Abstract

Coherent ultraviolet light has many uses, for example, in the study of molecular species relevant in biology and chemistry. Very few, if any, laser materials offer ultraviolet transparency along with damage-free operation at high-photon energies and laser power. Here we report efficient generation of narrowband deep and vacuum ultraviolet light using hydrogen-filled hollow-core photonic crystal fiber. Pumping above the stimulated Raman threshold at 532 nm, coherent molecular vibrations are excited in the gas, permitting thresholdless wavelength conversion in the ultraviolet with efficiencies close to 60%. The system is uniquely pressure tunable, allows spatial structuring of the out-coupled radiation, and shows excellent performance in the vacuum ultraviolet. As the underlying scattering process is effectively linear, our approach can also in principle operate at the single-photon level, when all other alternatives are extremely inefficient.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generation of a vacuum ultraviolet to visible Raman frequency comb in H2-filled kagomé photonic crystal fiber

M. K. Mridha, D. Novoa, S. T. Bauerschmidt, A. Abdolvand, and P. St.J. Russell
Opt. Lett. 41(12) 2811-2814 (2016)

Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber

Federico Belli, Amir Abdolvand, Wonkeun Chang, John C. Travers, and Philip St.J. Russell
Optica 2(4) 292-300 (2015)

Broadband-tunable LP01 mode frequency shifting by Raman coherence waves in a H2-filled hollow-core photonic crystal fiber

S. T. Bauerschmidt, D. Novoa, A. Abdolvand, and P. St.J. Russell
Optica 2(6) 536-539 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. T. Neves-Petersen, G. P. Gajula, and S. B. Petersen, “UV light effects on proteins: from photochemistry to nanomedicine,” in Molecular Photochemistry, S. Saha, ed. (IntechOpen, 2012).
  2. H. Xuan, H. Igarashi, S. Ito, C. Qu, Z. Zhao, and Y. Kobayashi, Appl. Sci. 8, 233 (2018).
    [Crossref]
  3. L. Bergé and S. Skupin, Opt. Lett. 33, 750 (2008).
    [Crossref]
  4. F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schroeder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010).
    [Crossref]
  5. Y. Mori and T. Imasaka, Appl. Sci. 8, 784 (2018).
    [Crossref]
  6. D. Vu, T. N. Nguyen, and T. Imasaka, Opt. Laser Technol. 88, 184 (2017).
    [Crossref]
  7. C. G. Durfee, S. Backus, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 22, 1565 (1997).
    [Crossref]
  8. C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, Adv. Opt. Photon. 9, 504 (2017).
    [Crossref]
  9. P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
    [Crossref]
  10. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
    [Crossref]
  11. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
    [Crossref]
  12. M. K. Mridha, D. Novoa, S. T. Bauerschmidt, A. Abdolvand, and P. St. J. Russell, Opt. Lett. 41, 2811 (2016).
    [Crossref]
  13. S. T. Bauerschmidt, D. Novoa, A. Abdolvand, and P. St. J. Russell, Optica 2, 536 (2015).
    [Crossref]
  14. K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, Phys. Rev. Lett. 79, 209 (1997).
    [Crossref]
  15. J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
    [Crossref]
  16. F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
    [Crossref]
  17. P. Hosseini, D. Novoa, A. Abdolvand, and P. St. J. Russell, Phys. Rev. Lett. 119, 253903 (2017).
    [Crossref]
  18. W. K. Bischel and M. J. Dyer, J. Opt. Soc. Am. B 3, 677 (1986).
    [Crossref]
  19. H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
    [Crossref]
  20. K. Yoshii, J. K. Anthony, and M. Katsuragawa, Light: Sci. Appl. 2, e58 (2013).
    [Crossref]
  21. G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dörre, K. L. Corwin, and J. Ye, Nat. Photonics 12, 387 (2018).
    [Crossref]

2018 (3)

H. Xuan, H. Igarashi, S. Ito, C. Qu, Z. Zhao, and Y. Kobayashi, Appl. Sci. 8, 233 (2018).
[Crossref]

Y. Mori and T. Imasaka, Appl. Sci. 8, 784 (2018).
[Crossref]

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dörre, K. L. Corwin, and J. Ye, Nat. Photonics 12, 387 (2018).
[Crossref]

2017 (3)

D. Vu, T. N. Nguyen, and T. Imasaka, Opt. Laser Technol. 88, 184 (2017).
[Crossref]

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, Adv. Opt. Photon. 9, 504 (2017).
[Crossref]

P. Hosseini, D. Novoa, A. Abdolvand, and P. St. J. Russell, Phys. Rev. Lett. 119, 253903 (2017).
[Crossref]

2016 (1)

2015 (1)

2014 (1)

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

2013 (1)

K. Yoshii, J. K. Anthony, and M. Katsuragawa, Light: Sci. Appl. 2, e58 (2013).
[Crossref]

2011 (1)

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
[Crossref]

2010 (2)

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schroeder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010).
[Crossref]

2008 (1)

2007 (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[Crossref]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[Crossref]

1997 (2)

C. G. Durfee, S. Backus, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 22, 1565 (1997).
[Crossref]

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, Phys. Rev. Lett. 79, 209 (1997).
[Crossref]

1993 (1)

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[Crossref]

1986 (1)

Abdolvand, A.

P. Hosseini, D. Novoa, A. Abdolvand, and P. St. J. Russell, Phys. Rev. Lett. 119, 253903 (2017).
[Crossref]

M. K. Mridha, D. Novoa, S. T. Bauerschmidt, A. Abdolvand, and P. St. J. Russell, Opt. Lett. 41, 2811 (2016).
[Crossref]

S. T. Bauerschmidt, D. Novoa, A. Abdolvand, and P. St. J. Russell, Optica 2, 536 (2015).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

Anthony, J. K.

K. Yoshii, J. K. Anthony, and M. Katsuragawa, Light: Sci. Appl. 2, e58 (2013).
[Crossref]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[Crossref]

Archambault, J. L.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[Crossref]

Azzeer, A. M.

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schroeder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010).
[Crossref]

Backus, S.

Bauerschmidt, S. T.

Benabid, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[Crossref]

Benko, C.

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dörre, K. L. Corwin, and J. Ye, Nat. Photonics 12, 387 (2018).
[Crossref]

Bergé, L.

Bischel, W. K.

Black, R. J.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[Crossref]

Bures, J.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[Crossref]

Chan, H.-S.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
[Crossref]

Chang, W.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

Corwin, K. L.

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dörre, K. L. Corwin, and J. Ye, Nat. Photonics 12, 387 (2018).
[Crossref]

Couny, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[Crossref]

Dörre, N.

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dörre, K. L. Corwin, and J. Ye, Nat. Photonics 12, 387 (2018).
[Crossref]

Durfee, C. G.

Dyer, M. J.

Fiess, M.

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

Gajula, G. P.

M. T. Neves-Petersen, G. P. Gajula, and S. B. Petersen, “UV light effects on proteins: from photochemistry to nanomedicine,” in Molecular Photochemistry, S. Saha, ed. (IntechOpen, 2012).

Goulielmakis, E.

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schroeder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010).
[Crossref]

Graf, U.

F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schroeder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010).
[Crossref]

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

Hakuta, K.

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, Phys. Rev. Lett. 79, 209 (1997).
[Crossref]

Heyl, C. M.

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dörre, K. L. Corwin, and J. Ye, Nat. Photonics 12, 387 (2018).
[Crossref]

Hölzer, P.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

Hosseini, P.

P. Hosseini, D. Novoa, A. Abdolvand, and P. St. J. Russell, Phys. Rev. Lett. 119, 253903 (2017).
[Crossref]

Hsieh, Z.-M.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
[Crossref]

Hu, J.

Igarashi, H.

H. Xuan, H. Igarashi, S. Ito, C. Qu, Z. Zhao, and Y. Kobayashi, Appl. Sci. 8, 233 (2018).
[Crossref]

Imasaka, T.

Y. Mori and T. Imasaka, Appl. Sci. 8, 784 (2018).
[Crossref]

D. Vu, T. N. Nguyen, and T. Imasaka, Opt. Laser Technol. 88, 184 (2017).
[Crossref]

Ito, S.

H. Xuan, H. Igarashi, S. Ito, C. Qu, Z. Zhao, and Y. Kobayashi, Appl. Sci. 8, 233 (2018).
[Crossref]

Kapteyn, H. C.

Karpowicz, N.

Katsuragawa, M.

K. Yoshii, J. K. Anthony, and M. Katsuragawa, Light: Sci. Appl. 2, e58 (2013).
[Crossref]

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, Phys. Rev. Lett. 79, 209 (1997).
[Crossref]

Kienberger, R.

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schroeder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010).
[Crossref]

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[Crossref]

Kobayashi, Y.

H. Xuan, H. Igarashi, S. Ito, C. Qu, Z. Zhao, and Y. Kobayashi, Appl. Sci. 8, 233 (2018).
[Crossref]

Krausz, F.

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schroeder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010).
[Crossref]

Kung, A. H.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
[Crossref]

Lacroix, S.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[Crossref]

Lai, C.-J.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
[Crossref]

Lee, C.-K.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
[Crossref]

Li, J. Z.

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, Phys. Rev. Lett. 79, 209 (1997).
[Crossref]

Liang, W.-H.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
[Crossref]

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[Crossref]

Menyuk, C. R.

Mori, Y.

Y. Mori and T. Imasaka, Appl. Sci. 8, 784 (2018).
[Crossref]

Mridha, M. K.

Murnane, M. M.

Neves-Petersen, M. T.

M. T. Neves-Petersen, G. P. Gajula, and S. B. Petersen, “UV light effects on proteins: from photochemistry to nanomedicine,” in Molecular Photochemistry, S. Saha, ed. (IntechOpen, 2012).

Nguyen, T. N.

D. Vu, T. N. Nguyen, and T. Imasaka, Opt. Laser Technol. 88, 184 (2017).
[Crossref]

Novoa, D.

Pan, R.-P.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
[Crossref]

Peng, L.-H.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
[Crossref]

Petersen, S. B.

M. T. Neves-Petersen, G. P. Gajula, and S. B. Petersen, “UV light effects on proteins: from photochemistry to nanomedicine,” in Molecular Photochemistry, S. Saha, ed. (IntechOpen, 2012).

Porat, G.

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dörre, K. L. Corwin, and J. Ye, Nat. Photonics 12, 387 (2018).
[Crossref]

Qu, C.

H. Xuan, H. Igarashi, S. Ito, C. Qu, Z. Zhao, and Y. Kobayashi, Appl. Sci. 8, 233 (2018).
[Crossref]

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[Crossref]

Reiter, F.

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schroeder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010).
[Crossref]

Roberts, P. J.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[Crossref]

Russell, P. St. J.

P. Hosseini, D. Novoa, A. Abdolvand, and P. St. J. Russell, Phys. Rev. Lett. 119, 253903 (2017).
[Crossref]

M. K. Mridha, D. Novoa, S. T. Bauerschmidt, A. Abdolvand, and P. St. J. Russell, Opt. Lett. 41, 2811 (2016).
[Crossref]

S. T. Bauerschmidt, D. Novoa, A. Abdolvand, and P. St. J. Russell, Optica 2, 536 (2015).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[Crossref]

Schoun, S. B.

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dörre, K. L. Corwin, and J. Ye, Nat. Photonics 12, 387 (2018).
[Crossref]

Schroeder, H.

Schultze, M.

F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schroeder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010).
[Crossref]

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

Schweinberger, W.

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schroeder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010).
[Crossref]

Serebryannikov, E. E.

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

Skupin, S.

Suzuki, M.

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, Phys. Rev. Lett. 79, 209 (1997).
[Crossref]

Travers, J. C.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

Vu, D.

D. Vu, T. N. Nguyen, and T. Imasaka, Opt. Laser Technol. 88, 184 (2017).
[Crossref]

Wei, C.

Weiblen, R. J.

Xuan, H.

H. Xuan, H. Igarashi, S. Ito, C. Qu, Z. Zhao, and Y. Kobayashi, Appl. Sci. 8, 233 (2018).
[Crossref]

Ye, J.

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dörre, K. L. Corwin, and J. Ye, Nat. Photonics 12, 387 (2018).
[Crossref]

Yoshii, K.

K. Yoshii, J. K. Anthony, and M. Katsuragawa, Light: Sci. Appl. 2, e58 (2013).
[Crossref]

Zhao, Z.

H. Xuan, H. Igarashi, S. Ito, C. Qu, Z. Zhao, and Y. Kobayashi, Appl. Sci. 8, 233 (2018).
[Crossref]

Zheltikov, A. M.

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Sci. (2)

H. Xuan, H. Igarashi, S. Ito, C. Qu, Z. Zhao, and Y. Kobayashi, Appl. Sci. 8, 233 (2018).
[Crossref]

Y. Mori and T. Imasaka, Appl. Sci. 8, 784 (2018).
[Crossref]

J. Lightwave Technol. (1)

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[Crossref]

J. Opt. Soc. Am. B (1)

Light: Sci. Appl. (1)

K. Yoshii, J. K. Anthony, and M. Katsuragawa, Light: Sci. Appl. 2, e58 (2013).
[Crossref]

Nat. Photonics (2)

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dörre, K. L. Corwin, and J. Ye, Nat. Photonics 12, 387 (2018).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

Opt. Laser Technol. (1)

D. Vu, T. N. Nguyen, and T. Imasaka, Opt. Laser Technol. 88, 184 (2017).
[Crossref]

Opt. Lett. (4)

Optica (1)

Phys. Rev. Lett. (3)

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, Phys. Rev. Lett. 79, 209 (1997).
[Crossref]

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

P. Hosseini, D. Novoa, A. Abdolvand, and P. St. J. Russell, Phys. Rev. Lett. 119, 253903 (2017).
[Crossref]

Science (3)

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[Crossref]

Other (1)

M. T. Neves-Petersen, G. P. Gajula, and S. B. Petersen, “UV light effects on proteins: from photochemistry to nanomedicine,” in Molecular Photochemistry, S. Saha, ed. (IntechOpen, 2012).

Supplementary Material (1)

NameDescription
» Supplement 1       It includes further details on the experimental set-up, the dispersion in kagome-PCF, the numerical simulations, the influence of the pump energy on the UV conversion efficiency and finite-element modelling of the kagome-PCF

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Dispersion curves for the fundamental mode of the kagomé-PCF filled with H 2 at two different pressures. For simplicity, we neglect the dispersive effect of loss bands caused by the resonant coupling between the core mode and modes in the glass walls surrounding the core. The subtle features of the curves are magnified by plotting frequency against ( β ref β ), where β ref is a linear function of frequency, chosen such that ( β ref β ) is zero at 1650 THz. The arrows represent the coherence waves excited by the beating of the green pump and its Stokes band at 683 nm. (b) Scanning electron micrographs of the kagomé-PCF microstructure.
Fig. 2.
Fig. 2. (a) Schematic of the experimental setup. DM, dichroic mirror. (b) Dispersed spectra cast on a screen for three different cases: mixing signal only (upper); green pump only (middle) along with its Raman bands; and co-launched mixing signal and green pump (lower). The spectral sidebands originating from the green pump and the mixing signal, both indicated along with their wavelengths in nanometers obtained using a calibrated spectrometer, are easily distinguishable.
Fig. 3.
Fig. 3. (a) Experimental (upper) and numerically simulated (lower) pressure dependence of (a) overall conversion efficiency to sidebands, η M , and (b)  M 1 (239 nm) and M 1 (299 nm). The inset in the lower part of (b) shows the fundamental and HOM content of the M 1 and M 1 signals at low pressure. The simulations suggest that the mixing signal was launched in a mixture of modes, since the best agreement with the experiments was obtained by considering an initial 70% content of the fundamental mode and 30% content of the two-lobed HOM.
Fig. 4.
Fig. 4. Conversion efficiency of the 266 nm mixing beam at four different pressures for increasing green pump energies. Although the maximum attainable efficiency was not reached (i.e., the curves are not yet saturated), experimental values around 60 % can readily be achieved at the highest pump energies. The slight drop in efficiency observed at moderate energies is likely to be caused by the complex phase relationship between the coherence waves and the interacting UV signals, which leads to dynamical exchange of energy between the mixing pulse and its sidebands during propagation along the fiber (see Fig. S3 in Supplement 1 for an example).
Fig. 5.
Fig. 5. (a) Far-field transverse intensity profiles of the M 1 and M 1 beams, showing their emergence in the fundamental (right) and two-lobed or ring-like HOM (left). The numbers beside the pictures mark the corresponding pressures in Fig. 3(b). (b) Dispersion curves for the fundamental mode and HOM when filled with 2.9 bar of H 2 . At this pressure, phase matching occurs between the M 0 and M 1 signals, both being in the HOM.
Fig. 6.
Fig. 6. (a) Overall sideband conversion efficiency η M plotted against mixing pulse energy (logarithmic scale) for a launched green energy of 12.6 μJ. (b) Pressure dependence of the M 3 signal (199 nm) and (c)  M 4 signal (184 nm). The launched green energy was 29 μJ and M 00 1.4 μJ . The far-field spatial profiles of the mixing beam sidebands are shown in the insets.

Metrics