumin. 87–89, 162–167 (2000).
    [Crossref]
  50. G. Rochat, C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, “Excitonic Bloch equations for a two-dimensional system of interacting excitons,” Phys. Rev. B 61, 13856–13862 (2000).
    [Crossref]
  51. S. Rudin and T. L. Reinecke, “Anharmonic oscillator model for driven and vacuum-field Rabi oscillations,” Phys. Rev. B 63, 075308 (2001).
    [Crossref]
  52. R. Singh, T. Suzuki, T. M. Autry, G. Moody, M. E. Siemens, and S. T. Cundiff, “Polarization-dependent exciton linewidth in semiconductor quantum wells: a consequence of bosonic nature of excitons,” Phys. Rev. B 94, 081304 (2016).
    [Crossref]
  53. P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
    [Crossref]
  54. W. Wagner, P. Tian, C. Li, J. Semmlow, and W. S. Warren, “Rapid two-dimensional optical spectroscopy through acousto-optic pulse shaping,” J. Mod. Opt. 51, 2655–2663 (2004).
    [Crossref]
  55. E. M. Grumstrup, S.-H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15, 16681–16689 (2007).
    [Crossref]
  56. J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16, 17420–17428 (2008).
    [Crossref]
  57. D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: the coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
    [Crossref]
  58. D. R. Skoff, J. E. Laaser, S. S. Mukherjee, C. T. Middleton, and M. T. Zanni, “Simplified and economical 2D IR spectrometer design using a dual acousto-optic modulator,” Chem. Phys. 422, 8–15 (2013).
    [Crossref]
  59. F. D. Fuller, D. E. Wilcox, and J. P. Ogilvie, “Pulse shaping based two-dimensional electronic spectroscopy in a background free geometry,” Opt. Express 22, 1018–1027 (2014).
    [Crossref]
  60. J. O. Tollerud, C. R. Hall, and J. A. Davis, “Isolating quantum coherence using coherent multi-dimensional spectroscopy with spectrally shaped pulses,” Opt. Express 22, 6719–6733 (2014).
    [Crossref]
  61. Y. Rodriguez, F. Frei, A. Cannizzo, and T. Feurer, “Pulse-shaping assisted multidimensional coherent electronic spectroscopy,” J. Chem. Phys. 142, 212451 (2015).
    [Crossref]
  62. D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37, 3027–3029 (2012).
    [Crossref]
  63. B. Lomsadze, B. C. Smith, and S. T. Cundiff, “Tri-comb spectroscopy,” Nat. Photonics 12, 676–680 (2018).
    [Crossref]
  64. B. Lomsadze and S. T. Cundiff, “Frequency-comb based double-quantum two-dimensional spectrum identifies collective hyperfine resonances in atomic vapor induced by dipole-dipole interactions,” Phys. Rev. Lett. 120, 233401 (2018).
    [Crossref]
  65. B. Lomsadze and S. T. Cundiff, “Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy,” Science 357, 1389–1391 (2017).
    [Crossref]
  66. V. Volkov, R. Schanz, and P. Hamm, “Active phase stabilization in Fourier-transform two-dimensional infrared spectroscopy,” Opt. Lett. 30, 2010–2012 (2005).
    [Crossref]
  67. A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
    [Crossref]
  68. T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
    [Crossref]
  69. T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29, 884–886 (2004).
    [Crossref]
  70. M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
    [Crossref]
  71. K. L. Hall, G. Lenz, E. P. Ippen, and G. Raybon, “Heterodyne pump-probe technique for time-domain studies of optical nonlinearities in waveguides,” Opt. Lett. 17, 874–876 (1992).
    [Crossref]
  72. P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
    [Crossref]
  73. G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, “Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure,” Opt. Express 21, 28617–28627 (2013).
    [Crossref]
  74. A. A. Bakulin, C. Silva, and E. Vella, “Ultrafast spectroscopy with photocurrent detection: watching excitonic optoelectronic systems at work,” J. Phys. Chem. Lett. 7, 250–258 (2016).
    [Crossref]
  75. V. Tiwari, Y. A. Matutes, A. T. Gardiner, T. L. C. Jansen, R. J. Cogdell, and J. P. Ogilvie, “Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria,” Nat. Commun. 9, 4219 (2018).
    [Crossref]
  76. P. F. Tekavec, T. R. Dyke, and A. H. Marcus, “Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation,” J. Chem. Phys. 125, 194303 (2006).
    [Crossref]
  77. K. J. Karki, J. Chen, A. Sakurai, Q. Shi, A. T. Gardiner, O. Kühn, R. J. Cogdell, and T. Pullerits, “Unexpectedly large delocalization of the initial excitation in photosynthetic light harvesting,” arXiv:1804.04840 (2018).
  78. S. T. Roberts, J. J. Loparo, K. Ramasesha, and A. Tokmakoff, “A fast-scanning Fourier transform 2D IR interferometer,” Opt. Commun. 284, 1062–1066 (2011).
    [Crossref]
  79. J. Helbing and P. Hamm, “Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B 28, 171–178 (2011).
    [Crossref]
  80. S. Draeger, S. Roeding, and T. Brixner, “Rapid-scan coherent 2D fluorescence spectroscopy,” Opt. Express 25, 3259–3267 (2017).
    [Crossref]
  81. B. Lomsadze and S. T. Cundiff, “Multi-heterodyne two dimensional coherent spectroscopy using frequency combs,” Sci. Rep. 7, 14018 (2017).
    [Crossref]
  82. P. Wen, G. Christmann, J. J. Baumberg, and K. A. Nelson, “Influence of multi-exciton correlations on nonlinear polariton dynamics in semiconductor microcavities,” New J. Phys. 15, 025005 (2013).
    [Crossref]
  83. S. Yu, M. Titze, Y. Zhu, X. Liu, and H. Li, “Observation of scalable and deterministic multi-atom Dicke states in an atomic vapor,” arXiv:1807.09300 (2018).
  84. G. S. M. Jansen, D. Rudolf, L. Freisem, K. S. E. Eikema, and S. Witte, “Spatially resolved Fourier transform spectroscopy in the extreme ultraviolet,” Optica 3, 1122–1125 (2016).
    [Crossref]
  85. M. E. Siemens, G. Moody, H. Li, A. D. Bristow, and S. T. Cundiff, “Resonance lineshapes in two-dimensional Fourier transform spectroscopy,” Opt. Express 18, 17699–17708 (2010).
    [Crossref]
  86. X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-body interactions in semiconductors probed by optical two-dimensional Fourier transform spectroscopy,” Phys. Rev. Lett. 96, 057406 (2006).
    [Crossref]
  87. T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, and S. T. Cundiff, “Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors,” Proc. Natl. Acad. Sci. USA 104, 14227–14232 (2007).
    [Crossref]
  88. D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466, 1089–1092 (2010).
    [Crossref]
  89. H.-S. Tan, “Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy,” J. Chem. Phys. 129, 124501 (2008).
    [Crossref]
  90. D. S. Chemla and D. A. B. Miller, “Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures,” J. Opt. Soc. Am. B 2, 1155–1173 (1985).
    [Crossref]
  91. B. Deveaud, F. Clérot, N. Roy, K. Satzke, B. Sermage, and D. S. Katzer, “Enhanced radiative recombination of free excitons in GaAs quantum wells,” Phys. Rev. Lett. 67, 2355–2358 (1991).
    [Crossref]
  92. K. Bott, “Influence of exciton-exciton interactions on the coherent optical response in GaAs quantum wells,” Phys. Rev. B 48, 17418–17426 (1993).
    [Crossref]
  93. J. M. Shacklette and S. T. Cundiff, “Role of excitation-induced shift in the coherent optical response of semiconductors,” Phys. Rev. B 66, 045309 (2002).
    [Crossref]
  94. J. O. Tollerud, S. T. Cundiff, and J. A. Davis, “Revealing and characterizing dark excitons through coherent multidimensional spectroscopy,” Phys. Rev. Lett. 117, 097401 (2016).
    [Crossref]
  95. R. Singh, T. M. Autry, G. Nardin, G. Moody, H. Li, K. Pierz, M. Bieler, and S. T. Cundiff, “Anisotropic homogeneous linewidth of the heavy-hole exciton in (110)-oriented GaAs quantum wells,” Phys. Rev. B 88, 045304 (2013).
    [Crossref]
  96. M. Gärttner, P. Hauke, and A. M. Rey, “Relating out-of-time-order correlations to entanglement via multiple-quantum coherences,” Phys. Rev. Lett. 120, 040402 (2018).
    [Crossref]

2018 (6)

S. Mueller, S. Draeger, X. Ma, M. Hensen, T. Kenneweg, W. Pfeiffer, and T. Brixner, “Fluorescence-detected two-quantum and one-quantum–two-quantum 2D electronic spectroscopy,” J. Phys. Chem. Lett. 9, 1964–1969 (2018).
[Crossref]

E. W. Martin and S. T. Cundiff, “Inducing coherent quantum dot interactions,” Phys. Rev. B 97, 081301 (2018).
[Crossref]

B. Lomsadze, B. C. Smith, and S. T. Cundiff, “Tri-comb spectroscopy,” Nat. Photonics 12, 676–680 (2018).
[Crossref]

B. Lomsadze and S. T. Cundiff, “Frequency-comb based double-quantum two-dimensional spectrum identifies collective hyperfine resonances in atomic vapor induced by dipole-dipole interactions,” Phys. Rev. Lett. 120, 233401 (2018).
[Crossref]

V. Tiwari, Y. A. Matutes, A. T. Gardiner, T. L. C. Jansen, R. J. Cogdell, and J. P. Ogilvie, “Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria,” Nat. Commun. 9, 4219 (2018).
[Crossref]

M. Gärttner, P. Hauke, and A. M. Rey, “Relating out-of-time-order correlations to entanglement via multiple-quantum coherences,” Phys. Rev. Lett. 120, 040402 (2018).
[Crossref]

2017 (5)

S. Draeger, S. Roeding, and T. Brixner, “Rapid-scan coherent 2D fluorescence spectroscopy,” Opt. Express 25, 3259–3267 (2017).
[Crossref]

B. Lomsadze and S. T. Cundiff, “Multi-heterodyne two dimensional coherent spectroscopy using frequency combs,” Sci. Rep. 7, 14018 (2017).
[Crossref]

B. Lomsadze and S. T. Cundiff, “Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy,” Science 357, 1389–1391 (2017).
[Crossref]

M. Titze and H. Li, “Interpretation of optical three-dimensional coherent spectroscopy,” Phys. Rev. A 96, 032508 (2017).
[Crossref]

K. Hao, L. Xu, F. Wu, P. Nagler, K. Tran, X. Ma, C. Schüller, T. Korn, A. H. MacDonald, G. Moody, and X. Li, “Trion valley coherence in monolayer semiconductors,” 2D Mater. 4, 025105 (2017).
[Crossref]

2016 (7)

K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, “Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2,” Nano Lett. 16, 5109–5113 (2016).
[Crossref]

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).

A. A. Bakulin, C. Silva, and E. Vella, “Ultrafast spectroscopy with photocurrent detection: watching excitonic optoelectronic systems at work,” J. Phys. Chem. Lett. 7, 250–258 (2016).
[Crossref]

R. Singh, T. Suzuki, T. M. Autry, G. Moody, M. E. Siemens, and S. T. Cundiff, “Polarization-dependent exciton linewidth in semiconductor quantum wells: a consequence of bosonic nature of excitons,” Phys. Rev. B 94, 081304 (2016).
[Crossref]

G. S. M. Jansen, D. Rudolf, L. Freisem, K. S. E. Eikema, and S. Witte, “Spatially resolved Fourier transform spectroscopy in the extreme ultraviolet,” Optica 3, 1122–1125 (2016).
[Crossref]

P. C. Chen, “An introduction to coherent multidimensional spectroscopy,” Appl. Spectrosc. 70, 1937–1951 (2016).
[Crossref]

J. O. Tollerud, S. T. Cundiff, and J. A. Davis, “Revealing and characterizing dark excitons through coherent multidimensional spectroscopy,” Phys. Rev. Lett. 117, 097401 (2016).
[Crossref]

2015 (7)

L. A. Pachon, A. H. Marcus, and A. Aspuru-Guzik, “Quantum process tomography by 2D fluorescence spectroscopy,” J. Chem. Phys. 142, 212442 (2015).
[Crossref]

G. Nardin, T. M. Autry, G. Moody, R. Singh, H. Li, and S. T. Cundiff, “Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: collinear and non-collinear approaches,” J. Appl. Phys. 117, 112804 (2015).
[Crossref]

Y. Rodriguez, F. Frei, A. Cannizzo, and T. Feurer, “Pulse-shaping assisted multidimensional coherent electronic spectroscopy,” J. Chem. Phys. 142, 212451 (2015).
[Crossref]

N. Takemura, S. Trebaol, M. D. Anderson, V. Kohnle, Y. Léger, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, “Two-dimensional Fourier transform spectroscopy of exciton-polaritons and their interactions,” Phys. Rev. B 92, 125415 (2015).
[Crossref]

M. Thämer, L. D. Marco, K. Ramasesha, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR spectroscopy of the excess proton in liquid water,” Science 350, 78–82 (2015).
[Crossref]

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

M. Gessner, F. Schlawin, and A. Buchleitner, “Probing polariton dynamics in trapped ions with phase-coherent two-dimensional spectroscopy,” J. Chem. Phys. 142, 212439 (2015).
[Crossref]

2014 (7)

F. Schlawin, M. Gessner, S. Mukamel, and A. Buchleitner, “Nonlinear spectroscopy of trapped ions,” Phys. Rev. A 90, 023603 (2014).
[Crossref]

M. Gessner, F. Schlawin, H. Häffner, S. Mukamel, and A. Buchleitner, “Nonlinear spectroscopy of controllable many-body quantum systems,” New J. Phys. 16, 092001 (2014).
[Crossref]

G. Nardin, G. Moody, R. Singh, T. M. Autry, H. Li, F. Morier-Genoud, and S. T. Cundiff, “Coherent excitonic coupling in an asymmetric double InGaAs quantum well arises from many-body effects,” Phys. Rev. Lett. 112, 046402 (2014).
[Crossref]

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent coupling of excitons and trions in a photoexcited CdTe/CdMgTe quantum well,” Phys. Rev. Lett. 112, 097401 (2014).
[Crossref]

J. Yuen-Zhou, D. H. Arias, D. M. Eisele, C. P. Steiner, J. J. Krich, M. G. Bawendi, K. A. Nelson, and A. Aspuru-Guzik, “Coherent exciton dynamics in supramolecular light-harvesting nanotubes revealed by ultrafast quantum process tomography,” ACS Nano 8, 5527–5534 (2014).
[Crossref]

F. D. Fuller, D. E. Wilcox, and J. P. Ogilvie, “Pulse shaping based two-dimensional electronic spectroscopy in a background free geometry,” Opt. Express 22, 1018–1027 (2014).
[Crossref]

J. O. Tollerud, C. R. Hall, and J. A. Davis, “Isolating quantum coherence using coherent multi-dimensional spectroscopy with spectrally shaped pulses,” Opt. Express 22, 6719–6733 (2014).
[Crossref]

2013 (8)

G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, “Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure,” Opt. Express 21, 28617–28627 (2013).
[Crossref]

R. Singh, T. M. Autry, G. Nardin, G. Moody, H. Li, K. Pierz, M. Bieler, and S. T. Cundiff, “Anisotropic homogeneous linewidth of the heavy-hole exciton in (110)-oriented GaAs quantum wells,” Phys. Rev. B 88, 045304 (2013).
[Crossref]

F. Albert, K. Sivalertporn, J. Kasprzak, M. Strauß, C. Schneider, S. Höfling, M. Kamp, A. Forchel, S. Reitzenstein, E. A. Muljarov, and W. Langbein, “Microcavity controlled coupling of excitonic qubits,” Nat. Commun. 4, 1747 (2013).
[Crossref]

D. R. Skoff, J. E. Laaser, S. S. Mukherjee, C. T. Middleton, and M. T. Zanni, “Simplified and economical 2D IR spectrometer design using a dual acousto-optic modulator,” Chem. Phys. 422, 8–15 (2013).
[Crossref]

P. Wen, G. Christmann, J. J. Baumberg, and K. A. Nelson, “Influence of multi-exciton correlations on nonlinear polariton dynamics in semiconductor microcavities,” New J. Phys. 15, 025005 (2013).
[Crossref]

V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. USA 110, 1203–1208 (2013).
[Crossref]

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref]

S. T. Cundiff and S. Mukamel, “Optical multidimensional coherent spectroscopy,” Phys. Today 66(7), 44–49 (2013).
[Crossref]

2012 (1)

2011 (9)

J. Helbing and P. Hamm, “Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B 28, 171–178 (2011).
[Crossref]

D. Hayes and G. S. Engel, “Extracting the excitonic Hamiltonian of the Fenna-Matthews-Olson complex using three-dimensional third-order electronic spectroscopy,” Biophys. J. 100, 2043–2052 (2011).
[Crossref]

J. A. Davis, C. R. Hall, L. V. Dao, K. A. Nugent, H. M. Quiney, H. H. Tan, and C. Jagadish, “Three-dimensional electronic spectroscopy of excitons in asymmetric double quantum wells,” J. Chem. Phys. 135, 044510 (2011).
[Crossref]

J. Yuen-Zhou, J. J. Krich, M. Mohseni, and A. Aspuru-Guzik, “Quantum state and process tomography of energy transfer systems via ultrafast spectroscopy,” Proc. Natl. Acad. Sci. USA 108, 17615–17620 (2011).
[Crossref]

J. Yuen-Zhou and A. Aspuru-Guzik, “Quantum process tomography of excitonic dimers from two-dimensional electronic spectroscopy. I. General theory and application to homodimers,” J. Chem. Phys. 134, 134505 (2011).
[Crossref]

J. Kasprzak, B. Patton, V. Savona, and W. Langbein, “Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging,” Nat. Photonics 5, 57–63 (2011).
[Crossref]

S. Garrett-Roe, F. Perakis, F. Rao, and P. Hamm, “Three-dimensional infrared spectroscopy of isotope-substituted liquid water reveals heterogeneous dynamics,” J. Phys. Chem. B 115, 6976–6984 (2011).
[Crossref]

S. T. Roberts, J. J. Loparo, K. Ramasesha, and A. Tokmakoff, “A fast-scanning Fourier transform 2D IR interferometer,” Opt. Commun. 284, 1062–1066 (2011).
[Crossref]

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: the coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[Crossref]

2010 (3)

D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466, 1089–1092 (2010).
[Crossref]

D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett. 104, 117401 (2010).
[Crossref]

M. E. Siemens, G. Moody, H. Li, A. D. Bristow, and S. T. Cundiff, “Resonance lineshapes in two-dimensional Fourier transform spectroscopy,” Opt. Express 18, 17699–17708 (2010).
[Crossref]

2009 (4)

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Three-dimensional electronic spectroscopy of excitons in GaAs quantum wells,” J. Chem. Phys. 131, 144510 (2009).
[Crossref]

E. Collini and G. D. Scholes, “Coherent intrachain energy migration in a conjugated polymer at room temperature,” Science 323, 369–373 (2009).
[Crossref]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[Crossref]

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[Crossref]

2008 (2)

H.-S. Tan, “Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy,” J. Chem. Phys. 129, 124501 (2008).
[Crossref]

J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16, 17420–17428 (2008).
[Crossref]

2007 (7)

E. M. Grumstrup, S.-H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15, 16681–16689 (2007).
[Crossref]

T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, and S. T. Cundiff, “Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors,” Proc. Natl. Acad. Sci. USA 104, 14227–14232 (2007).
[Crossref]

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[Crossref]

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[Crossref]

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446, 782–786 (2007).
[Crossref]

H. Lee, Y.-C. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: protein protection of excitonic coherence,” Science 316, 1462–1465 (2007).
[Crossref]

L. Yang, I. V. Schweigert, S. T. Cundiff, and S. Mukamel, “Two-dimensional optical spectroscopy of excitons in semiconductor quantum wells: Liouville-space pathway analysis,” Phys. Rev. B 75, 125302 (2007).
[Crossref]

2006 (4)

J. J. Loparo, S. T. Roberts, and A. Tokmakoff, “Multidimensional infrared spectroscopy of water. II. Hydrogen bond switching dynamics,” J. Chem. Phys. 125, 194522 (2006).
[Crossref]

P. F. Tekavec, T. R. Dyke, and A. H. Marcus, “Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation,” J. Chem. Phys. 125, 194303 (2006).
[Crossref]

X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-body interactions in semiconductors probed by optical two-dimensional Fourier transform spectroscopy,” Phys. Rev. Lett. 96, 057406 (2006).
[Crossref]

W. Langbein and B. Patton, “Heterodyne spectral interferometry for multidimensional nonlinear spectroscopy of individual quantum systems,” Opt. Lett. 31, 1151–1153 (2006).
[Crossref]

2005 (2)

V. Volkov, R. Schanz, and P. Hamm, “Active phase stabilization in Fourier-transform two-dimensional infrared spectroscopy,” Opt. Lett. 30, 2010–2012 (2005).
[Crossref]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

2004 (4)

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[Crossref]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[Crossref]

W. Wagner, P. Tian, C. Li, J. Semmlow, and W. S. Warren, “Rapid two-dimensional optical spectroscopy through acousto-optic pulse shaping,” J. Mod. Opt. 51, 2655–2663 (2004).
[Crossref]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29, 884–886 (2004).
[Crossref]

2003 (1)

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref]

2002 (1)

J. M. Shacklette and S. T. Cundiff, “Role of excitation-induced shift in the coherent optical response of semiconductors,” Phys. Rev. B 66, 045309 (2002).
[Crossref]

2001 (2)

S. Rudin and T. L. Reinecke, “Anharmonic oscillator model for driven and vacuum-field Rabi oscillations,” Phys. Rev. B 63, 075308 (2001).
[Crossref]

J. D. Hybl, A. A. Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 6606–6622 (2001).
[Crossref]

2000 (4)

T. Meier, S. W. Koch, M. Phillips, and H. Wang, “Strong coupling of heavy- and light-hole excitons induced by many-body correlations,” Phys. Rev. B 62, 12605–12608 (2000).
[Crossref]

S. Weiser, T. Meier, J. Möbius, A. Euteneuer, E. J. Mayer, W. Stolz, M. Hofmann, W. W. Rühle, P. Thomas, and S. W. Koch, “Disorder-induced dephasing in semiconductors,” Phys. Rev. B 61, 13088–13098 (2000).
[Crossref]

M. Kuwata-Gonokami, T. Aoki, C. Ramkumar, R. Shimano, and Y. Svirko, “Role of exciton–exciton interaction on resonant third-order nonlinear optical responses,” J. Lumin. 87–89, 162–167 (2000).
[Crossref]

G. Rochat, C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, “Excitonic Bloch equations for a two-dimensional system of interacting excitons,” Phys. Rev. B 61, 13856–13862 (2000).
[Crossref]

1999 (2)

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82, 3112–3115 (1999).
[Crossref]

Y. P. Svirko, M. Shirane, H. Suzuura, and M. Kuwata-Gonokami, “Four-wave mixing theory at the excitonic resonance: weakly interacting Boson model,” J. Phys. Soc. Jpn. 68, 674–682 (1999).
[Crossref]

1998 (1)

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[Crossref]

1996 (1)

T. F. Albrecht, K. Bott, T. Meier, A. Schulze, M. Koch, S. T. Cundiff, J. Feldmann, W. Stolz, P. Thomas, S. W. Koch, and E. O. Göbel, “Disorder mediated biexcitonic beats in semiconductor quantum wells,” Phys. Rev. B 54, 4436–4439 (1996).
[Crossref]

1993 (2)

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in GaAs,” Phys. Rev. Lett. 71, 1261–1264 (1993).
[Crossref]

K. Bott, “Influence of exciton-exciton interactions on the coherent optical response in GaAs quantum wells,” Phys. Rev. B 48, 17418–17426 (1993).
[Crossref]

1992 (1)

1991 (1)

B. Deveaud, F. Clérot, N. Roy, K. Satzke, B. Sermage, and D. S. Katzer, “Enhanced radiative recombination of free excitons in GaAs quantum wells,” Phys. Rev. Lett. 67, 2355–2358 (1991).
[Crossref]

1985 (1)

Ahn, T. K.

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[Crossref]

Ahn, T.-K.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446, 782–786 (2007).
[Crossref]

Akimov, I. A.

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent coupling of excitons and trions in a photoexcited CdTe/CdMgTe quantum well,” Phys. Rev. Lett. 112, 097401 (2014).
[Crossref]

Albert, F.

F. Albert, K. Sivalertporn, J. Kasprzak, M. Strauß, C. Schneider, S. Höfling, M. Kamp, A. Forchel, S. Reitzenstein, E. A. Muljarov, and W. Langbein, “Microcavity controlled coupling of excitonic qubits,” Nat. Commun. 4, 1747 (2013).
[Crossref]

Albrecht, A. W.

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[Crossref]

Albrecht, T. F.

T. F. Albrecht, K. Bott, T. Meier, A. Schulze, M. Koch, S. T. Cundiff, J. Feldmann, W. Stolz, P. Thomas, S. W. Koch, and E. O. Göbel, “Disorder mediated biexcitonic beats in semiconductor quantum wells,” Phys. Rev. B 54, 4436–4439 (1996).
[Crossref]

Anderson, M. D.

N. Takemura, S. Trebaol, M. D. Anderson, V. Kohnle, Y. Léger, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, “Two-dimensional Fourier transform spectroscopy of exciton-polaritons and their interactions,” Phys. Rev. B 92, 125415 (2015).
[Crossref]

Aoki, T.

M. Kuwata-Gonokami, T. Aoki, C. Ramkumar, R. Shimano, and Y. Svirko, “Role of exciton–exciton interaction on resonant third-order nonlinear optical responses,” J. Lumin. 87–89, 162–167 (2000).
[Crossref]

Arias, D. H.

J. Yuen-Zhou, D. H. Arias, D. M. Eisele, C. P. Steiner, J. J. Krich, M. G. Bawendi, K. A. Nelson, and A. Aspuru-Guzik, “Coherent exciton dynamics in supramolecular light-harvesting nanotubes revealed by ultrafast quantum process tomography,” ACS Nano 8, 5527–5534 (2014).
[Crossref]

Aspuru-Guzik, A.

L. A. Pachon, A. H. Marcus, and A. Aspuru-Guzik, “Quantum process tomography by 2D fluorescence spectroscopy,” J. Chem. Phys. 142, 212442 (2015).
[Crossref]

J. Yuen-Zhou, D. H. Arias, D. M. Eisele, C. P. Steiner, J. J. Krich, M. G. Bawendi, K. A. Nelson, and A. Aspuru-Guzik, “Coherent exciton dynamics in supramolecular light-harvesting nanotubes revealed by ultrafast quantum process tomography,” ACS Nano 8, 5527–5534 (2014).
[Crossref]

J. Yuen-Zhou, J. J. Krich, M. Mohseni, and A. Aspuru-Guzik, “Quantum state and process tomography of energy transfer systems via ultrafast spectroscopy,” Proc. Natl. Acad. Sci. USA 108, 17615–17620 (2011).
[Crossref]

J. Yuen-Zhou and A. Aspuru-Guzik, “Quantum process tomography of excitonic dimers from two-dimensional electronic spectroscopy. I. General theory and application to homodimers,” J. Chem. Phys. 134, 134505 (2011).
[Crossref]

Autry, T. M.

R. Singh, T. Suzuki, T. M. Autry, G. Moody, M. E. Siemens, and S. T. Cundiff, “Polarization-dependent exciton linewidth in semiconductor quantum wells: a consequence of bosonic nature of excitons,” Phys. Rev. B 94, 081304 (2016).
[Crossref]

G. Nardin, T. M. Autry, G. Moody, R. Singh, H. Li, and S. T. Cundiff, “Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: collinear and non-collinear approaches,” J. Appl. Phys. 117, 112804 (2015).
[Crossref]

G. Nardin, G. Moody, R. Singh, T. M. Autry, H. Li, F. Morier-Genoud, and S. T. Cundiff, “Coherent excitonic coupling in an asymmetric double InGaAs quantum well arises from many-body effects,” Phys. Rev. Lett. 112, 046402 (2014).
[Crossref]

R. Singh, T. M. Autry, G. Nardin, G. Moody, H. Li, K. Pierz, M. Bieler, and S. T. Cundiff, “Anisotropic homogeneous linewidth of the heavy-hole exciton in (110)-oriented GaAs quantum wells,” Phys. Rev. B 88, 045304 (2013).
[Crossref]

G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, “Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure,” Opt. Express 21, 28617–28627 (2013).
[Crossref]

Bakulin, A. A.

A. A. Bakulin, C. Silva, and E. Vella, “Ultrafast spectroscopy with photocurrent detection: watching excitonic optoelectronic systems at work,” J. Phys. Chem. Lett. 7, 250–258 (2016).
[Crossref]

Baumberg, J. J.

P. Wen, G. Christmann, J. J. Baumberg, and K. A. Nelson, “Influence of multi-exciton correlations on nonlinear polariton dynamics in semiconductor microcavities,” New J. Phys. 15, 025005 (2013).
[Crossref]

Bawendi, M. G.

J. Yuen-Zhou, D. H. Arias, D. M. Eisele, C. P. Steiner, J. J. Krich, M. G. Bawendi, K. A. Nelson, and A. Aspuru-Guzik, “Coherent exciton dynamics in supramolecular light-harvesting nanotubes revealed by ultrafast quantum process tomography,” ACS Nano 8, 5527–5534 (2014).
[Crossref]

Bayer, M.

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent coupling of excitons and trions in a photoexcited CdTe/CdMgTe quantum well,” Phys. Rev. Lett. 112, 097401 (2014).
[Crossref]

Berghäuser, G.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Bieler, M.

R. Singh, T. M. Autry, G. Nardin, G. Moody, H. Li, K. Pierz, M. Bieler, and S. T. Cundiff, “Anisotropic homogeneous linewidth of the heavy-hole exciton in (110)-oriented GaAs quantum wells,” Phys. Rev. B 88, 045304 (2013).
[Crossref]

Binder, R.

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in GaAs,” Phys. Rev. Lett. 71, 1261–1264 (1993).
[Crossref]

Blankenship, R. E.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446, 782–786 (2007).
[Crossref]

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[Crossref]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

Bodenhausen, G.

R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon, 1990).

Borca, C. N.

X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-body interactions in semiconductors probed by optical two-dimensional Fourier transform spectroscopy,” Phys. Rev. Lett. 96, 057406 (2006).
[Crossref]

Bott, K.

T. F. Albrecht, K. Bott, T. Meier, A. Schulze, M. Koch, S. T. Cundiff, J. Feldmann, W. Stolz, P. Thomas, S. W. Koch, and E. O. Göbel, “Disorder mediated biexcitonic beats in semiconductor quantum wells,” Phys. Rev. B 54, 4436–4439 (1996).
[Crossref]

K. Bott, “Influence of exciton-exciton interactions on the coherent optical response in GaAs quantum wells,” Phys. Rev. B 48, 17418–17426 (1993).
[Crossref]

Brick, P.

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82, 3112–3115 (1999).
[Crossref]

Brida, D.

Bristow, A. D.

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref]

D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett. 104, 117401 (2010).
[Crossref]

M. E. Siemens, G. Moody, H. Li, A. D. Bristow, and S. T. Cundiff, “Resonance lineshapes in two-dimensional Fourier transform spectroscopy,” Opt. Express 18, 17699–17708 (2010).
[Crossref]

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[Crossref]

Brixner, T.

S. Mueller, S. Draeger, X. Ma, M. Hensen, T. Kenneweg, W. Pfeiffer, and T. Brixner, “Fluorescence-detected two-quantum and one-quantum–two-quantum 2D electronic spectroscopy,” J. Phys. Chem. Lett. 9, 1964–1969 (2018).
[Crossref]

S. Draeger, S. Roeding, and T. Brixner, “Rapid-scan coherent 2D fluorescence spectroscopy,” Opt. Express 25, 3259–3267 (2017).
[Crossref]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[Crossref]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29, 884–886 (2004).
[Crossref]

Buchleitner, A.

M. Gessner, F. Schlawin, and A. Buchleitner, “Probing polariton dynamics in trapped ions with phase-coherent two-dimensional spectroscopy,” J. Chem. Phys. 142, 212439 (2015).
[Crossref]

F. Schlawin, M. Gessner, S. Mukamel, and A. Buchleitner, “Nonlinear spectroscopy of trapped ions,” Phys. Rev. A 90, 023603 (2014).
[Crossref]

M. Gessner, F. Schlawin, H. Häffner, S. Mukamel, and A. Buchleitner, “Nonlinear spectroscopy of controllable many-body quantum systems,” New J. Phys. 16, 092001 (2014).
[Crossref]

Calhoun, T. R.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446, 782–786 (2007).
[Crossref]

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[Crossref]

Cannizzo, A.

Y. Rodriguez, F. Frei, A. Cannizzo, and T. Feurer, “Pulse-shaping assisted multidimensional coherent electronic spectroscopy,” J. Chem. Phys. 142, 212451 (2015).
[Crossref]

Carlsson, C.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[Crossref]

Cerullo, G.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).

D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37, 3027–3029 (2012).
[Crossref]

Chemla, D. S.

Chen, C.-H.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Chen, J.

K. J. Karki, J. Chen, A. Sakurai, Q. Shi, A. T. Gardiner, O. Kühn, R. J. Cogdell, and T. Pullerits, “Unexpectedly large delocalization of the initial excitation in photosynthetic light harvesting,” arXiv:1804.04840 (2018).

Chen, P. C.

Cheng, Y.-C.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446, 782–786 (2007).
[Crossref]

H. Lee, Y.-C. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: protein protection of excitonic coherence,” Science 316, 1462–1465 (2007).
[Crossref]

Cho, M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

Christmann, G.

P. Wen, G. Christmann, J. J. Baumberg, and K. A. Nelson, “Influence of multi-exciton correlations on nonlinear polariton dynamics in semiconductor microcavities,” New J. Phys. 15, 025005 (2013).
[Crossref]

Ciuti, C.

G. Rochat, C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, “Excitonic Bloch equations for a two-dimensional system of interacting excitons,” Phys. Rev. B 61, 13856–13862 (2000).
[Crossref]

Clark, G.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Clérot, F.

B. Deveaud, F. Clérot, N. Roy, K. Satzke, B. Sermage, and D. S. Katzer, “Enhanced radiative recombination of free excitons in GaAs quantum wells,” Phys. Rev. Lett. 67, 2355–2358 (1991).
[Crossref]

Cogdell, R. J.

V. Tiwari, Y. A. Matutes, A. T. Gardiner, T. L. C. Jansen, R. J. Cogdell, and J. P. Ogilvie, “Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria,” Nat. Commun. 9, 4219 (2018).
[Crossref]

K. J. Karki, J. Chen, A. Sakurai, Q. Shi, A. T. Gardiner, O. Kühn, R. J. Cogdell, and T. Pullerits, “Unexpectedly large delocalization of the initial excitation in photosynthetic light harvesting,” arXiv:1804.04840 (2018).

Collini, E.

E. Collini and G. D. Scholes, “Coherent intrachain energy migration in a conjugated polymer at room temperature,” Science 323, 369–373 (2009).
[Crossref]

Cowan, M. L.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[Crossref]

Cundiff, S. T.

B. Lomsadze and S. T. Cundiff, “Frequency-comb based double-quantum two-dimensional spectrum identifies collective hyperfine resonances in atomic vapor induced by dipole-dipole interactions,” Phys. Rev. Lett. 120, 233401 (2018).
[Crossref]

B. Lomsadze, B. C. Smith, and S. T. Cundiff, “Tri-comb spectroscopy,” Nat. Photonics 12, 676–680 (2018).
[Crossref]

E. W. Martin and S. T. Cundiff, “Inducing coherent quantum dot interactions,” Phys. Rev. B 97, 081301 (2018).
[Crossref]

B. Lomsadze and S. T. Cundiff, “Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy,” Science 357, 1389–1391 (2017).
[Crossref]

B. Lomsadze and S. T. Cundiff, “Multi-heterodyne two dimensional coherent spectroscopy using frequency combs,” Sci. Rep. 7, 14018 (2017).
[Crossref]

J. O. Tollerud, S. T. Cundiff, and J. A. Davis, “Revealing and characterizing dark excitons through coherent multidimensional spectroscopy,” Phys. Rev. Lett. 117, 097401 (2016).
[Crossref]

R. Singh, T. Suzuki, T. M. Autry, G. Moody, M. E. Siemens, and S. T. Cundiff, “Polarization-dependent exciton linewidth in semiconductor quantum wells: a consequence of bosonic nature of excitons,” Phys. Rev. B 94, 081304 (2016).
[Crossref]

G. Nardin, T. M. Autry, G. Moody, R. Singh, H. Li, and S. T. Cundiff, “Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: collinear and non-collinear approaches,” J. Appl. Phys. 117, 112804 (2015).
[Crossref]

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent coupling of excitons and trions in a photoexcited CdTe/CdMgTe quantum well,” Phys. Rev. Lett. 112, 097401 (2014).
[Crossref]

G. Nardin, G. Moody, R. Singh, T. M. Autry, H. Li, F. Morier-Genoud, and S. T. Cundiff, “Coherent excitonic coupling in an asymmetric double InGaAs quantum well arises from many-body effects,” Phys. Rev. Lett. 112, 046402 (2014).
[Crossref]

S. T. Cundiff and S. Mukamel, “Optical multidimensional coherent spectroscopy,” Phys. Today 66(7), 44–49 (2013).
[Crossref]

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref]

R. Singh, T. M. Autry, G. Nardin, G. Moody, H. Li, K. Pierz, M. Bieler, and S. T. Cundiff, “Anisotropic homogeneous linewidth of the heavy-hole exciton in (110)-oriented GaAs quantum wells,” Phys. Rev. B 88, 045304 (2013).
[Crossref]

G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, “Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure,” Opt. Express 21, 28617–28627 (2013).
[Crossref]

M. E. Siemens, G. Moody, H. Li, A. D. Bristow, and S. T. Cundiff, “Resonance lineshapes in two-dimensional Fourier transform spectroscopy,” Opt. Express 18, 17699–17708 (2010).
[Crossref]

D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett. 104, 117401 (2010).
[Crossref]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[Crossref]

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[Crossref]

T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, and S. T. Cundiff, “Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors,” Proc. Natl. Acad. Sci. USA 104, 14227–14232 (2007).
[Crossref]

L. Yang, I. V. Schweigert, S. T. Cundiff, and S. Mukamel, “Two-dimensional optical spectroscopy of excitons in semiconductor quantum wells: Liouville-space pathway analysis,” Phys. Rev. B 75, 125302 (2007).
[Crossref]

X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-body interactions in semiconductors probed by optical two-dimensional Fourier transform spectroscopy,” Phys. Rev. Lett. 96, 057406 (2006).
[Crossref]

J. M. Shacklette and S. T. Cundiff, “Role of excitation-induced shift in the coherent optical response of semiconductors,” Phys. Rev. B 66, 045309 (2002).
[Crossref]

T. F. Albrecht, K. Bott, T. Meier, A. Schulze, M. Koch, S. T. Cundiff, J. Feldmann, W. Stolz, P. Thomas, S. W. Koch, and E. O. Göbel, “Disorder mediated biexcitonic beats in semiconductor quantum wells,” Phys. Rev. B 54, 4436–4439 (1996).
[Crossref]

Dai, X.

D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett. 104, 117401 (2010).
[Crossref]

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[Crossref]

Damrauer, N. H.

Dao, L. V.

J. A. Davis, C. R. Hall, L. V. Dao, K. A. Nugent, H. M. Quiney, H. H. Tan, and C. Jagadish, “Three-dimensional electronic spectroscopy of excitons in asymmetric double quantum wells,” J. Chem. Phys. 135, 044510 (2011).
[Crossref]

Dass, C. K.

K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, “Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2,” Nano Lett. 16, 5109–5113 (2016).
[Crossref]

Davis, J. A.

J. O. Tollerud, S. T. Cundiff, and J. A. Davis, “Revealing and characterizing dark excitons through coherent multidimensional spectroscopy,” Phys. Rev. Lett. 117, 097401 (2016).
[Crossref]

J. O. Tollerud, C. R. Hall, and J. A. Davis, “Isolating quantum coherence using coherent multi-dimensional spectroscopy with spectrally shaped pulses,” Opt. Express 22, 6719–6733 (2014).
[Crossref]

J. A. Davis, C. R. Hall, L. V. Dao, K. A. Nugent, H. M. Quiney, H. H. Tan, and C. Jagadish, “Three-dimensional electronic spectroscopy of excitons in asymmetric double quantum wells,” J. Chem. Phys. 135, 044510 (2011).
[Crossref]

De Sio, A.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).

Deveaud, B.

N. Takemura, S. Trebaol, M. D. Anderson, V. Kohnle, Y. Léger, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, “Two-dimensional Fourier transform spectroscopy of exciton-polaritons and their interactions,” Phys. Rev. B 92, 125415 (2015).
[Crossref]

B. Deveaud, F. Clérot, N. Roy, K. Satzke, B. Sermage, and D. S. Katzer, “Enhanced radiative recombination of free excitons in GaAs quantum wells,” Phys. Rev. Lett. 67, 2355–2358 (1991).
[Crossref]

Draeger, S.

S. Mueller, S. Draeger, X. Ma, M. Hensen, T. Kenneweg, W. Pfeiffer, and T. Brixner, “Fluorescence-detected two-quantum and one-quantum–two-quantum 2D electronic spectroscopy,” J. Phys. Chem. Lett. 9, 1964–1969 (2018).
[Crossref]

S. Draeger, S. Roeding, and T. Brixner, “Rapid-scan coherent 2D fluorescence spectroscopy,” Opt. Express 25, 3259–3267 (2017).
[Crossref]

Dyke, T. R.

P. F. Tekavec, T. R. Dyke, and A. H. Marcus, “Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation,” J. Chem. Phys. 125, 194303 (2006).
[Crossref]

Eikema, K. S. E.

Eisele, D. M.

J. Yuen-Zhou, D. H. Arias, D. M. Eisele, C. P. Steiner, J. J. Krich, M. G. Bawendi, K. A. Nelson, and A. Aspuru-Guzik, “Coherent exciton dynamics in supramolecular light-harvesting nanotubes revealed by ultrafast quantum process tomography,” ACS Nano 8, 5527–5534 (2014).
[Crossref]

Ell, C.

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82, 3112–3115 (1999).
[Crossref]

Engel, G. S.

D. Hayes and G. S. Engel, “Extracting the excitonic Hamiltonian of the Fenna-Matthews-Olson complex using three-dimensional third-order electronic spectroscopy,” Biophys. J. 100, 2043–2052 (2011).
[Crossref]

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446, 782–786 (2007).
[Crossref]

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[Crossref]

Ernst, R. R.

R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon, 1990).

Euteneuer, A.

S. Weiser, T. Meier, J. Möbius, A. Euteneuer, E. J. Mayer, W. Stolz, M. Hofmann, W. W. Rühle, P. Thomas, and S. W. Koch, “Disorder-induced dephasing in semiconductors,” Phys. Rev. B 61, 13088–13098 (2000).
[Crossref]

Faeder, S. M. G.

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[Crossref]

Feldmann, J.

T. F. Albrecht, K. Bott, T. Meier, A. Schulze, M. Koch, S. T. Cundiff, J. Feldmann, W. Stolz, P. Thomas, S. W. Koch, and E. O. Göbel, “Disorder mediated biexcitonic beats in semiconductor quantum wells,” Phys. Rev. B 54, 4436–4439 (1996).
[Crossref]

Ferrio, K.

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in GaAs,” Phys. Rev. Lett. 71, 1261–1264 (1993).
[Crossref]

Ferro, A. A.

J. D. Hybl, A. A. Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 6606–6622 (2001).
[Crossref]

Feurer, T.

Y. Rodriguez, F. Frei, A. Cannizzo, and T. Feurer, “Pulse-shaping assisted multidimensional coherent electronic spectroscopy,” J. Chem. Phys. 142, 212451 (2015).
[Crossref]

Fleming, G. R.

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[Crossref]

H. Lee, Y.-C. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: protein protection of excitonic coherence,” Science 316, 1462–1465 (2007).
[Crossref]

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446, 782–786 (2007).
[Crossref]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29, 884–886 (2004).
[Crossref]

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[Crossref]

Forchel, A.

F. Albert, K. Sivalertporn, J. Kasprzak, M. Strauß, C. Schneider, S. Höfling, M. Kamp, A. Forchel, S. Reitzenstein, E. A. Muljarov, and W. Langbein, “Microcavity controlled coupling of excitonic qubits,” Nat. Commun. 4, 1747 (2013).
[Crossref]

Frei, F.

Y. Rodriguez, F. Frei, A. Cannizzo, and T. Feurer, “Pulse-shaping assisted multidimensional coherent electronic spectroscopy,” J. Chem. Phys. 142, 212451 (2015).
[Crossref]

Freisem, L.

Fuller, F. D.

Gardiner, A. T.

V. Tiwari, Y. A. Matutes, A. T. Gardiner, T. L. C. Jansen, R. J. Cogdell, and J. P. Ogilvie, “Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria,” Nat. Commun. 9, 4219 (2018).
[Crossref]

K. J. Karki, J. Chen, A. Sakurai, Q. Shi, A. T. Gardiner, O. Kühn, R. J. Cogdell, and T. Pullerits, “Unexpectedly large delocalization of the initial excitation in photosynthetic light harvesting,” arXiv:1804.04840 (2018).

Garrett-Roe, S.

S. Garrett-Roe, F. Perakis, F. Rao, and P. Hamm, “Three-dimensional infrared spectroscopy of isotope-substituted liquid water reveals heterogeneous dynamics,” J. Phys. Chem. B 115, 6976–6984 (2011).
[Crossref]

Gärttner, M.

M. Gärttner, P. Hauke, and A. M. Rey, “Relating out-of-time-order correlations to entanglement via multiple-quantum coherences,” Phys. Rev. Lett. 120, 040402 (2018).
[Crossref]

Gessner, M.

M. Gessner, F. Schlawin, and A. Buchleitner, “Probing polariton dynamics in trapped ions with phase-coherent two-dimensional spectroscopy,” J. Chem. Phys. 142, 212439 (2015).
[Crossref]

F. Schlawin, M. Gessner, S. Mukamel, and A. Buchleitner, “Nonlinear spectroscopy of trapped ions,” Phys. Rev. A 90, 023603 (2014).
[Crossref]

M. Gessner, F. Schlawin, H. Häffner, S. Mukamel, and A. Buchleitner, “Nonlinear spectroscopy of controllable many-body quantum systems,” New J. Phys. 16, 092001 (2014).
[Crossref]

Gibbs, H. M.

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82, 3112–3115 (1999).
[Crossref]

Göbel, E. O.

T. F. Albrecht, K. Bott, T. Meier, A. Schulze, M. Koch, S. T. Cundiff, J. Feldmann, W. Stolz, P. Thomas, S. W. Koch, and E. O. Göbel, “Disorder mediated biexcitonic beats in semiconductor quantum wells,” Phys. Rev. B 54, 4436–4439 (1996).
[Crossref]

Grumstrup, E. M.

Gundogdu, K.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: the coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[Crossref]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[Crossref]

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Three-dimensional electronic spectroscopy of excitons in GaAs quantum wells,” J. Chem. Phys. 131, 144510 (2009).
[Crossref]

Häffner, H.

M. Gessner, F. Schlawin, H. Häffner, S. Mukamel, and A. Buchleitner, “Nonlinear spectroscopy of controllable many-body quantum systems,” New J. Phys. 16, 092001 (2014).
[Crossref]

Hagen, K. R.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[Crossref]

Hall, C. R.

J. O. Tollerud, C. R. Hall, and J. A. Davis, “Isolating quantum coherence using coherent multi-dimensional spectroscopy with spectrally shaped pulses,” Opt. Express 22, 6719–6733 (2014).
[Crossref]

J. A. Davis, C. R. Hall, L. V. Dao, K. A. Nugent, H. M. Quiney, H. H. Tan, and C. Jagadish, “Three-dimensional electronic spectroscopy of excitons in asymmetric double quantum wells,” J. Chem. Phys. 135, 044510 (2011).
[Crossref]

Hall, K. L.

Hamm, P.

Hao, K.

K. Hao, L. Xu, F. Wu, P. Nagler, K. Tran, X. Ma, C. Schüller, T. Korn, A. H. MacDonald, G. Moody, and X. Li, “Trion valley coherence in monolayer semiconductors,” 2D Mater. 4, 025105 (2017).
[Crossref]

K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, “Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2,” Nano Lett. 16, 5109–5113 (2016).
[Crossref]

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Hauke, P.

M. Gärttner, P. Hauke, and A. M. Rey, “Relating out-of-time-order correlations to entanglement via multiple-quantum coherences,” Phys. Rev. Lett. 120, 040402 (2018).
[Crossref]

Hayes, D.

D. Hayes and G. S. Engel, “Extracting the excitonic Hamiltonian of the Fenna-Matthews-Olson complex using three-dimensional third-order electronic spectroscopy,” Biophys. J. 100, 2043–2052 (2011).
[Crossref]

Helbing, J.

Hensen, M.

S. Mueller, S. Draeger, X. Ma, M. Hensen, T. Kenneweg, W. Pfeiffer, and T. Brixner, “Fluorescence-detected two-quantum and one-quantum–two-quantum 2D electronic spectroscopy,” J. Phys. Chem. Lett. 9, 1964–1969 (2018).
[Crossref]

Höfling, S.

F. Albert, K. Sivalertporn, J. Kasprzak, M. Strauß, C. Schneider, S. Höfling, M. Kamp, A. Forchel, S. Reitzenstein, E. A. Muljarov, and W. Langbein, “Microcavity controlled coupling of excitonic qubits,” Nat. Commun. 4, 1747 (2013).
[Crossref]

Hofmann, M.

S. Weiser, T. Meier, J. Möbius, A. Euteneuer, E. J. Mayer, W. Stolz, M. Hofmann, W. W. Rühle, P. Thomas, and S. W. Koch, “Disorder-induced dephasing in semiconductors,” Phys. Rev. B 61, 13088–13098 (2000).
[Crossref]

Hu, Y. Z.

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in GaAs,” Phys. Rev. Lett. 71, 1261–1264 (1993).
[Crossref]

Hübner, M.

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82, 3112–3115 (1999).
[Crossref]

Huelga, S. F.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).

Hybl, J. D.

J. D. Hybl, A. A. Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 6606–6622 (2001).
[Crossref]

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[Crossref]

Ippen, E. P.

Jagadish, C.

J. A. Davis, C. R. Hall, L. V. Dao, K. A. Nugent, H. M. Quiney, H. H. Tan, and C. Jagadish, “Three-dimensional electronic spectroscopy of excitons in asymmetric double quantum wells,” J. Chem. Phys. 135, 044510 (2011).
[Crossref]

Jahnke, F.

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82, 3112–3115 (1999).
[Crossref]

Jansen, G. S. M.

Jansen, T. L. C.

V. Tiwari, Y. A. Matutes, A. T. Gardiner, T. L. C. Jansen, R. J. Cogdell, and J. P. Ogilvie, “Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria,” Nat. Commun. 9, 4219 (2018).
[Crossref]

Jimenez, R.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[Crossref]

Jonas, D. M.

V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. USA 110, 1203–1208 (2013).
[Crossref]

J. D. Hybl, A. A. Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 6606–6622 (2001).
[Crossref]

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[Crossref]

Kamp, M.

F. Albert, K. Sivalertporn, J. Kasprzak, M. Strauß, C. Schneider, S. Höfling, M. Kamp, A. Forchel, S. Reitzenstein, E. A. Muljarov, and W. Langbein, “Microcavity controlled coupling of excitonic qubits,” Nat. Commun. 4, 1747 (2013).
[Crossref]

Karaiskaj, D.

D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett. 104, 117401 (2010).
[Crossref]

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[Crossref]

Karczewski, G.

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent coupling of excitons and trions in a photoexcited CdTe/CdMgTe quantum well,” Phys. Rev. Lett. 112, 097401 (2014).
[Crossref]

Karki, K. J.

K. J. Karki, J. Chen, A. Sakurai, Q. Shi, A. T. Gardiner, O. Kühn, R. J. Cogdell, and T. Pullerits, “Unexpectedly large delocalization of the initial excitation in photosynthetic light harvesting,” arXiv:1804.04840 (2018).

Kasprzak, J.

F. Albert, K. Sivalertporn, J. Kasprzak, M. Strauß, C. Schneider, S. Höfling, M. Kamp, A. Forchel, S. Reitzenstein, E. A. Muljarov, and W. Langbein, “Microcavity controlled coupling of excitonic qubits,” Nat. Commun. 4, 1747 (2013).
[Crossref]

J. Kasprzak, B. Patton, V. Savona, and W. Langbein, “Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging,” Nat. Photonics 5, 57–63 (2011).
[Crossref]

Katzer, D. S.

B. Deveaud, F. Clérot, N. Roy, K. Satzke, B. Sermage, and D. S. Katzer, “Enhanced radiative recombination of free excitons in GaAs quantum wells,” Phys. Rev. Lett. 67, 2355–2358 (1991).
[Crossref]

Kavir Dass, C.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Kenneweg, T.

S. Mueller, S. Draeger, X. Ma, M. Hensen, T. Kenneweg, W. Pfeiffer, and T. Brixner, “Fluorescence-detected two-quantum and one-quantum–two-quantum 2D electronic spectroscopy,” J. Phys. Chem. Lett. 9, 1964–1969 (2018).
[Crossref]

Keusters, D.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref]

Khitrova, G.

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82, 3112–3115 (1999).
[Crossref]

Knorr, A.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82, 3112–3115 (1999).
[Crossref]

Koch, M.

T. F. Albrecht, K. Bott, T. Meier, A. Schulze, M. Koch, S. T. Cundiff, J. Feldmann, W. Stolz, P. Thomas, S. W. Koch, and E. O. Göbel, “Disorder mediated biexcitonic beats in semiconductor quantum wells,” Phys. Rev. B 54, 4436–4439 (1996).
[Crossref]

Koch, S. W.

T. Meier, S. W. Koch, M. Phillips, and H. Wang, “Strong coupling of heavy- and light-hole excitons induced by many-body correlations,” Phys. Rev. B 62, 12605–12608 (2000).
[Crossref]

S. Weiser, T. Meier, J. Möbius, A. Euteneuer, E. J. Mayer, W. Stolz, M. Hofmann, W. W. Rühle, P. Thomas, and S. W. Koch, “Disorder-induced dephasing in semiconductors,” Phys. Rev. B 61, 13088–13098 (2000).
[Crossref]

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82, 3112–3115 (1999).
[Crossref]

T. F. Albrecht, K. Bott, T. Meier, A. Schulze, M. Koch, S. T. Cundiff, J. Feldmann, W. Stolz, P. Thomas, S. W. Koch, and E. O. Göbel, “Disorder mediated biexcitonic beats in semiconductor quantum wells,” Phys. Rev. B 54, 4436–4439 (1996).
[Crossref]

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in GaAs,” Phys. Rev. Lett. 71, 1261–1264 (1993).
[Crossref]

Kohnle, V.

N. Takemura, S. Trebaol, M. D. Anderson, V. Kohnle, Y. Léger, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, “Two-dimensional Fourier transform spectroscopy of exciton-polaritons and their interactions,” Phys. Rev. B 92, 125415 (2015).
[Crossref]

Korn, T.

K. Hao, L. Xu, F. Wu, P. Nagler, K. Tran, X. Ma, C. Schüller, T. Korn, A. H. MacDonald, G. Moody, and X. Li, “Trion valley coherence in monolayer semiconductors,” 2D Mater. 4, 025105 (2017).
[Crossref]

K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, “Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2,” Nano Lett. 16, 5109–5113 (2016).
[Crossref]

Krich, J. J.

J. Yuen-Zhou, D. H. Arias, D. M. Eisele, C. P. Steiner, J. J. Krich, M. G. Bawendi, K. A. Nelson, and A. Aspuru-Guzik, “Coherent exciton dynamics in supramolecular light-harvesting nanotubes revealed by ultrafast quantum process tomography,” ACS Nano 8, 5527–5534 (2014).
[Crossref]

J. Yuen-Zhou, J. J. Krich, M. Mohseni, and A. Aspuru-Guzik, “Quantum state and process tomography of energy transfer systems via ultrafast spectroscopy,” Proc. Natl. Acad. Sci. USA 108, 17615–17620 (2011).
[Crossref]

Kühn, O.

K. J. Karki, J. Chen, A. Sakurai, Q. Shi, A. T. Gardiner, O. Kühn, R. J. Cogdell, and T. Pullerits, “Unexpectedly large delocalization of the initial excitation in photosynthetic light harvesting,” arXiv:1804.04840 (2018).

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, T. Aoki, C. Ramkumar, R. Shimano, and Y. Svirko, “Role of exciton–exciton interaction on resonant third-order nonlinear optical responses,” J. Lumin. 87–89, 162–167 (2000).
[Crossref]

Y. P. Svirko, M. Shirane, H. Suzuura, and M. Kuwata-Gonokami, “Four-wave mixing theory at the excitonic resonance: weakly interacting Boson model,” J. Phys. Soc. Jpn. 68, 674–682 (1999).
[Crossref]

Kuznetsova, I.

T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, and S. T. Cundiff, “Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors,” Proc. Natl. Acad. Sci. USA 104, 14227–14232 (2007).
[Crossref]

Laaser, J. E.

D. R. Skoff, J. E. Laaser, S. S. Mukherjee, C. T. Middleton, and M. T. Zanni, “Simplified and economical 2D IR spectrometer design using a dual acousto-optic modulator,” Chem. Phys. 422, 8–15 (2013).
[Crossref]

Langbein, W.

F. Albert, K. Sivalertporn, J. Kasprzak, M. Strauß, C. Schneider, S. Höfling, M. Kamp, A. Forchel, S. Reitzenstein, E. A. Muljarov, and W. Langbein, “Microcavity controlled coupling of excitonic qubits,” Nat. Commun. 4, 1747 (2013).
[Crossref]

J. Kasprzak, B. Patton, V. Savona, and W. Langbein, “Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging,” Nat. Photonics 5, 57–63 (2011).
[Crossref]

W. Langbein and B. Patton, “Heterodyne spectral interferometry for multidimensional nonlinear spectroscopy of individual quantum systems,” Opt. Lett. 31, 1151–1153 (2006).
[Crossref]

Lee, H.

H. Lee, Y.-C. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: protein protection of excitonic coherence,” Science 316, 1462–1465 (2007).
[Crossref]

Léger, Y.

N. Takemura, S. Trebaol, M. D. Anderson, V. Kohnle, Y. Léger, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, “Two-dimensional Fourier transform spectroscopy of exciton-polaritons and their interactions,” Phys. Rev. B 92, 125415 (2015).
[Crossref]

Lenz, G.

Lewis, K. L. M.

Li, C.

W. Wagner, P. Tian, C. Li, J. Semmlow, and W. S. Warren, “Rapid two-dimensional optical spectroscopy through acousto-optic pulse shaping,” J. Mod. Opt. 51, 2655–2663 (2004).
[Crossref]

Li, H.

M. Titze and H. Li, “Interpretation of optical three-dimensional coherent spectroscopy,” Phys. Rev. A 96, 032508 (2017).
[Crossref]

G. Nardin, T. M. Autry, G. Moody, R. Singh, H. Li, and S. T. Cundiff, “Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: collinear and non-collinear approaches,” J. Appl. Phys. 117, 112804 (2015).
[Crossref]

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent coupling of excitons and trions in a photoexcited CdTe/CdMgTe quantum well,” Phys. Rev. Lett. 112, 097401 (2014).
[Crossref]

G. Nardin, G. Moody, R. Singh, T. M. Autry, H. Li, F. Morier-Genoud, and S. T. Cundiff, “Coherent excitonic coupling in an asymmetric double InGaAs quantum well arises from many-body effects,” Phys. Rev. Lett. 112, 046402 (2014).
[Crossref]

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref]

R. Singh, T. M. Autry, G. Nardin, G. Moody, H. Li, K. Pierz, M. Bieler, and S. T. Cundiff, “Anisotropic homogeneous linewidth of the heavy-hole exciton in (110)-oriented GaAs quantum wells,” Phys. Rev. B 88, 045304 (2013).
[Crossref]

M. E. Siemens, G. Moody, H. Li, A. D. Bristow, and S. T. Cundiff, “Resonance lineshapes in two-dimensional Fourier transform spectroscopy,” Opt. Express 18, 17699–17708 (2010).
[Crossref]

S. Yu, M. Titze, Y. Zhu, X. Liu, and H. Li, “Observation of scalable and deterministic multi-atom Dicke states in an atomic vapor,” arXiv:1807.09300 (2018).

Li, L.-J.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Li, X.

K. Hao, L. Xu, F. Wu, P. Nagler, K. Tran, X. Ma, C. Schüller, T. Korn, A. H. MacDonald, G. Moody, and X. Li, “Trion valley coherence in monolayer semiconductors,” 2D Mater. 4, 025105 (2017).
[Crossref]

K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, “Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2,” Nano Lett. 16, 5109–5113 (2016).
[Crossref]

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[Crossref]

T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, and S. T. Cundiff, “Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors,” Proc. Natl. Acad. Sci. USA 104, 14227–14232 (2007).
[Crossref]

X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-body interactions in semiconductors probed by optical two-dimensional Fourier transform spectroscopy,” Phys. Rev. Lett. 96, 057406 (2006).
[Crossref]

Lienau, C.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).

Lim, J.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).

Liu, X.

S. Yu, M. Titze, Y. Zhu, X. Liu, and H. Li, “Observation of scalable and deterministic multi-atom Dicke states in an atomic vapor,” arXiv:1807.09300 (2018).

Lomsadze, B.

B. Lomsadze and S. T. Cundiff, “Frequency-comb based double-quantum two-dimensional spectrum identifies collective hyperfine resonances in atomic vapor induced by dipole-dipole interactions,” Phys. Rev. Lett. 120, 233401 (2018).
[Crossref]

B. Lomsadze, B. C. Smith, and S. T. Cundiff, “Tri-comb spectroscopy,” Nat. Photonics 12, 676–680 (2018).
[Crossref]

B. Lomsadze and S. T. Cundiff, “Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy,” Science 357, 1389–1391 (2017).
[Crossref]

B. Lomsadze and S. T. Cundiff, “Multi-heterodyne two dimensional coherent spectroscopy using frequency combs,” Sci. Rep. 7, 14018 (2017).
[Crossref]

Loparo, J. J.

S. T. Roberts, J. J. Loparo, K. Ramasesha, and A. Tokmakoff, “A fast-scanning Fourier transform 2D IR interferometer,” Opt. Commun. 284, 1062–1066 (2011).
[Crossref]

J. J. Loparo, S. T. Roberts, and A. Tokmakoff, “Multidimensional infrared spectroscopy of water. II. Hydrogen bond switching dynamics,” J. Chem. Phys. 125, 194522 (2006).
[Crossref]

Lott, G. A.

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[Crossref]

Ma, X.

S. Mueller, S. Draeger, X. Ma, M. Hensen, T. Kenneweg, W. Pfeiffer, and T. Brixner, “Fluorescence-detected two-quantum and one-quantum–two-quantum 2D electronic spectroscopy,” J. Phys. Chem. Lett. 9, 1964–1969 (2018).
[Crossref]

K. Hao, L. Xu, F. Wu, P. Nagler, K. Tran, X. Ma, C. Schüller, T. Korn, A. H. MacDonald, G. Moody, and X. Li, “Trion valley coherence in monolayer semiconductors,” 2D Mater. 4, 025105 (2017).
[Crossref]

MacDonald, A. H.

K. Hao, L. Xu, F. Wu, P. Nagler, K. Tran, X. Ma, C. Schüller, T. Korn, A. H. MacDonald, G. Moody, and X. Li, “Trion valley coherence in monolayer semiconductors,” 2D Mater. 4, 025105 (2017).
[Crossref]

Maiuri, M.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).

Malic, E.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Mancal, T.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446, 782–786 (2007).
[Crossref]

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[Crossref]

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[Crossref]

Mandal, A.

M. Thämer, L. D. Marco, K. Ramasesha, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR spectroscopy of the excess proton in liquid water,” Science 350, 78–82 (2015).
[Crossref]

Manzoni, C.

Marco, L. D.

M. Thämer, L. D. Marco, K. Ramasesha, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR spectroscopy of the excess proton in liquid water,” Science 350, 78–82 (2015).
[Crossref]

Marcus, A. H.

L. A. Pachon, A. H. Marcus, and A. Aspuru-Guzik, “Quantum process tomography by 2D fluorescence spectroscopy,” J. Chem. Phys. 142, 212442 (2015).
[Crossref]

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[Crossref]

P. F. Tekavec, T. R. Dyke, and A. H. Marcus, “Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation,” J. Chem. Phys. 125, 194303 (2006).
[Crossref]

Martin, E. W.

E. W. Martin and S. T. Cundiff, “Inducing coherent quantum dot interactions,” Phys. Rev. B 97, 081301 (2018).
[Crossref]

Matutes, Y. A.

V. Tiwari, Y. A. Matutes, A. T. Gardiner, T. L. C. Jansen, R. J. Cogdell, and J. P. Ogilvie, “Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria,” Nat. Commun. 9, 4219 (2018).
[Crossref]

Mayer, E. J.

S. Weiser, T. Meier, J. Möbius, A. Euteneuer, E. J. Mayer, W. Stolz, M. Hofmann, W. W. Rühle, P. Thomas, and S. W. Koch, “Disorder-induced dephasing in semiconductors,” Phys. Rev. B 61, 13088–13098 (2000).
[Crossref]

Meier, T.

T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, and S. T. Cundiff, “Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors,” Proc. Natl. Acad. Sci. USA 104, 14227–14232 (2007).
[Crossref]

T. Meier, S. W. Koch, M. Phillips, and H. Wang, “Strong coupling of heavy- and light-hole excitons induced by many-body correlations,” Phys. Rev. B 62, 12605–12608 (2000).
[Crossref]

S. Weiser, T. Meier, J. Möbius, A. Euteneuer, E. J. Mayer, W. Stolz, M. Hofmann, W. W. Rühle, P. Thomas, and S. W. Koch, “Disorder-induced dephasing in semiconductors,” Phys. Rev. B 61, 13088–13098 (2000).
[Crossref]

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82, 3112–3115 (1999).
[Crossref]

T. F. Albrecht, K. Bott, T. Meier, A. Schulze, M. Koch, S. T. Cundiff, J. Feldmann, W. Stolz, P. Thomas, S. W. Koch, and E. O. Göbel, “Disorder mediated biexcitonic beats in semiconductor quantum wells,” Phys. Rev. B 54, 4436–4439 (1996).
[Crossref]

Middleton, C. T.

D. R. Skoff, J. E. Laaser, S. S. Mukherjee, C. T. Middleton, and M. T. Zanni, “Simplified and economical 2D IR spectrometer design using a dual acousto-optic modulator,” Chem. Phys. 422, 8–15 (2013).
[Crossref]

Miller, D. A. B.

Miller, R. J. D.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[Crossref]

Mirin, R. P.

D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett. 104, 117401 (2010).
[Crossref]

T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, and S. T. Cundiff, “Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors,” Proc. Natl. Acad. Sci. USA 104, 14227–14232 (2007).
[Crossref]

Möbius, J.

S. Weiser, T. Meier, J. Möbius, A. Euteneuer, E. J. Mayer, W. Stolz, M. Hofmann, W. W. Rühle, P. Thomas, and S. W. Koch, “Disorder-induced dephasing in semiconductors,” Phys. Rev. B 61, 13088–13098 (2000).
[Crossref]

Mohseni, M.

J. Yuen-Zhou, J. J. Krich, M. Mohseni, and A. Aspuru-Guzik, “Quantum state and process tomography of energy transfer systems via ultrafast spectroscopy,” Proc. Natl. Acad. Sci. USA 108, 17615–17620 (2011).
[Crossref]

Molinari, E.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).

Montgomery, M. A.

Moody, G.

K. Hao, L. Xu, F. Wu, P. Nagler, K. Tran, X. Ma, C. Schüller, T. Korn, A. H. MacDonald, G. Moody, and X. Li, “Trion valley coherence in monolayer semiconductors,” 2D Mater. 4, 025105 (2017).
[Crossref]

K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, “Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2,” Nano Lett. 16, 5109–5113 (2016).
[Crossref]

R. Singh, T. Suzuki, T. M. Autry, G. Moody, M. E. Siemens, and S. T. Cundiff, “Polarization-dependent exciton linewidth in semiconductor quantum wells: a consequence of bosonic nature of excitons,” Phys. Rev. B 94, 081304 (2016).
[Crossref]

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

G. Nardin, T. M. Autry, G. Moody, R. Singh, H. Li, and S. T. Cundiff, “Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: collinear and non-collinear approaches,” J. Appl. Phys. 117, 112804 (2015).
[Crossref]

G. Nardin, G. Moody, R. Singh, T. M. Autry, H. Li, F. Morier-Genoud, and S. T. Cundiff, “Coherent excitonic coupling in an asymmetric double InGaAs quantum well arises from many-body effects,” Phys. Rev. Lett. 112, 046402 (2014).
[Crossref]

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent coupling of excitons and trions in a photoexcited CdTe/CdMgTe quantum well,” Phys. Rev. Lett. 112, 097401 (2014).
[Crossref]

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref]

R. Singh, T. M. Autry, G. Nardin, G. Moody, H. Li, K. Pierz, M. Bieler, and S. T. Cundiff, “Anisotropic homogeneous linewidth of the heavy-hole exciton in (110)-oriented GaAs quantum wells,” Phys. Rev. B 88, 045304 (2013).
[Crossref]

M. E. Siemens, G. Moody, H. Li, A. D. Bristow, and S. T. Cundiff, “Resonance lineshapes in two-dimensional Fourier transform spectroscopy,” Opt. Express 18, 17699–17708 (2010).
[Crossref]

Morier-Genoud, F.

G. Nardin, G. Moody, R. Singh, T. M. Autry, H. Li, F. Morier-Genoud, and S. T. Cundiff, “Coherent excitonic coupling in an asymmetric double InGaAs quantum well arises from many-body effects,” Phys. Rev. Lett. 112, 046402 (2014).
[Crossref]

Mueller, S.

S. Mueller, S. Draeger, X. Ma, M. Hensen, T. Kenneweg, W. Pfeiffer, and T. Brixner, “Fluorescence-detected two-quantum and one-quantum–two-quantum 2D electronic spectroscopy,” J. Phys. Chem. Lett. 9, 1964–1969 (2018).
[Crossref]

Mukamel, S.

M. Gessner, F. Schlawin, H. Häffner, S. Mukamel, and A. Buchleitner, “Nonlinear spectroscopy of controllable many-body quantum systems,” New J. Phys. 16, 092001 (2014).
[Crossref]

F. Schlawin, M. Gessner, S. Mukamel, and A. Buchleitner, “Nonlinear spectroscopy of trapped ions,” Phys. Rev. A 90, 023603 (2014).
[Crossref]

S. T. Cundiff and S. Mukamel, “Optical multidimensional coherent spectroscopy,” Phys. Today 66(7), 44–49 (2013).
[Crossref]

D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett. 104, 117401 (2010).
[Crossref]

L. Yang, I. V. Schweigert, S. T. Cundiff, and S. Mukamel, “Two-dimensional optical spectroscopy of excitons in semiconductor quantum wells: Liouville-space pathway analysis,” Phys. Rev. B 75, 125302 (2007).
[Crossref]

Mukherjee, S. S.

D. R. Skoff, J. E. Laaser, S. S. Mukherjee, C. T. Middleton, and M. T. Zanni, “Simplified and economical 2D IR spectrometer design using a dual acousto-optic modulator,” Chem. Phys. 422, 8–15 (2013).
[Crossref]

Muljarov, E. A.

F. Albert, K. Sivalertporn, J. Kasprzak, M. Strauß, C. Schneider, S. Höfling, M. Kamp, A. Forchel, S. Reitzenstein, E. A. Muljarov, and W. Langbein, “Microcavity controlled coupling of excitonic qubits,” Nat. Commun. 4, 1747 (2013).
[Crossref]

Myers, J. A.

Nagler, P.

K. Hao, L. Xu, F. Wu, P. Nagler, K. Tran, X. Ma, C. Schüller, T. Korn, A. H. MacDonald, G. Moody, and X. Li, “Trion valley coherence in monolayer semiconductors,” 2D Mater. 4, 025105 (2017).
[Crossref]

K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, “Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2,” Nano Lett. 16, 5109–5113 (2016).
[Crossref]

Nardin, G.

G. Nardin, T. M. Autry, G. Moody, R. Singh, H. Li, and S. T. Cundiff, “Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: collinear and non-collinear approaches,” J. Appl. Phys. 117, 112804 (2015).
[Crossref]

G. Nardin, G. Moody, R. Singh, T. M. Autry, H. Li, F. Morier-Genoud, and S. T. Cundiff, “Coherent excitonic coupling in an asymmetric double InGaAs quantum well arises from many-body effects,” Phys. Rev. Lett. 112, 046402 (2014).
[Crossref]

R. Singh, T. M. Autry, G. Nardin, G. Moody, H. Li, K. Pierz, M. Bieler, and S. T. Cundiff, “Anisotropic homogeneous linewidth of the heavy-hole exciton in (110)-oriented GaAs quantum wells,” Phys. Rev. B 88, 045304 (2013).
[Crossref]

G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, “Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure,” Opt. Express 21, 28617–28627 (2013).
[Crossref]

Nelson, K. A.

J. Yuen-Zhou, D. H. Arias, D. M. Eisele, C. P. Steiner, J. J. Krich, M. G. Bawendi, K. A. Nelson, and A. Aspuru-Guzik, “Coherent exciton dynamics in supramolecular light-harvesting nanotubes revealed by ultrafast quantum process tomography,” ACS Nano 8, 5527–5534 (2014).
[Crossref]

P. Wen, G. Christmann, J. J. Baumberg, and K. A. Nelson, “Influence of multi-exciton correlations on nonlinear polariton dynamics in semiconductor microcavities,” New J. Phys. 15, 025005 (2013).
[Crossref]

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: the coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[Crossref]

D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466, 1089–1092 (2010).
[Crossref]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[Crossref]

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Three-dimensional electronic spectroscopy of excitons in GaAs quantum wells,” J. Chem. Phys. 131, 144510 (2009).
[Crossref]

Nugent, K. A.

J. A. Davis, C. R. Hall, L. V. Dao, K. A. Nugent, H. M. Quiney, H. H. Tan, and C. Jagadish, “Three-dimensional electronic spectroscopy of excitons in asymmetric double quantum wells,” J. Chem. Phys. 135, 044510 (2011).
[Crossref]

Oberli, D. Y.

N. Takemura, S. Trebaol, M. D. Anderson, V. Kohnle, Y. Léger, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, “Two-dimensional Fourier transform spectroscopy of exciton-polaritons and their interactions,” Phys. Rev. B 92, 125415 (2015).
[Crossref]

Ogilvie, J. P.

V. Tiwari, Y. A. Matutes, A. T. Gardiner, T. L. C. Jansen, R. J. Cogdell, and J. P. Ogilvie, “Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria,” Nat. Commun. 9, 4219 (2018).
[Crossref]

F. D. Fuller, D. E. Wilcox, and J. P. Ogilvie, “Pulse shaping based two-dimensional electronic spectroscopy in a background free geometry,” Opt. Express 22, 1018–1027 (2014).
[Crossref]

J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16, 17420–17428 (2008).
[Crossref]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[Crossref]

Pachon, L. A.

L. A. Pachon, A. H. Marcus, and A. Aspuru-Guzik, “Quantum process tomography by 2D fluorescence spectroscopy,” J. Chem. Phys. 142, 212442 (2015).
[Crossref]

Patton, B.

J. Kasprzak, B. Patton, V. Savona, and W. Langbein, “Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging,” Nat. Photonics 5, 57–63 (2011).
[Crossref]

W. Langbein and B. Patton, “Heterodyne spectral interferometry for multidimensional nonlinear spectroscopy of individual quantum systems,” Opt. Lett. 31, 1151–1153 (2006).
[Crossref]

Perakis, F.

S. Garrett-Roe, F. Perakis, F. Rao, and P. Hamm, “Three-dimensional infrared spectroscopy of isotope-substituted liquid water reveals heterogeneous dynamics,” J. Phys. Chem. B 115, 6976–6984 (2011).
[Crossref]

Peters, W. K.

V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. USA 110, 1203–1208 (2013).
[Crossref]

Pfeiffer, W.

S. Mueller, S. Draeger, X. Ma, M. Hensen, T. Kenneweg, W. Pfeiffer, and T. Brixner, “Fluorescence-detected two-quantum and one-quantum–two-quantum 2D electronic spectroscopy,” J. Phys. Chem. Lett. 9, 1964–1969 (2018).
[Crossref]

Phillips, M.

T. Meier, S. W. Koch, M. Phillips, and H. Wang, “Strong coupling of heavy- and light-hole excitons induced by many-body correlations,” Phys. Rev. B 62, 12605–12608 (2000).
[Crossref]

Piermarocchi, C.

G. Rochat, C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, “Excitonic Bloch equations for a two-dimensional system of interacting excitons,” Phys. Rev. B 61, 13856–13862 (2000).
[Crossref]

Pierz, K.

R. Singh, T. M. Autry, G. Nardin, G. Moody, H. Li, K. Pierz, M. Bieler, and S. T. Cundiff, “Anisotropic homogeneous linewidth of the heavy-hole exciton in (110)-oriented GaAs quantum wells,” Phys. Rev. B 88, 045304 (2013).
[Crossref]

Plenio, M. B.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).

Portella-Oberli, M. T.

N. Takemura, S. Trebaol, M. D. Anderson, V. Kohnle, Y. Léger, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, “Two-dimensional Fourier transform spectroscopy of exciton-polaritons and their interactions,” Phys. Rev. B 92, 125415 (2015).
[Crossref]

Prineas, J.

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82, 3112–3115 (1999).
[Crossref]

Pullerits, T.

K. J. Karki, J. Chen, A. Sakurai, Q. Shi, A. T. Gardiner, O. Kühn, R. J. Cogdell, and T. Pullerits, “Unexpectedly large delocalization of the initial excitation in photosynthetic light harvesting,” arXiv:1804.04840 (2018).

Quattropani, A.

G. Rochat, C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, “Excitonic Bloch equations for a two-dimensional system of interacting excitons,” Phys. Rev. B 61, 13856–13862 (2000).
[Crossref]

Quiney, H. M.

J. A. Davis, C. R. Hall, L. V. Dao, K. A. Nugent, H. M. Quiney, H. H. Tan, and C. Jagadish, “Three-dimensional electronic spectroscopy of excitons in asymmetric double quantum wells,” J. Chem. Phys. 135, 044510 (2011).
[Crossref]

Ramasesha, K.

M. Thämer, L. D. Marco, K. Ramasesha, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR spectroscopy of the excess proton in liquid water,” Science 350, 78–82 (2015).
[Crossref]

S. T. Roberts, J. J. Loparo, K. Ramasesha, and A. Tokmakoff, “A fast-scanning Fourier transform 2D IR interferometer,” Opt. Commun. 284, 1062–1066 (2011).
[Crossref]

Ramkumar, C.

M. Kuwata-Gonokami, T. Aoki, C. Ramkumar, R. Shimano, and Y. Svirko, “Role of exciton–exciton interaction on resonant third-order nonlinear optical responses,” J. Lumin. 87–89, 162–167 (2000).
[Crossref]

Rao, F.

S. Garrett-Roe, F. Perakis, F. Rao, and P. Hamm, “Three-dimensional infrared spectroscopy of isotope-substituted liquid water reveals heterogeneous dynamics,” J. Phys. Chem. B 115, 6976–6984 (2011).
[Crossref]

Raybon, G.

Read, E. L.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446, 782–786 (2007).
[Crossref]

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[Crossref]

Réhault, J.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).

Reinecke, T. L.

S. Rudin and T. L. Reinecke, “Anharmonic oscillator model for driven and vacuum-field Rabi oscillations,” Phys. Rev. B 63, 075308 (2001).
[Crossref]

Reitzenstein, S.

F. Albert, K. Sivalertporn, J. Kasprzak, M. Strauß, C. Schneider, S. Höfling, M. Kamp, A. Forchel, S. Reitzenstein, E. A. Muljarov, and W. Langbein, “Microcavity controlled coupling of excitonic qubits,” Nat. Commun. 4, 1747 (2013).
[Crossref]

Rey, A. M.

M. Gärttner, P. Hauke, and A. M. Rey, “Relating out-of-time-order correlations to entanglement via multiple-quantum coherences,” Phys. Rev. Lett. 120, 040402 (2018).
[Crossref]

Roberts, S. T.

S. T. Roberts, J. J. Loparo, K. Ramasesha, and A. Tokmakoff, “A fast-scanning Fourier transform 2D IR interferometer,” Opt. Commun. 284, 1062–1066 (2011).
[Crossref]

J. J. Loparo, S. T. Roberts, and A. Tokmakoff, “Multidimensional infrared spectroscopy of water. II. Hydrogen bond switching dynamics,” J. Chem. Phys. 125, 194522 (2006).
[Crossref]

Rochat, G.

G. Rochat, C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, “Excitonic Bloch equations for a two-dimensional system of interacting excitons,” Phys. Rev. B 61, 13856–13862 (2000).
[Crossref]

Rodriguez, Y.

Y. Rodriguez, F. Frei, A. Cannizzo, and T. Feurer, “Pulse-shaping assisted multidimensional coherent electronic spectroscopy,” J. Chem. Phys. 142, 212451 (2015).
[Crossref]

Roeding, S.

Roy, N.

B. Deveaud, F. Clérot, N. Roy, K. Satzke, B. Sermage, and D. S. Katzer, “Enhanced radiative recombination of free excitons in GaAs quantum wells,” Phys. Rev. Lett. 67, 2355–2358 (1991).
[Crossref]

Rozzi, C. A.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).

Rudin, S.

S. Rudin and T. L. Reinecke, “Anharmonic oscillator model for driven and vacuum-field Rabi oscillations,” Phys. Rev. B 63, 075308 (2001).
[Crossref]

Rudolf, D.

Rühle, W. W.

S. Weiser, T. Meier, J. Möbius, A. Euteneuer, E. J. Mayer, W. Stolz, M. Hofmann, W. W. Rühle, P. Thomas, and S. W. Koch, “Disorder-induced dephasing in semiconductors,” Phys. Rev. B 61, 13088–13098 (2000).
[Crossref]

Sakurai, A.

K. J. Karki, J. Chen, A. Sakurai, Q. Shi, A. T. Gardiner, O. Kühn, R. J. Cogdell, and T. Pullerits, “Unexpectedly large delocalization of the initial excitation in photosynthetic light harvesting,” arXiv:1804.04840 (2018).

Satzke, K.

B. Deveaud, F. Clérot, N. Roy, K. Satzke, B. Sermage, and D. S. Katzer, “Enhanced radiative recombination of free excitons in GaAs quantum wells,” Phys. Rev. Lett. 67, 2355–2358 (1991).
[Crossref]

Savona, V.

J. Kasprzak, B. Patton, V. Savona, and W. Langbein, “Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging,” Nat. Photonics 5, 57–63 (2011).
[Crossref]

G. Rochat, C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, “Excitonic Bloch equations for a two-dimensional system of interacting excitons,” Phys. Rev. B 61, 13856–13862 (2000).
[Crossref]

Schanz, R.

Schlawin, F.

M. Gessner, F. Schlawin, and A. Buchleitner, “Probing polariton dynamics in trapped ions with phase-coherent two-dimensional spectroscopy,” J. Chem. Phys. 142, 212439 (2015).
[Crossref]

F. Schlawin, M. Gessner, S. Mukamel, and A. Buchleitner, “Nonlinear spectroscopy of trapped ions,” Phys. Rev. A 90, 023603 (2014).
[Crossref]

M. Gessner, F. Schlawin, H. Häffner, S. Mukamel, and A. Buchleitner, “Nonlinear spectroscopy of controllable many-body quantum systems,” New J. Phys. 16, 092001 (2014).
[Crossref]

Schneider, C.

F. Albert, K. Sivalertporn, J. Kasprzak, M. Strauß, C. Schneider, S. Höfling, M. Kamp, A. Forchel, S. Reitzenstein, E. A. Muljarov, and W. Langbein, “Microcavity controlled coupling of excitonic qubits,” Nat. Commun. 4, 1747 (2013).
[Crossref]

Scholes, G. D.

E. Collini and G. D. Scholes, “Coherent intrachain energy migration in a conjugated polymer at room temperature,” Science 323, 369–373 (2009).
[Crossref]

Schüller, C.

K. Hao, L. Xu, F. Wu, P. Nagler, K. Tran, X. Ma, C. Schüller, T. Korn, A. H. MacDonald, G. Moody, and X. Li, “Trion valley coherence in monolayer semiconductors,” 2D Mater. 4, 025105 (2017).
[Crossref]

K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, “Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2,” Nano Lett. 16, 5109–5113 (2016).
[Crossref]

Schulze, A.

T. F. Albrecht, K. Bott, T. Meier, A. Schulze, M. Koch, S. T. Cundiff, J. Feldmann, W. Stolz, P. Thomas, S. W. Koch, and E. O. Göbel, “Disorder mediated biexcitonic beats in semiconductor quantum wells,” Phys. Rev. B 54, 4436–4439 (1996).
[Crossref]

Schweigert, I. V.

L. Yang, I. V. Schweigert, S. T. Cundiff, and S. Mukamel, “Two-dimensional optical spectroscopy of excitons in semiconductor quantum wells: Liouville-space pathway analysis,” Phys. Rev. B 75, 125302 (2007).
[Crossref]

Schwendimann, P.

G. Rochat, C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, “Excitonic Bloch equations for a two-dimensional system of interacting excitons,” Phys. Rev. B 61, 13856–13862 (2000).
[Crossref]

Semmlow, J.

W. Wagner, P. Tian, C. Li, J. Semmlow, and W. S. Warren, “Rapid two-dimensional optical spectroscopy through acousto-optic pulse shaping,” J. Mod. Opt. 51, 2655–2663 (2004).
[Crossref]

Sermage, B.

B. Deveaud, F. Clérot, N. Roy, K. Satzke, B. Sermage, and D. S. Katzer, “Enhanced radiative recombination of free excitons in GaAs quantum wells,” Phys. Rev. Lett. 67, 2355–2358 (1991).
[Crossref]

Shacklette, J. M.

J. M. Shacklette and S. T. Cundiff, “Role of excitation-induced shift in the coherent optical response of semiconductors,” Phys. Rev. B 66, 045309 (2002).
[Crossref]

Shi, Q.

K. J. Karki, J. Chen, A. Sakurai, Q. Shi, A. T. Gardiner, O. Kühn, R. J. Cogdell, and T. Pullerits, “Unexpectedly large delocalization of the initial excitation in photosynthetic light harvesting,” arXiv:1804.04840 (2018).

Shim, S.-H.

Shimano, R.

M. Kuwata-Gonokami, T. Aoki, C. Ramkumar, R. Shimano, and Y. Svirko, “Role of exciton–exciton interaction on resonant third-order nonlinear optical responses,” J. Lumin. 87–89, 162–167 (2000).
[Crossref]

Shirane, M.

Y. P. Svirko, M. Shirane, H. Suzuura, and M. Kuwata-Gonokami, “Four-wave mixing theory at the excitonic resonance: weakly interacting Boson model,” J. Phys. Soc. Jpn. 68, 674–682 (1999).
[Crossref]

Sieh, C.

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82, 3112–3115 (1999).
[Crossref]

Siemens, M. E.

R. Singh, T. Suzuki, T. M. Autry, G. Moody, M. E. Siemens, and S. T. Cundiff, “Polarization-dependent exciton linewidth in semiconductor quantum wells: a consequence of bosonic nature of excitons,” Phys. Rev. B 94, 081304 (2016).
[Crossref]

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref]

M. E. Siemens, G. Moody, H. Li, A. D. Bristow, and S. T. Cundiff, “Resonance lineshapes in two-dimensional Fourier transform spectroscopy,” Opt. Express 18, 17699–17708 (2010).
[Crossref]

Silva, C.

A. A. Bakulin, C. Silva, and E. Vella, “Ultrafast spectroscopy with photocurrent detection: watching excitonic optoelectronic systems at work,” J. Phys. Chem. Lett. 7, 250–258 (2016).
[Crossref]

Silverman, K. L.

Singh, A.

K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, “Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2,” Nano Lett. 16, 5109–5113 (2016).
[Crossref]

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Singh, R.

R. Singh, T. Suzuki, T. M. Autry, G. Moody, M. E. Siemens, and S. T. Cundiff, “Polarization-dependent exciton linewidth in semiconductor quantum wells: a consequence of bosonic nature of excitons,” Phys. Rev. B 94, 081304 (2016).
[Crossref]

G. Nardin, T. M. Autry, G. Moody, R. Singh, H. Li, and S. T. Cundiff, “Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: collinear and non-collinear approaches,” J. Appl. Phys. 117, 112804 (2015).
[Crossref]

G. Nardin, G. Moody, R. Singh, T. M. Autry, H. Li, F. Morier-Genoud, and S. T. Cundiff, “Coherent excitonic coupling in an asymmetric double InGaAs quantum well arises from many-body effects,” Phys. Rev. Lett. 112, 046402 (2014).
[Crossref]

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent coupling of excitons and trions in a photoexcited CdTe/CdMgTe quantum well,” Phys. Rev. Lett. 112, 097401 (2014).
[Crossref]

R. Singh, T. M. Autry, G. Nardin, G. Moody, H. Li, K. Pierz, M. Bieler, and S. T. Cundiff, “Anisotropic homogeneous linewidth of the heavy-hole exciton in (110)-oriented GaAs quantum wells,” Phys. Rev. B 88, 045304 (2013).
[Crossref]

Sivalertporn, K.

F. Albert, K. Sivalertporn, J. Kasprzak, M. Strauß, C. Schneider, S. Höfling, M. Kamp, A. Forchel, S. Reitzenstein, E. A. Muljarov, and W. Langbein, “Microcavity controlled coupling of excitonic qubits,” Nat. Commun. 4, 1747 (2013).
[Crossref]

Skoff, D. R.

D. R. Skoff, J. E. Laaser, S. S. Mukherjee, C. T. Middleton, and M. T. Zanni, “Simplified and economical 2D IR spectrometer design using a dual acousto-optic modulator,” Chem. Phys. 422, 8–15 (2013).
[Crossref]

Smith, B. C.

B. Lomsadze, B. C. Smith, and S. T. Cundiff, “Tri-comb spectroscopy,” Nat. Photonics 12, 676–680 (2018).
[Crossref]

Sommer, E.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).

Steel, D. G.

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in GaAs,” Phys. Rev. Lett. 71, 1261–1264 (1993).
[Crossref]

Steiner, C. P.

J. Yuen-Zhou, D. H. Arias, D. M. Eisele, C. P. Steiner, J. J. Krich, M. G. Bawendi, K. A. Nelson, and A. Aspuru-Guzik, “Coherent exciton dynamics in supramolecular light-harvesting nanotubes revealed by ultrafast quantum process tomography,” ACS Nano 8, 5527–5534 (2014).
[Crossref]

Stenger, J.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

Stiopkin, I. V.

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[Crossref]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29, 884–886 (2004).
[Crossref]

Stolz, W.

S. Weiser, T. Meier, J. Möbius, A. Euteneuer, E. J. Mayer, W. Stolz, M. Hofmann, W. W. Rühle, P. Thomas, and S. W. Koch, “Disorder-induced dephasing in semiconductors,” Phys. Rev. B 61, 13088–13098 (2000).
[Crossref]

T. F. Albrecht, K. Bott, T. Meier, A. Schulze, M. Koch, S. T. Cundiff, J. Feldmann, W. Stolz, P. Thomas, S. W. Koch, and E. O. Göbel, “Disorder mediated biexcitonic beats in semiconductor quantum wells,” Phys. Rev. B 54, 4436–4439 (1996).
[Crossref]

Stone, K. W.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: the coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[Crossref]

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Three-dimensional electronic spectroscopy of excitons in GaAs quantum wells,” J. Chem. Phys. 131, 144510 (2009).
[Crossref]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[Crossref]

Strauß, M.

F. Albert, K. Sivalertporn, J. Kasprzak, M. Strauß, C. Schneider, S. Höfling, M. Kamp, A. Forchel, S. Reitzenstein, E. A. Muljarov, and W. Langbein, “Microcavity controlled coupling of excitonic qubits,” Nat. Commun. 4, 1747 (2013).
[Crossref]

Suzaki, Y.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref]

Suzuki, T.

R. Singh, T. Suzuki, T. M. Autry, G. Moody, M. E. Siemens, and S. T. Cundiff, “Polarization-dependent exciton linewidth in semiconductor quantum wells: a consequence of bosonic nature of excitons,” Phys. Rev. B 94, 081304 (2016).
[Crossref]

Suzuura, H.

Y. P. Svirko, M. Shirane, H. Suzuura, and M. Kuwata-Gonokami, “Four-wave mixing theory at the excitonic resonance: weakly interacting Boson model,” J. Phys. Soc. Jpn. 68, 674–682 (1999).
[Crossref]

Svirko, Y.

M. Kuwata-Gonokami, T. Aoki, C. Ramkumar, R. Shimano, and Y. Svirko, “Role of exciton–exciton interaction on resonant third-order nonlinear optical responses,” J. Lumin. 87–89, 162–167 (2000).
[Crossref]

Svirko, Y. P.

Y. P. Svirko, M. Shirane, H. Suzuura, and M. Kuwata-Gonokami, “Four-wave mixing theory at the excitonic resonance: weakly interacting Boson model,” J. Phys. Soc. Jpn. 68, 674–682 (1999).
[Crossref]

Takemura, N.

N. Takemura, S. Trebaol, M. D. Anderson, V. Kohnle, Y. Léger, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, “Two-dimensional Fourier transform spectroscopy of exciton-polaritons and their interactions,” Phys. Rev. B 92, 125415 (2015).
[Crossref]

Tan, H. H.

J. A. Davis, C. R. Hall, L. V. Dao, K. A. Nugent, H. M. Quiney, H. H. Tan, and C. Jagadish, “Three-dimensional electronic spectroscopy of excitons in asymmetric double quantum wells,” J. Chem. Phys. 135, 044510 (2011).
[Crossref]

Tan, H.-S.

H.-S. Tan, “Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy,” J. Chem. Phys. 129, 124501 (2008).
[Crossref]

Tekavec, P. F.

J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16, 17420–17428 (2008).
[Crossref]

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[Crossref]

P. F. Tekavec, T. R. Dyke, and A. H. Marcus, “Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation,” J. Chem. Phys. 125, 194303 (2006).
[Crossref]

Thämer, M.

M. Thämer, L. D. Marco, K. Ramasesha, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR spectroscopy of the excess proton in liquid water,” Science 350, 78–82 (2015).
[Crossref]

Thomas, P.

T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, and S. T. Cundiff, “Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors,” Proc. Natl. Acad. Sci. USA 104, 14227–14232 (2007).
[Crossref]

S. Weiser, T. Meier, J. Möbius, A. Euteneuer, E. J. Mayer, W. Stolz, M. Hofmann, W. W. Rühle, P. Thomas, and S. W. Koch, “Disorder-induced dephasing in semiconductors,” Phys. Rev. B 61, 13088–13098 (2000).
[Crossref]

T. F. Albrecht, K. Bott, T. Meier, A. Schulze, M. Koch, S. T. Cundiff, J. Feldmann, W. Stolz, P. Thomas, S. W. Koch, and E. O. Göbel, “Disorder mediated biexcitonic beats in semiconductor quantum wells,” Phys. Rev. B 54, 4436–4439 (1996).
[Crossref]

Tian, P.

W. Wagner, P. Tian, C. Li, J. Semmlow, and W. S. Warren, “Rapid two-dimensional optical spectroscopy through acousto-optic pulse shaping,” J. Mod. Opt. 51, 2655–2663 (2004).
[Crossref]

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref]

Titze, M.

M. Titze and H. Li, “Interpretation of optical three-dimensional coherent spectroscopy,” Phys. Rev. A 96, 032508 (2017).
[Crossref]

S. Yu, M. Titze, Y. Zhu, X. Liu, and H. Li, “Observation of scalable and deterministic multi-atom Dicke states in an atomic vapor,” arXiv:1807.09300 (2018).

Tiwari, V.

V. Tiwari, Y. A. Matutes, A. T. Gardiner, T. L. C. Jansen, R. J. Cogdell, and J. P. Ogilvie, “Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria,” Nat. Commun. 9, 4219 (2018).
[Crossref]

V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. USA 110, 1203–1208 (2013).
[Crossref]

Tokmakoff, A.

M. Thämer, L. D. Marco, K. Ramasesha, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR spectroscopy of the excess proton in liquid water,” Science 350, 78–82 (2015).
[Crossref]

S. T. Roberts, J. J. Loparo, K. Ramasesha, and A. Tokmakoff, “A fast-scanning Fourier transform 2D IR interferometer,” Opt. Commun. 284, 1062–1066 (2011).
[Crossref]

J. J. Loparo, S. T. Roberts, and A. Tokmakoff, “Multidimensional infrared spectroscopy of water. II. Hydrogen bond switching dynamics,” J. Chem. Phys. 125, 194522 (2006).
[Crossref]

Tollerud, J. O.

J. O. Tollerud, S. T. Cundiff, and J. A. Davis, “Revealing and characterizing dark excitons through coherent multidimensional spectroscopy,” Phys. Rev. Lett. 117, 097401 (2016).
[Crossref]

J. O. Tollerud, C. R. Hall, and J. A. Davis, “Isolating quantum coherence using coherent multi-dimensional spectroscopy with spectrally shaped pulses,” Opt. Express 22, 6719–6733 (2014).
[Crossref]

Tran, K.

K. Hao, L. Xu, F. Wu, P. Nagler, K. Tran, X. Ma, C. Schüller, T. Korn, A. H. MacDonald, G. Moody, and X. Li, “Trion valley coherence in monolayer semiconductors,” 2D Mater. 4, 025105 (2017).
[Crossref]

K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, “Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2,” Nano Lett. 16, 5109–5113 (2016).
[Crossref]

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Trebaol, S.

N. Takemura, S. Trebaol, M. D. Anderson, V. Kohnle, Y. Léger, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, “Two-dimensional Fourier transform spectroscopy of exciton-polaritons and their interactions,” Phys. Rev. B 92, 125415 (2015).
[Crossref]

Troiani, F.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).

Turner, D. B.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: the coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[Crossref]

D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466, 1089–1092 (2010).
[Crossref]

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Three-dimensional electronic spectroscopy of excitons in GaAs quantum wells,” J. Chem. Phys. 131, 144510 (2009).
[Crossref]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[Crossref]

Vaswani, H. M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

Vella, E.

A. A. Bakulin, C. Silva, and E. Vella, “Ultrafast spectroscopy with photocurrent detection: watching excitonic optoelectronic systems at work,” J. Phys. Chem. Lett. 7, 250–258 (2016).
[Crossref]

Volkov, V.

Wagner, W.

W. Wagner, P. Tian, C. Li, J. Semmlow, and W. S. Warren, “Rapid two-dimensional optical spectroscopy through acousto-optic pulse shaping,” J. Mod. Opt. 51, 2655–2663 (2004).
[Crossref]

Wang, H.

T. Meier, S. W. Koch, M. Phillips, and H. Wang, “Strong coupling of heavy- and light-hole excitons induced by many-body correlations,” Phys. Rev. B 62, 12605–12608 (2000).
[Crossref]

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in GaAs,” Phys. Rev. Lett. 71, 1261–1264 (1993).
[Crossref]

Warren, W. S.

W. Wagner, P. Tian, C. Li, J. Semmlow, and W. S. Warren, “Rapid two-dimensional optical spectroscopy through acousto-optic pulse shaping,” J. Mod. Opt. 51, 2655–2663 (2004).
[Crossref]

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref]

Weiser, S.

S. Weiser, T. Meier, J. Möbius, A. Euteneuer, E. J. Mayer, W. Stolz, M. Hofmann, W. W. Rühle, P. Thomas, and S. W. Koch, “Disorder-induced dephasing in semiconductors,” Phys. Rev. B 61, 13088–13098 (2000).
[Crossref]

Wen, P.

P. Wen, G. Christmann, J. J. Baumberg, and K. A. Nelson, “Influence of multi-exciton correlations on nonlinear polariton dynamics in semiconductor microcavities,” New J. Phys. 15, 025005 (2013).
[Crossref]

Wiater, M.

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent coupling of excitons and trions in a photoexcited CdTe/CdMgTe quantum well,” Phys. Rev. Lett. 112, 097401 (2014).
[Crossref]

Wilcox, D. E.

Witte, S.

Wojtowicz, T.

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent coupling of excitons and trions in a photoexcited CdTe/CdMgTe quantum well,” Phys. Rev. Lett. 112, 097401 (2014).
[Crossref]

Wokaun, A.

R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon, 1990).

Wu, F.

K. Hao, L. Xu, F. Wu, P. Nagler, K. Tran, X. Ma, C. Schüller, T. Korn, A. H. MacDonald, G. Moody, and X. Li, “Trion valley coherence in monolayer semiconductors,” 2D Mater. 4, 025105 (2017).
[Crossref]

Xu, L.

K. Hao, L. Xu, F. Wu, P. Nagler, K. Tran, X. Ma, C. Schüller, T. Korn, A. H. MacDonald, G. Moody, and X. Li, “Trion valley coherence in monolayer semiconductors,” 2D Mater. 4, 025105 (2017).
[Crossref]

K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, “Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2,” Nano Lett. 16, 5109–5113 (2016).
[Crossref]

Xu, X.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Yakovlev, D. R.

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent coupling of excitons and trions in a photoexcited CdTe/CdMgTe quantum well,” Phys. Rev. Lett. 112, 097401 (2014).
[Crossref]

Yang, L.

D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett. 104, 117401 (2010).
[Crossref]

L. Yang, I. V. Schweigert, S. T. Cundiff, and S. Mukamel, “Two-dimensional optical spectroscopy of excitons in semiconductor quantum wells: Liouville-space pathway analysis,” Phys. Rev. B 75, 125302 (2007).
[Crossref]

Yu, S.

S. Yu, M. Titze, Y. Zhu, X. Liu, and H. Li, “Observation of scalable and deterministic multi-atom Dicke states in an atomic vapor,” arXiv:1807.09300 (2018).

Yuen-Zhou, J.

J. Yuen-Zhou, D. H. Arias, D. M. Eisele, C. P. Steiner, J. J. Krich, M. G. Bawendi, K. A. Nelson, and A. Aspuru-Guzik, “Coherent exciton dynamics in supramolecular light-harvesting nanotubes revealed by ultrafast quantum process tomography,” ACS Nano 8, 5527–5534 (2014).
[Crossref]

J. Yuen-Zhou and A. Aspuru-Guzik, “Quantum process tomography of excitonic dimers from two-dimensional electronic spectroscopy. I. General theory and application to homodimers,” J. Chem. Phys. 134, 134505 (2011).
[Crossref]

J. Yuen-Zhou, J. J. Krich, M. Mohseni, and A. Aspuru-Guzik, “Quantum state and process tomography of energy transfer systems via ultrafast spectroscopy,” Proc. Natl. Acad. Sci. USA 108, 17615–17620 (2011).
[Crossref]

Zanni, M. T.

D. R. Skoff, J. E. Laaser, S. S. Mukherjee, C. T. Middleton, and M. T. Zanni, “Simplified and economical 2D IR spectrometer design using a dual acousto-optic modulator,” Chem. Phys. 422, 8–15 (2013).
[Crossref]

E. M. Grumstrup, S.-H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15, 16681–16689 (2007).
[Crossref]

Zhang, T.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[Crossref]

T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, and S. T. Cundiff, “Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors,” Proc. Natl. Acad. Sci. USA 104, 14227–14232 (2007).
[Crossref]

X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-body interactions in semiconductors probed by optical two-dimensional Fourier transform spectroscopy,” Phys. Rev. Lett. 96, 057406 (2006).
[Crossref]

Zhu, Y.

S. Yu, M. Titze, Y. Zhu, X. Liu, and H. Li, “Observation of scalable and deterministic multi-atom Dicke states in an atomic vapor,” arXiv:1807.09300 (2018).

2D Mater. (1)

K. Hao, L. Xu, F. Wu, P. Nagler, K. Tran, X. Ma, C. Schüller, T. Korn, A. H. MacDonald, G. Moody, and X. Li, “Trion valley coherence in monolayer semiconductors,” 2D Mater. 4, 025105 (2017).
[Crossref]

ACS Nano (1)

J. Yuen-Zhou, D. H. Arias, D. M. Eisele, C. P. Steiner, J. J. Krich, M. G. Bawendi, K. A. Nelson, and A. Aspuru-Guzik, “Coherent exciton dynamics in supramolecular light-harvesting nanotubes revealed by ultrafast quantum process tomography,” ACS Nano 8, 5527–5534 (2014).
[Crossref]

Appl. Spectrosc. (1)

Biophys. J. (1)

D. Hayes and G. S. Engel, “Extracting the excitonic Hamiltonian of the Fenna-Matthews-Olson complex using three-dimensional third-order electronic spectroscopy,” Biophys. J. 100, 2043–2052 (2011).
[Crossref]

Chem. Phys. (1)

D. R. Skoff, J. E. Laaser, S. S. Mukherjee, C. T. Middleton, and M. T. Zanni, “Simplified and economical 2D IR spectrometer design using a dual acousto-optic modulator,” Chem. Phys. 422, 8–15 (2013).
[Crossref]

Chem. Phys. Lett. (2)

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[Crossref]

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[Crossref]

J. Appl. Phys. (1)

G. Nardin, T. M. Autry, G. Moody, R. Singh, H. Li, and S. T. Cundiff, “Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: collinear and non-collinear approaches,” J. Appl. Phys. 117, 112804 (2015).
[Crossref]

J. Chem. Phys. (12)

J. D. Hybl, A. A. Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 6606–6622 (2001).
[Crossref]

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Three-dimensional electronic spectroscopy of excitons in GaAs quantum wells,” J. Chem. Phys. 131, 144510 (2009).
[Crossref]

J. A. Davis, C. R. Hall, L. V. Dao, K. A. Nugent, H. M. Quiney, H. H. Tan, and C. Jagadish, “Three-dimensional electronic spectroscopy of excitons in asymmetric double quantum wells,” J. Chem. Phys. 135, 044510 (2011).
[Crossref]

J. J. Loparo, S. T. Roberts, and A. Tokmakoff, “Multidimensional infrared spectroscopy of water. II. Hydrogen bond switching dynamics,” J. Chem. Phys. 125, 194522 (2006).
[Crossref]

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[Crossref]

Y. Rodriguez, F. Frei, A. Cannizzo, and T. Feurer, “Pulse-shaping assisted multidimensional coherent electronic spectroscopy,” J. Chem. Phys. 142, 212451 (2015).
[Crossref]

L. A. Pachon, A. H. Marcus, and A. Aspuru-Guzik, “Quantum process tomography by 2D fluorescence spectroscopy,” J. Chem. Phys. 142, 212442 (2015).
[Crossref]

J. Yuen-Zhou and A. Aspuru-Guzik, “Quantum process tomography of excitonic dimers from two-dimensional electronic spectroscopy. I. General theory and application to homodimers,” J. Chem. Phys. 134, 134505 (2011).
[Crossref]

M. Gessner, F. Schlawin, and A. Buchleitner, “Probing polariton dynamics in trapped ions with phase-coherent two-dimensional spectroscopy,” J. Chem. Phys. 142, 212439 (2015).
[Crossref]

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[Crossref]

P. F. Tekavec, T. R. Dyke, and A. H. Marcus, “Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation,” J. Chem. Phys. 125, 194303 (2006).
[Crossref]

H.-S. Tan, “Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy,” J. Chem. Phys. 129, 124501 (2008).
[Crossref]

J. Lumin. (1)

M. Kuwata-Gonokami, T. Aoki, C. Ramkumar, R. Shimano, and Y. Svirko, “Role of exciton–exciton interaction on resonant third-order nonlinear optical responses,” J. Lumin. 87–89, 162–167 (2000).
[Crossref]

J. Mod. Opt. (1)

W. Wagner, P. Tian, C. Li, J. Semmlow, and W. S. Warren, “Rapid two-dimensional optical spectroscopy through acousto-optic pulse shaping,” J. Mod. Opt. 51, 2655–2663 (2004).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (1)

S. Garrett-Roe, F. Perakis, F. Rao, and P. Hamm, “Three-dimensional infrared spectroscopy of isotope-substituted liquid water reveals heterogeneous dynamics,” J. Phys. Chem. B 115, 6976–6984 (2011).
[Crossref]

J. Phys. Chem. Lett. (2)

S. Mueller, S. Draeger, X. Ma, M. Hensen, T. Kenneweg, W. Pfeiffer, and T. Brixner, “Fluorescence-detected two-quantum and one-quantum–two-quantum 2D electronic spectroscopy,” J. Phys. Chem. Lett. 9, 1964–1969 (2018).
[Crossref]

A. A. Bakulin, C. Silva, and E. Vella, “Ultrafast spectroscopy with photocurrent detection: watching excitonic optoelectronic systems at work,” J. Phys. Chem. Lett. 7, 250–258 (2016).
[Crossref]

J. Phys. Soc. Jpn. (1)

Y. P. Svirko, M. Shirane, H. Suzuura, and M. Kuwata-Gonokami, “Four-wave mixing theory at the excitonic resonance: weakly interacting Boson model,” J. Phys. Soc. Jpn. 68, 674–682 (1999).
[Crossref]

Nano Lett. (1)

K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, “Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2,” Nano Lett. 16, 5109–5113 (2016).
[Crossref]

Nat. Commun. (5)

F. Albert, K. Sivalertporn, J. Kasprzak, M. Strauß, C. Schneider, S. Höfling, M. Kamp, A. Forchel, S. Reitzenstein, E. A. Muljarov, and W. Langbein, “Microcavity controlled coupling of excitonic qubits,” Nat. Commun. 4, 1747 (2013).
[Crossref]

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref]

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7, 13742 (2016).

V. Tiwari, Y. A. Matutes, A. T. Gardiner, T. L. C. Jansen, R. J. Cogdell, and J. P. Ogilvie, “Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria,” Nat. Commun. 9, 4219 (2018).
[Crossref]

Nat. Photonics (2)

J. Kasprzak, B. Patton, V. Savona, and W. Langbein, “Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging,” Nat. Photonics 5, 57–63 (2011).
[Crossref]

B. Lomsadze, B. C. Smith, and S. T. Cundiff, “Tri-comb spectroscopy,” Nat. Photonics 12, 676–680 (2018).
[Crossref]

Nature (3)

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446, 782–786 (2007).
[Crossref]

D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466, 1089–1092 (2010).
[Crossref]

New J. Phys. (2)

P. Wen, G. Christmann, J. J. Baumberg, and K. A. Nelson, “Influence of multi-exciton correlations on nonlinear polariton dynamics in semiconductor microcavities,” New J. Phys. 15, 025005 (2013).
[Crossref]

M. Gessner, F. Schlawin, H. Häffner, S. Mukamel, and A. Buchleitner, “Nonlinear spectroscopy of controllable many-body quantum systems,” New J. Phys. 16, 092001 (2014).
[Crossref]

Opt. Commun. (1)

S. T. Roberts, J. J. Loparo, K. Ramasesha, and A. Tokmakoff, “A fast-scanning Fourier transform 2D IR interferometer,” Opt. Commun. 284, 1062–1066 (2011).
[Crossref]

Opt. Express (7)

Opt. Lett. (5)

Optica (1)

Phys. Rev. A (2)

M. Titze and H. Li, “Interpretation of optical three-dimensional coherent spectroscopy,” Phys. Rev. A 96, 032508 (2017).
[Crossref]

F. Schlawin, M. Gessner, S. Mukamel, and A. Buchleitner, “Nonlinear spectroscopy of trapped ions,” Phys. Rev. A 90, 023603 (2014).
[Crossref]

Phys. Rev. B (12)

T. Meier, S. W. Koch, M. Phillips, and H. Wang, “Strong coupling of heavy- and light-hole excitons induced by many-body correlations,” Phys. Rev. B 62, 12605–12608 (2000).
[Crossref]

S. Weiser, T. Meier, J. Möbius, A. Euteneuer, E. J. Mayer, W. Stolz, M. Hofmann, W. W. Rühle, P. Thomas, and S. W. Koch, “Disorder-induced dephasing in semiconductors,” Phys. Rev. B 61, 13088–13098 (2000).
[Crossref]

T. F. Albrecht, K. Bott, T. Meier, A. Schulze, M. Koch, S. T. Cundiff, J. Feldmann, W. Stolz, P. Thomas, S. W. Koch, and E. O. Göbel, “Disorder mediated biexcitonic beats in semiconductor quantum wells,” Phys. Rev. B 54, 4436–4439 (1996).
[Crossref]

G. Rochat, C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, “Excitonic Bloch equations for a two-dimensional system of interacting excitons,” Phys. Rev. B 61, 13856–13862 (2000).
[Crossref]

S. Rudin and T. L. Reinecke, “Anharmonic oscillator model for driven and vacuum-field Rabi oscillations,” Phys. Rev. B 63, 075308 (2001).
[Crossref]

R. Singh, T. Suzuki, T. M. Autry, G. Moody, M. E. Siemens, and S. T. Cundiff, “Polarization-dependent exciton linewidth in semiconductor quantum wells: a consequence of bosonic nature of excitons,” Phys. Rev. B 94, 081304 (2016).
[Crossref]

E. W. Martin and S. T. Cundiff, “Inducing coherent quantum dot interactions,” Phys. Rev. B 97, 081301 (2018).
[Crossref]

L. Yang, I. V. Schweigert, S. T. Cundiff, and S. Mukamel, “Two-dimensional optical spectroscopy of excitons in semiconductor quantum wells: Liouville-space pathway analysis,” Phys. Rev. B 75, 125302 (2007).
[Crossref]

N. Takemura, S. Trebaol, M. D. Anderson, V. Kohnle, Y. Léger, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, “Two-dimensional Fourier transform spectroscopy of exciton-polaritons and their interactions,” Phys. Rev. B 92, 125415 (2015).
[Crossref]

K. Bott, “Influence of exciton-exciton interactions on the coherent optical response in GaAs quantum wells,” Phys. Rev. B 48, 17418–17426 (1993).
[Crossref]

J. M. Shacklette and S. T. Cundiff, “Role of excitation-induced shift in the coherent optical response of semiconductors,” Phys. Rev. B 66, 045309 (2002).
[Crossref]

R. Singh, T. M. Autry, G. Nardin, G. Moody, H. Li, K. Pierz, M. Bieler, and S. T. Cundiff, “Anisotropic homogeneous linewidth of the heavy-hole exciton in (110)-oriented GaAs quantum wells,” Phys. Rev. B 88, 045304 (2013).
[Crossref]

Phys. Rev. Lett. (10)

M. Gärttner, P. Hauke, and A. M. Rey, “Relating out-of-time-order correlations to entanglement via multiple-quantum coherences,” Phys. Rev. Lett. 120, 040402 (2018).
[Crossref]

J. O. Tollerud, S. T. Cundiff, and J. A. Davis, “Revealing and characterizing dark excitons through coherent multidimensional spectroscopy,” Phys. Rev. Lett. 117, 097401 (2016).
[Crossref]

X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-body interactions in semiconductors probed by optical two-dimensional Fourier transform spectroscopy,” Phys. Rev. Lett. 96, 057406 (2006).
[Crossref]

B. Deveaud, F. Clérot, N. Roy, K. Satzke, B. Sermage, and D. S. Katzer, “Enhanced radiative recombination of free excitons in GaAs quantum wells,” Phys. Rev. Lett. 67, 2355–2358 (1991).
[Crossref]

D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett. 104, 117401 (2010).
[Crossref]

G. Nardin, G. Moody, R. Singh, T. M. Autry, H. Li, F. Morier-Genoud, and S. T. Cundiff, “Coherent excitonic coupling in an asymmetric double InGaAs quantum well arises from many-body effects,” Phys. Rev. Lett. 112, 046402 (2014).
[Crossref]

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, “Coherent coupling of excitons and trions in a photoexcited CdTe/CdMgTe quantum well,” Phys. Rev. Lett. 112, 097401 (2014).
[Crossref]

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82, 3112–3115 (1999).
[Crossref]

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in GaAs,” Phys. Rev. Lett. 71, 1261–1264 (1993).
[Crossref]

B. Lomsadze and S. T. Cundiff, “Frequency-comb based double-quantum two-dimensional spectrum identifies collective hyperfine resonances in atomic vapor induced by dipole-dipole interactions,” Phys. Rev. Lett. 120, 233401 (2018).
[Crossref]

Phys. Today (1)

S. T. Cundiff and S. Mukamel, “Optical multidimensional coherent spectroscopy,” Phys. Today 66(7), 44–49 (2013).
[Crossref]

Proc. Natl. Acad. Sci. USA (4)

V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. USA 110, 1203–1208 (2013).
[Crossref]

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[Crossref]

J. Yuen-Zhou, J. J. Krich, M. Mohseni, and A. Aspuru-Guzik, “Quantum state and process tomography of energy transfer systems via ultrafast spectroscopy,” Proc. Natl. Acad. Sci. USA 108, 17615–17620 (2011).
[Crossref]

T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, and S. T. Cundiff, “Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors,” Proc. Natl. Acad. Sci. USA 104, 14227–14232 (2007).
[Crossref]

Rev. Sci. Instrum. (2)

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[Crossref]

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: the coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[Crossref]

Sci. Rep. (1)

B. Lomsadze and S. T. Cundiff, “Multi-heterodyne two dimensional coherent spectroscopy using frequency combs,” Sci. Rep. 7, 14018 (2017).
[Crossref]

Science (6)

B. Lomsadze and S. T. Cundiff, “Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy,” Science 357, 1389–1391 (2017).
[Crossref]

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[Crossref]

E. Collini and G. D. Scholes, “Coherent intrachain energy migration in a conjugated polymer at room temperature,” Science 323, 369–373 (2009).
[Crossref]

H. Lee, Y.-C. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: protein protection of excitonic coherence,” Science 316, 1462–1465 (2007).
[Crossref]

M. Thämer, L. D. Marco, K. Ramasesha, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR spectroscopy of the excess proton in liquid water,” Science 350, 78–82 (2015).
[Crossref]

Other (3)

R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon, 1990).

K. J. Karki, J. Chen, A. Sakurai, Q. Shi, A. T. Gardiner, O. Kühn, R. J. Cogdell, and T. Pullerits, “Unexpectedly large delocalization of the initial excitation in photosynthetic light harvesting,” arXiv:1804.04840 (2018).

S. Yu, M. Titze, Y. Zhu, X. Liu, and H. Li, “Observation of scalable and deterministic multi-atom Dicke states in an atomic vapor,” arXiv:1807.09300 (2018).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental Document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Experimental setup of the collinear multidimensional Fourier transform spectroscopy apparatus for positive tlab, in which case tlab=τ. A series of nested Mach–Zehnder interferometers prepares copies of the input pulse using beam splitters (BSs). The interpulse delays τ,T,t are controlled by translation stages. The frequencies of the excitation pulses and the LO are each shifted by a unique radio frequency using AOMs before going through single-mode fiber (SMF). A detuned (1020 nm) CW reference laser copropagates and samples the interpulse delays. The nonlinear optical signal is collected in reflection, and a dichroic mirror (DM) separates the signal from the reference laser onto their respective detectors. (b) Signal processing diagram showing the superheterodyne optical frequency receiver for recovery of the multidimensional spectra. The right panel shows the vibrational amplitude spectrum of interferometer arm AB. The intrinsic resolution of the interferometers (<100zs) is set by the noise floor of this spectrum.
Fig. 2.
Fig. 2. (a) Excitation pulse scheme and energy level diagram of the heavy-hole exciton. The sample consists of four 10-nm-wide GaAs/AlGaAs quantum wells above a Bragg mirror. (b–d) Image of normalized signal amplitudes detected at ω3,4,5 showing the 1Q scans for tlab=τ and the zero and double quantum scans for tlab=T. Dashed and labeled contours show the 10% and 1% amplitudes. Dashed lines indicate where t=tlab. (e) Total polarization during time t separated into the different contributions. Quantitative comparison of the linear (C-LO) and one-quantum rephasing (1QSI), one-quantum nonrephasing (1QSII), and one-quantum double-quantum (1QSIII) signals as a function of time t at τ=0.5ps. In this plot there is a reflection at 4.8ps.
Fig. 3.
Fig. 3. All two-dimensional spectra of the heavy-hole exciton in χ3. The top spectra correspond to (a) the real part of the 1QSI signal, (b) the real part of the 1QSII signal, and (c) the real part of the 1QSIII signal. The bottom spectra are real parts of (d) the 0QSI signal, (e) the 0QSII signal, and (f) the 2QSIII signal. The peaks in the real spectra exhibit mixed absorptive and dispersive line shapes indicative of exciton–exciton interactions.
Fig. 4.
Fig. 4. Double-sided Feynman diagrams representing all pathways describing the evolution of the heavy-hole exciton. The diagrams are grouped by pulse sequence with SI (top), SII (middle), and SIII (bottom). The many-body parameters modify the exciton ladder of states.
Fig. 5.
Fig. 5. Subset of slices fit to Monte Carlo simulations (blue) to the exciton response (orange). All pulse sequences were fit at the same time to the same parameters. All spectra are normalized with respect to the amplitude of the (1QSI) signal. The real (Re), imaginary (Im), amplitude (Abs) part of diagonal (D) and cross-diagonal (XD) slices from the 1QSI,II,III data sets and simulations. Panels (a-d) show 1Q - SI slices, panels (e-f) show 1Q - SII slices, and panels (g-h) show 1Q - SIII slices.
Fig. 6.
Fig. 6. Simulations of exciton models as a function of interaction energy/homogeneous linewidth. Plots show the amplitude of the simulated 1QSII,III spectra normalized to the amplitude of the 1QSI spectrum. The different models considered consist of the same value between transition dipoles (dashed lines), enhanced Pauli blocking (square dots), and bosonic dynamics (blue). Values extracted from our data sets are represented by (dot and star), and the ±2σ confidence interval is represented by filled colors.

Tables (2)

Tables Icon

Table 1. Table Showing the Different Pulse-Sequences and Processes Measureda

Tables Icon

Table 2. Extracted Exciton Parameters from Numerical Simulations of Dataa