Abstract

One of the major challenges pursued in the luminescent materials community is to develop rare-earth-free phosphors in order to reduce the use of rare-earth elements, because of the lack of their availability and the environmental problems derived from their mining and processing. In this work, a rare-earth-free glass-ceramic-based phosphor with high photoluminescence has been designed. This novel phosphor rich in Na-rich plagioclase feldspar crystallizations presents high crystallinity, 94%, and a dual micro-nanostructure provided by a fast-sintering processing route. Structural disorder in Si–Al distribution favors formation of luminescent centers in the glass-ceramic material, which results in an enhancement of both the UV–blue and the red luminescence regarding natural feldspars, 1 order of magnitude and 6 times, respectively. A microstructural and structural study by means of x-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, cathodoluminescence, and nuclear magnetic resonance evidence the important role of composition in the alteration of Si–Al ordering schemes. A strong correlation between Si–Al disorder and the presence of active luminescent centers is corroborated. Our research shows a sustainable, cost-effective, innovative, and scalable material that may be considered as an alternative to rare-earth phosphors for applications such as security markers or light-emitting glasses. This novel family of rare-earth-free glass-ceramics opens a new gate through structural tailoring to enhance and tune the intrinsic luminescent emissions displayed for relevant future optical applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Rare-earth-doped silica microchip laser fabricated by sintering nanoporous glass

Jinan Xia, Danping Chen, Jianrong Qiu, and Congshan Zhu
Opt. Lett. 30(1) 47-49 (2005)

Composition optimization of scintillating rare-earth nanocrystals in oxide glass–ceramics for radiation spectroscopy

M. Brooke Barta, Jason H. Nadler, Zhitao Kang, Brent K. Wagner, Robert Rosson, Ye Cai, Kenneth H. Sandhage, and Bernd Kahn
Appl. Opt. 53(16) D21-D28 (2014)

Intense red photoluminescence from Mn2+-doped (Na+; Zn2+) sulfophosphate glasses and glass ceramics as LED converters

Ning Da, Mingying Peng, Sebastian Krolikowski, and Lothar Wondraczek
Opt. Express 18(3) 2549-2557 (2010)

References

  • View by:
  • |
  • |
  • |

  1. C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater. 13, 511–516 (2003).
    [Crossref]
  2. D. Ehrt, “Photoluminescence in glasses and glass ceramics,” IOP Conf. Ser. Mater. Sci. Eng. 2, 012001 (2009).
    [Crossref]
  3. R. E. Rojas-Hernandez, F. Rubio-Marcos, A. Serrano, A. D. Campo, and J. F. Fernandez, “Precise tuning of the nanostructured surface leading to the luminescence enhancement in SrAl2O4 based core/shell structure,” Sci. Rep. 7, 1–9 (2017).
    [Crossref]
  4. P. G. G. Slaats, G. J. Dirksen, and G. Blasse, “Luminescence of some activators in synthetic potassium feldspar crystals,” Mater. Chem. Phys. 30, 19–23 (1991).
    [Crossref]
  5. M. Karbowiak, A. Mech, A. Bednarkiewicz, W. Stręk, and L. Kępiński, “Comparison of different NaGdF4:Eu3+ synthesis routes and their influence on its structural and luminescent properties,” J. Phys. Chem. Solids 66, 1008–1019 (2005).
    [Crossref]
  6. N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43, 481–501 (2013).
    [Crossref]
  7. G. Boulon, “Luminescence in glassy and glass ceramic materials,” Mater. Chem. Phys. 16, 301–347 (1987).
    [Crossref]
  8. M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33, 593–596 (2001).
    [Crossref]
  9. G. P. Pazzi, P. Fabeni, C. Susini, M. Nikl, E. Mihokova, N. Solovieva, K. Nitsch, M. Martini, A. Vedda, S. Baccaro, A. Cecilia, and V. Babin, “Defect states induced by UV-laser irradiation in scintillating glasses,” Nucl. Instrum. Methods Phys. Res. Sect. B 191, 366–370 (2002).
    [Crossref]
  10. O. Dymshits, M. Shepilov, and A. Zhilin, “Transparent glass-ceramics for optical applications,” MRS Bull. 42(3), 200–205 (2017).
    [Crossref]
  11. D. Barbin, V. Pagel, M. Blanc, and P. Ohnenstetter, Cathodoluminescence in Geosciences (Springer, 2000).
  12. A. S. Marfunin, Spectroscopy, Luminescence and Radiation Centers in Minerals (Springer, 1979).
  13. A. Putnis, “The crystal structure of minerals II—silicates,” in An Introduction to Mineral Sciences (Cambridge University Press, 1992), pp. 141–184.
  14. J. E. Contreras and E. A. Rodríguez, “Nanostructured insulators—a review of nanotechnology concepts for outdoor ceramic insulators,” Ceram. Int. 43, 8545–8550 (2017).
    [Crossref]
  15. X. Cui, Y. Cheng, H. Lin, F. Huang, Q. Wu, and Y. Wang, “Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles,” Nanoscale 9, 13794–13799 (2017).
    [Crossref]
  16. G. H. Beall and L. R. Pinckney, “Nanophase glass-ceramics,” J. Am. Ceram. Soc. 82, 5–16 (1999).
    [Crossref]
  17. N. Joffin, J. Dexpert-Ghys, M. Verelst, G. Baret, and A. Garcia, “The influence of microstructure on luminescent properties of Y2O3:Eu prepared by spray pyrolysis,” J. Lumin. 113, 249–257 (2005).
    [Crossref]
  18. V. Fuertes, M. J. Cabrera, J. Seores, D. Muñoz, J. F. Fernández, and E. Enríquez, “Hierarchical micro-nanostructured albite-based glass-ceramic for high dielectric strength insulators,” J. Eur. Ceram. Soc. 38, 2759–2766 (2018).
    [Crossref]
  19. E. Enríquez, V. Fuertes, M. J. Cabrera, J. Seores, D. Muñoz, and J. F. Fernández, “New strategy to mitigate urban heat island effect: energy saving by combining high albedo and low thermal diffusivity in glass ceramic materials,” Sol. Energy 149, 114–124 (2017).
    [Crossref]
  20. J. Garcia-Guinea, P. D. Townsend, L. Sanchez-Munoz, and J. M. Rojo, “Ultraviolet-blue ionic luminescence of alkali feldspars from bulk and interfaces,” Phys. Chem. Miner. 26, 658–667 (1999).
    [Crossref]
  21. Y. Kirsh and P. D. Townsend, “Speculations on the blue and red bands in the TL emission spectrum of albite and microcline,” Int. J. Radiat. Appl. Instrum. Part D 14, 43–49 (1988).
  22. V. Correcher, J. Garcia-Guinea, L. Sanchez-Muñoz, and T. Rivera, “Luminescence characterization of a sodium-rich feldspar,” Radiat. Eff. Defects Solids 162, 709–714 (2007).
    [Crossref]
  23. M. Ostrooumov, Amazonite : Mineralogy, Crystal Chemistry, and Typomorphism (Elsevier, 2016).
  24. M. R. Krbetschek, J. Götze, G. Irmer, U. Rieser, and T. Trautmann, “The red luminescence emission of feldspar and its wavelength dependence on K, Na, Ca—composition,” Mineral. Petrol. 76, 167–177 (2002).
    [Crossref]
  25. W. J. Rink, H. Rendell, E. A. Marseglia, B. J. Luff, and P. D. Townsend, “Thermoluminescence spectra of igneous quartz and hydrothermal vein quartz,” Phys. Chem. Miner. 20, 353–361 (1993).
    [Crossref]
  26. M. Kayama, S. Nakano, and H. Nishido, “Characteristics of emission centers in alkali feldspar: a new approach by using cathodoluminescence spectral deconvolution,” Am. Mineral. 95, 1783–1795 (2010).
    [Crossref]
  27. D. J. Huntley, D. I. Godfrey-Smith, and E. H. Haskell, “Light-induced emission spectra from some quartz and feldspars,” Int. J. Radiat. Appl. Instrum. Part D 18, 127–134 (1991).
    [Crossref]
  28. M. L. Clarke and H. M. Rendell, “Infra-red stimulated luminescence spectra of alkali feldspars,” Radiat. Meas. 27, 221–236 (1997).
    [Crossref]
  29. S. Maki, S. Ohgo, and H. Nishido, “Cathodoluminescence characterization of feldspar minerals from granite-syenite rocks in Iwagijima Island, Ehime Prefecture, Japan,” Naturalistae 538, S13–S16 (2016).
    [Crossref]
  30. J. Götze, “Defect structure and luminescence behaviour of agate—results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies,” Mineral. Mag. 63(2), 149–163 (1999).
    [Crossref]
  31. M. A. Kasymdzhanov and P. K. Khabibullaev, “Nanosecond duration broadband luminescence of quartz glasses,” Turkish J. Phys. 22, 475–480 (1998).
  32. J. Götze, M. Plötze, and D. Habermann, “Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz—a review,” Mineral. Petrol. 71, 225–250 (2001).
    [Crossref]
  33. L. Wondraczek, S. Krolikowski, and P. Nass, “Europium partitioning, luminescence re-absorption and quantum efficiency in (Sr, Ca) åkermanite–feldspar bi-phasic glass ceramics,” J. Mater. Chem. C 1, 4078–4086 (2013).
    [Crossref]
  34. J. Freeman, E. Kuebler, L. Jolliff, and A. Haskin, “Characterization of natural feldspars by Raman spectroscopy for future planetary exploration,” Canad. Mineral. 46, 1477–1500 (2008).
    [Crossref]
  35. D. Bersani, I. Aliatis, M. Tribaudino, L. Mantovani, A. Benisek, M. A. Carpenter, G. D. Gatta, and P. P. Lottici, “Plagioclase composition by Raman spectroscopy,” J. Raman Spectrosc. 49, 684–698 (2018).
    [Crossref]
  36. V. Fuertes, A. Mariscal, R. Serna, F. J. Mompeán, M. García-Hernández, J. F. Fernández, and E. Enríquez, “Multifunctional ZnO/Fe-O and graphene oxide nanocomposites: enhancement of optical and magnetic properties,” J. Eur. Ceram. Soc. 37, 3747–3758 (2017).
    [Crossref]
  37. V. F. de la Llave, A. del Campo, J. F. Fernández, and E. Enríquez, “Structural insights of hierarchically engineered feldspars by confocal Raman microscopy,” J. Raman Spectrosc. (2019) https://doi.org/10.1002/jrs.5556 (early view).
    [Crossref]
  38. I. Aliatis, E. Lambruschi, L. Mantovani, D. Bersani, S. Andó, G. Diego Gatta, P. Gentile, E. Salvioli-Mariani, M. Prencipe, M. Tribaudino, and P. P. Lottici, “A comparison between ab initio calculated and measured Raman spectrum of triclinic albite (NaAlSi3O8),” J. Raman Spectrosc. 46, 501–508 (2015).
    [Crossref]
  39. A. Putnis, “Transformation processes in minerals I: exsolution,” in An Introduction to Mineral Sciences (Cambridge University Press, 1992), pp. 333–384.
  40. L. Sánchez-Munõz, A. Del Campo, and J. F. Fernández, “Symmetry constraints during the development of anisotropic spinodal patterns,” Sci. Rep. 6, 1–10 (2016).
    [Crossref]
  41. M. U. Kim, J. P. Ahn, H. K. Seok, E. Fleury, H. J. Chang, D. H. Kim, P. R. Cha, and Y. C. Kim, “Application of spinodal decomposition to produce metallic glass matrix composite with simultaneous improvement of strength and plasticity,” Met. Mater. Int. 15, 193–196 (2009).
    [Crossref]
  42. S. U. Rehman, Q. Jiang, W. Lei, L. He, Q. Tan, Q. Quan, L. Wang, M. Zhong, S. Ma, A. Ul Haq, and Z. Zhong, “Improved microstructure and magnetic properties of Alnico 8 Alloys by B-doping,” IEEE Trans. Magn. 54, 1–6 (2018).
    [Crossref]
  43. L. Van Der Plas, “The x-ray powder patterns of feldspars,” in Developments in Sedimentology (Elsevier, 1966), Vol. 6, pp. 211–212.
  44. J. Garcia-Guinea, V. Correcher, L. Sanchez-Muñoz, A. A. Finch, D. E. Hole, and P. D. Townsend, “On the luminescence emission band at 340  nm of stressed tectosilicate lattices,” Nucl. Instrum. Methods Phys. Res. Sect. A 580, 648–651 (2007).
    [Crossref]
  45. A. Aparicio and M. Á. Bustillo, “Cathodoluminescence spectral characteristics of quartz and feldspars in unaltered and hydrothermally altered volcanic rocks (Almeria, Spain),” Spectrosc. Lett. 45, 104–108 (2012).
    [Crossref]
  46. D. K. Richter, T. Götte, and D. Habermann, “Cathodoluminescence of authigenic albite,” Sediment. Geol. 150, 367–374 (2002).
    [Crossref]
  47. J. Götze, “Potential of cathodoluminescence (CL) microscopy and spectroscopy for the analysis of minerals and materials,” Anal. Bioanal. Chem. 374, 703–708 (2002).
    [Crossref]
  48. O. V. Filonenko, V. S. Kuts, M. I. Terebinska, and V. V. Lobanov, “Quantum chemical calculation of 29Si NMR spectrum of silicone dioxide fullerene-like molecules,” Chem. Phys. Technol. Surf. 6, 263–268 (2015).
    [Crossref]
  49. K. J. D. MacKenzie and E. S. Mark, Multinuclear Solid-State NMR of Inorganic Materials (Pergamon, 2002).
  50. R. J. Kirkpatrick, R. A. Kinsey, K. A. Smith, D. M. Henderson, and E. Oldfields, “High resolution solid-state sodium-23, aluminum-27, and silicon-29 nuclear magnetic resonance spectroscopic reconnaissance of alkali and plagioclase feldspars,” Am. Mineral. 70, 106–123 (1985).
  51. R. J. Kirkpatrick, M. A. Carpenter, W. H. Yang, and B. Montez, “29Si magic-angle NMR spectroscopy of low-temperature ordered plagioclase feldspars,” Nature 325, 236–238 (1987).
    [Crossref]
  52. W. H. Yang, R. J. Kirkpatrick, and D. M. Henderson, “High-resolution 29Si, 27Al and 23Na NMR spectroscopic study of Al-Si disordering in annealed albite and oligoclase,” Am. Mineral. 71, 712–726 (1986).
  53. L. Sanchez-Muñoz, L. Nistor, G. Van Tendeloo, and J. Sanz, “Modulated structures in KAlSi3O8: a study by high resolution electron microscopy and 29Si MAS-NMR spectroscopy,” J. Electron Microsc. 47, 17–28 (1998).
    [Crossref]

2018 (3)

V. Fuertes, M. J. Cabrera, J. Seores, D. Muñoz, J. F. Fernández, and E. Enríquez, “Hierarchical micro-nanostructured albite-based glass-ceramic for high dielectric strength insulators,” J. Eur. Ceram. Soc. 38, 2759–2766 (2018).
[Crossref]

D. Bersani, I. Aliatis, M. Tribaudino, L. Mantovani, A. Benisek, M. A. Carpenter, G. D. Gatta, and P. P. Lottici, “Plagioclase composition by Raman spectroscopy,” J. Raman Spectrosc. 49, 684–698 (2018).
[Crossref]

S. U. Rehman, Q. Jiang, W. Lei, L. He, Q. Tan, Q. Quan, L. Wang, M. Zhong, S. Ma, A. Ul Haq, and Z. Zhong, “Improved microstructure and magnetic properties of Alnico 8 Alloys by B-doping,” IEEE Trans. Magn. 54, 1–6 (2018).
[Crossref]

2017 (6)

V. Fuertes, A. Mariscal, R. Serna, F. J. Mompeán, M. García-Hernández, J. F. Fernández, and E. Enríquez, “Multifunctional ZnO/Fe-O and graphene oxide nanocomposites: enhancement of optical and magnetic properties,” J. Eur. Ceram. Soc. 37, 3747–3758 (2017).
[Crossref]

E. Enríquez, V. Fuertes, M. J. Cabrera, J. Seores, D. Muñoz, and J. F. Fernández, “New strategy to mitigate urban heat island effect: energy saving by combining high albedo and low thermal diffusivity in glass ceramic materials,” Sol. Energy 149, 114–124 (2017).
[Crossref]

O. Dymshits, M. Shepilov, and A. Zhilin, “Transparent glass-ceramics for optical applications,” MRS Bull. 42(3), 200–205 (2017).
[Crossref]

J. E. Contreras and E. A. Rodríguez, “Nanostructured insulators—a review of nanotechnology concepts for outdoor ceramic insulators,” Ceram. Int. 43, 8545–8550 (2017).
[Crossref]

X. Cui, Y. Cheng, H. Lin, F. Huang, Q. Wu, and Y. Wang, “Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles,” Nanoscale 9, 13794–13799 (2017).
[Crossref]

R. E. Rojas-Hernandez, F. Rubio-Marcos, A. Serrano, A. D. Campo, and J. F. Fernandez, “Precise tuning of the nanostructured surface leading to the luminescence enhancement in SrAl2O4 based core/shell structure,” Sci. Rep. 7, 1–9 (2017).
[Crossref]

2016 (2)

L. Sánchez-Munõz, A. Del Campo, and J. F. Fernández, “Symmetry constraints during the development of anisotropic spinodal patterns,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

S. Maki, S. Ohgo, and H. Nishido, “Cathodoluminescence characterization of feldspar minerals from granite-syenite rocks in Iwagijima Island, Ehime Prefecture, Japan,” Naturalistae 538, S13–S16 (2016).
[Crossref]

2015 (2)

I. Aliatis, E. Lambruschi, L. Mantovani, D. Bersani, S. Andó, G. Diego Gatta, P. Gentile, E. Salvioli-Mariani, M. Prencipe, M. Tribaudino, and P. P. Lottici, “A comparison between ab initio calculated and measured Raman spectrum of triclinic albite (NaAlSi3O8),” J. Raman Spectrosc. 46, 501–508 (2015).
[Crossref]

O. V. Filonenko, V. S. Kuts, M. I. Terebinska, and V. V. Lobanov, “Quantum chemical calculation of 29Si NMR spectrum of silicone dioxide fullerene-like molecules,” Chem. Phys. Technol. Surf. 6, 263–268 (2015).
[Crossref]

2013 (2)

L. Wondraczek, S. Krolikowski, and P. Nass, “Europium partitioning, luminescence re-absorption and quantum efficiency in (Sr, Ca) åkermanite–feldspar bi-phasic glass ceramics,” J. Mater. Chem. C 1, 4078–4086 (2013).
[Crossref]

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43, 481–501 (2013).
[Crossref]

2012 (1)

A. Aparicio and M. Á. Bustillo, “Cathodoluminescence spectral characteristics of quartz and feldspars in unaltered and hydrothermally altered volcanic rocks (Almeria, Spain),” Spectrosc. Lett. 45, 104–108 (2012).
[Crossref]

2010 (1)

M. Kayama, S. Nakano, and H. Nishido, “Characteristics of emission centers in alkali feldspar: a new approach by using cathodoluminescence spectral deconvolution,” Am. Mineral. 95, 1783–1795 (2010).
[Crossref]

2009 (2)

M. U. Kim, J. P. Ahn, H. K. Seok, E. Fleury, H. J. Chang, D. H. Kim, P. R. Cha, and Y. C. Kim, “Application of spinodal decomposition to produce metallic glass matrix composite with simultaneous improvement of strength and plasticity,” Met. Mater. Int. 15, 193–196 (2009).
[Crossref]

D. Ehrt, “Photoluminescence in glasses and glass ceramics,” IOP Conf. Ser. Mater. Sci. Eng. 2, 012001 (2009).
[Crossref]

2008 (1)

J. Freeman, E. Kuebler, L. Jolliff, and A. Haskin, “Characterization of natural feldspars by Raman spectroscopy for future planetary exploration,” Canad. Mineral. 46, 1477–1500 (2008).
[Crossref]

2007 (2)

V. Correcher, J. Garcia-Guinea, L. Sanchez-Muñoz, and T. Rivera, “Luminescence characterization of a sodium-rich feldspar,” Radiat. Eff. Defects Solids 162, 709–714 (2007).
[Crossref]

J. Garcia-Guinea, V. Correcher, L. Sanchez-Muñoz, A. A. Finch, D. E. Hole, and P. D. Townsend, “On the luminescence emission band at 340  nm of stressed tectosilicate lattices,” Nucl. Instrum. Methods Phys. Res. Sect. A 580, 648–651 (2007).
[Crossref]

2005 (2)

N. Joffin, J. Dexpert-Ghys, M. Verelst, G. Baret, and A. Garcia, “The influence of microstructure on luminescent properties of Y2O3:Eu prepared by spray pyrolysis,” J. Lumin. 113, 249–257 (2005).
[Crossref]

M. Karbowiak, A. Mech, A. Bednarkiewicz, W. Stręk, and L. Kępiński, “Comparison of different NaGdF4:Eu3+ synthesis routes and their influence on its structural and luminescent properties,” J. Phys. Chem. Solids 66, 1008–1019 (2005).
[Crossref]

2003 (1)

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater. 13, 511–516 (2003).
[Crossref]

2002 (4)

G. P. Pazzi, P. Fabeni, C. Susini, M. Nikl, E. Mihokova, N. Solovieva, K. Nitsch, M. Martini, A. Vedda, S. Baccaro, A. Cecilia, and V. Babin, “Defect states induced by UV-laser irradiation in scintillating glasses,” Nucl. Instrum. Methods Phys. Res. Sect. B 191, 366–370 (2002).
[Crossref]

M. R. Krbetschek, J. Götze, G. Irmer, U. Rieser, and T. Trautmann, “The red luminescence emission of feldspar and its wavelength dependence on K, Na, Ca—composition,” Mineral. Petrol. 76, 167–177 (2002).
[Crossref]

D. K. Richter, T. Götte, and D. Habermann, “Cathodoluminescence of authigenic albite,” Sediment. Geol. 150, 367–374 (2002).
[Crossref]

J. Götze, “Potential of cathodoluminescence (CL) microscopy and spectroscopy for the analysis of minerals and materials,” Anal. Bioanal. Chem. 374, 703–708 (2002).
[Crossref]

2001 (2)

J. Götze, M. Plötze, and D. Habermann, “Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz—a review,” Mineral. Petrol. 71, 225–250 (2001).
[Crossref]

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33, 593–596 (2001).
[Crossref]

1999 (3)

G. H. Beall and L. R. Pinckney, “Nanophase glass-ceramics,” J. Am. Ceram. Soc. 82, 5–16 (1999).
[Crossref]

J. Garcia-Guinea, P. D. Townsend, L. Sanchez-Munoz, and J. M. Rojo, “Ultraviolet-blue ionic luminescence of alkali feldspars from bulk and interfaces,” Phys. Chem. Miner. 26, 658–667 (1999).
[Crossref]

J. Götze, “Defect structure and luminescence behaviour of agate—results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies,” Mineral. Mag. 63(2), 149–163 (1999).
[Crossref]

1998 (2)

M. A. Kasymdzhanov and P. K. Khabibullaev, “Nanosecond duration broadband luminescence of quartz glasses,” Turkish J. Phys. 22, 475–480 (1998).

L. Sanchez-Muñoz, L. Nistor, G. Van Tendeloo, and J. Sanz, “Modulated structures in KAlSi3O8: a study by high resolution electron microscopy and 29Si MAS-NMR spectroscopy,” J. Electron Microsc. 47, 17–28 (1998).
[Crossref]

1997 (1)

M. L. Clarke and H. M. Rendell, “Infra-red stimulated luminescence spectra of alkali feldspars,” Radiat. Meas. 27, 221–236 (1997).
[Crossref]

1993 (1)

W. J. Rink, H. Rendell, E. A. Marseglia, B. J. Luff, and P. D. Townsend, “Thermoluminescence spectra of igneous quartz and hydrothermal vein quartz,” Phys. Chem. Miner. 20, 353–361 (1993).
[Crossref]

1991 (2)

D. J. Huntley, D. I. Godfrey-Smith, and E. H. Haskell, “Light-induced emission spectra from some quartz and feldspars,” Int. J. Radiat. Appl. Instrum. Part D 18, 127–134 (1991).
[Crossref]

P. G. G. Slaats, G. J. Dirksen, and G. Blasse, “Luminescence of some activators in synthetic potassium feldspar crystals,” Mater. Chem. Phys. 30, 19–23 (1991).
[Crossref]

1988 (1)

Y. Kirsh and P. D. Townsend, “Speculations on the blue and red bands in the TL emission spectrum of albite and microcline,” Int. J. Radiat. Appl. Instrum. Part D 14, 43–49 (1988).

1987 (2)

G. Boulon, “Luminescence in glassy and glass ceramic materials,” Mater. Chem. Phys. 16, 301–347 (1987).
[Crossref]

R. J. Kirkpatrick, M. A. Carpenter, W. H. Yang, and B. Montez, “29Si magic-angle NMR spectroscopy of low-temperature ordered plagioclase feldspars,” Nature 325, 236–238 (1987).
[Crossref]

1986 (1)

W. H. Yang, R. J. Kirkpatrick, and D. M. Henderson, “High-resolution 29Si, 27Al and 23Na NMR spectroscopic study of Al-Si disordering in annealed albite and oligoclase,” Am. Mineral. 71, 712–726 (1986).

1985 (1)

R. J. Kirkpatrick, R. A. Kinsey, K. A. Smith, D. M. Henderson, and E. Oldfields, “High resolution solid-state sodium-23, aluminum-27, and silicon-29 nuclear magnetic resonance spectroscopic reconnaissance of alkali and plagioclase feldspars,” Am. Mineral. 70, 106–123 (1985).

Ahn, J. P.

M. U. Kim, J. P. Ahn, H. K. Seok, E. Fleury, H. J. Chang, D. H. Kim, P. R. Cha, and Y. C. Kim, “Application of spinodal decomposition to produce metallic glass matrix composite with simultaneous improvement of strength and plasticity,” Met. Mater. Int. 15, 193–196 (2009).
[Crossref]

Aliatis, I.

D. Bersani, I. Aliatis, M. Tribaudino, L. Mantovani, A. Benisek, M. A. Carpenter, G. D. Gatta, and P. P. Lottici, “Plagioclase composition by Raman spectroscopy,” J. Raman Spectrosc. 49, 684–698 (2018).
[Crossref]

I. Aliatis, E. Lambruschi, L. Mantovani, D. Bersani, S. Andó, G. Diego Gatta, P. Gentile, E. Salvioli-Mariani, M. Prencipe, M. Tribaudino, and P. P. Lottici, “A comparison between ab initio calculated and measured Raman spectrum of triclinic albite (NaAlSi3O8),” J. Raman Spectrosc. 46, 501–508 (2015).
[Crossref]

Andó, S.

I. Aliatis, E. Lambruschi, L. Mantovani, D. Bersani, S. Andó, G. Diego Gatta, P. Gentile, E. Salvioli-Mariani, M. Prencipe, M. Tribaudino, and P. P. Lottici, “A comparison between ab initio calculated and measured Raman spectrum of triclinic albite (NaAlSi3O8),” J. Raman Spectrosc. 46, 501–508 (2015).
[Crossref]

Aparicio, A.

A. Aparicio and M. Á. Bustillo, “Cathodoluminescence spectral characteristics of quartz and feldspars in unaltered and hydrothermally altered volcanic rocks (Almeria, Spain),” Spectrosc. Lett. 45, 104–108 (2012).
[Crossref]

Babin, V.

G. P. Pazzi, P. Fabeni, C. Susini, M. Nikl, E. Mihokova, N. Solovieva, K. Nitsch, M. Martini, A. Vedda, S. Baccaro, A. Cecilia, and V. Babin, “Defect states induced by UV-laser irradiation in scintillating glasses,” Nucl. Instrum. Methods Phys. Res. Sect. B 191, 366–370 (2002).
[Crossref]

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33, 593–596 (2001).
[Crossref]

Baccaro, S.

G. P. Pazzi, P. Fabeni, C. Susini, M. Nikl, E. Mihokova, N. Solovieva, K. Nitsch, M. Martini, A. Vedda, S. Baccaro, A. Cecilia, and V. Babin, “Defect states induced by UV-laser irradiation in scintillating glasses,” Nucl. Instrum. Methods Phys. Res. Sect. B 191, 366–370 (2002).
[Crossref]

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33, 593–596 (2001).
[Crossref]

Barbin, D.

D. Barbin, V. Pagel, M. Blanc, and P. Ohnenstetter, Cathodoluminescence in Geosciences (Springer, 2000).

Baret, G.

N. Joffin, J. Dexpert-Ghys, M. Verelst, G. Baret, and A. Garcia, “The influence of microstructure on luminescent properties of Y2O3:Eu prepared by spray pyrolysis,” J. Lumin. 113, 249–257 (2005).
[Crossref]

Beall, G. H.

G. H. Beall and L. R. Pinckney, “Nanophase glass-ceramics,” J. Am. Ceram. Soc. 82, 5–16 (1999).
[Crossref]

Bednarkiewicz, A.

M. Karbowiak, A. Mech, A. Bednarkiewicz, W. Stręk, and L. Kępiński, “Comparison of different NaGdF4:Eu3+ synthesis routes and their influence on its structural and luminescent properties,” J. Phys. Chem. Solids 66, 1008–1019 (2005).
[Crossref]

Benisek, A.

D. Bersani, I. Aliatis, M. Tribaudino, L. Mantovani, A. Benisek, M. A. Carpenter, G. D. Gatta, and P. P. Lottici, “Plagioclase composition by Raman spectroscopy,” J. Raman Spectrosc. 49, 684–698 (2018).
[Crossref]

Bersani, D.

D. Bersani, I. Aliatis, M. Tribaudino, L. Mantovani, A. Benisek, M. A. Carpenter, G. D. Gatta, and P. P. Lottici, “Plagioclase composition by Raman spectroscopy,” J. Raman Spectrosc. 49, 684–698 (2018).
[Crossref]

I. Aliatis, E. Lambruschi, L. Mantovani, D. Bersani, S. Andó, G. Diego Gatta, P. Gentile, E. Salvioli-Mariani, M. Prencipe, M. Tribaudino, and P. P. Lottici, “A comparison between ab initio calculated and measured Raman spectrum of triclinic albite (NaAlSi3O8),” J. Raman Spectrosc. 46, 501–508 (2015).
[Crossref]

Blanc, M.

D. Barbin, V. Pagel, M. Blanc, and P. Ohnenstetter, Cathodoluminescence in Geosciences (Springer, 2000).

Blasse, G.

P. G. G. Slaats, G. J. Dirksen, and G. Blasse, “Luminescence of some activators in synthetic potassium feldspar crystals,” Mater. Chem. Phys. 30, 19–23 (1991).
[Crossref]

Boulon, G.

G. Boulon, “Luminescence in glassy and glass ceramic materials,” Mater. Chem. Phys. 16, 301–347 (1987).
[Crossref]

Bustillo, M. Á.

A. Aparicio and M. Á. Bustillo, “Cathodoluminescence spectral characteristics of quartz and feldspars in unaltered and hydrothermally altered volcanic rocks (Almeria, Spain),” Spectrosc. Lett. 45, 104–108 (2012).
[Crossref]

Cabrera, M. J.

V. Fuertes, M. J. Cabrera, J. Seores, D. Muñoz, J. F. Fernández, and E. Enríquez, “Hierarchical micro-nanostructured albite-based glass-ceramic for high dielectric strength insulators,” J. Eur. Ceram. Soc. 38, 2759–2766 (2018).
[Crossref]

E. Enríquez, V. Fuertes, M. J. Cabrera, J. Seores, D. Muñoz, and J. F. Fernández, “New strategy to mitigate urban heat island effect: energy saving by combining high albedo and low thermal diffusivity in glass ceramic materials,” Sol. Energy 149, 114–124 (2017).
[Crossref]

Campo, A. D.

R. E. Rojas-Hernandez, F. Rubio-Marcos, A. Serrano, A. D. Campo, and J. F. Fernandez, “Precise tuning of the nanostructured surface leading to the luminescence enhancement in SrAl2O4 based core/shell structure,” Sci. Rep. 7, 1–9 (2017).
[Crossref]

Carpenter, M. A.

D. Bersani, I. Aliatis, M. Tribaudino, L. Mantovani, A. Benisek, M. A. Carpenter, G. D. Gatta, and P. P. Lottici, “Plagioclase composition by Raman spectroscopy,” J. Raman Spectrosc. 49, 684–698 (2018).
[Crossref]

R. J. Kirkpatrick, M. A. Carpenter, W. H. Yang, and B. Montez, “29Si magic-angle NMR spectroscopy of low-temperature ordered plagioclase feldspars,” Nature 325, 236–238 (1987).
[Crossref]

Cecilia, A.

G. P. Pazzi, P. Fabeni, C. Susini, M. Nikl, E. Mihokova, N. Solovieva, K. Nitsch, M. Martini, A. Vedda, S. Baccaro, A. Cecilia, and V. Babin, “Defect states induced by UV-laser irradiation in scintillating glasses,” Nucl. Instrum. Methods Phys. Res. Sect. B 191, 366–370 (2002).
[Crossref]

Cha, P. R.

M. U. Kim, J. P. Ahn, H. K. Seok, E. Fleury, H. J. Chang, D. H. Kim, P. R. Cha, and Y. C. Kim, “Application of spinodal decomposition to produce metallic glass matrix composite with simultaneous improvement of strength and plasticity,” Met. Mater. Int. 15, 193–196 (2009).
[Crossref]

Chang, H. J.

M. U. Kim, J. P. Ahn, H. K. Seok, E. Fleury, H. J. Chang, D. H. Kim, P. R. Cha, and Y. C. Kim, “Application of spinodal decomposition to produce metallic glass matrix composite with simultaneous improvement of strength and plasticity,” Met. Mater. Int. 15, 193–196 (2009).
[Crossref]

Cheng, Y.

X. Cui, Y. Cheng, H. Lin, F. Huang, Q. Wu, and Y. Wang, “Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles,” Nanoscale 9, 13794–13799 (2017).
[Crossref]

Clarke, M. L.

M. L. Clarke and H. M. Rendell, “Infra-red stimulated luminescence spectra of alkali feldspars,” Radiat. Meas. 27, 221–236 (1997).
[Crossref]

Contreras, J. E.

J. E. Contreras and E. A. Rodríguez, “Nanostructured insulators—a review of nanotechnology concepts for outdoor ceramic insulators,” Ceram. Int. 43, 8545–8550 (2017).
[Crossref]

Correcher, V.

V. Correcher, J. Garcia-Guinea, L. Sanchez-Muñoz, and T. Rivera, “Luminescence characterization of a sodium-rich feldspar,” Radiat. Eff. Defects Solids 162, 709–714 (2007).
[Crossref]

J. Garcia-Guinea, V. Correcher, L. Sanchez-Muñoz, A. A. Finch, D. E. Hole, and P. D. Townsend, “On the luminescence emission band at 340  nm of stressed tectosilicate lattices,” Nucl. Instrum. Methods Phys. Res. Sect. A 580, 648–651 (2007).
[Crossref]

Cui, X.

X. Cui, Y. Cheng, H. Lin, F. Huang, Q. Wu, and Y. Wang, “Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles,” Nanoscale 9, 13794–13799 (2017).
[Crossref]

de la Llave, V. F.

V. F. de la Llave, A. del Campo, J. F. Fernández, and E. Enríquez, “Structural insights of hierarchically engineered feldspars by confocal Raman microscopy,” J. Raman Spectrosc. (2019) https://doi.org/10.1002/jrs.5556 (early view).
[Crossref]

Del Campo, A.

L. Sánchez-Munõz, A. Del Campo, and J. F. Fernández, “Symmetry constraints during the development of anisotropic spinodal patterns,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

V. F. de la Llave, A. del Campo, J. F. Fernández, and E. Enríquez, “Structural insights of hierarchically engineered feldspars by confocal Raman microscopy,” J. Raman Spectrosc. (2019) https://doi.org/10.1002/jrs.5556 (early view).
[Crossref]

Denault, K. A.

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43, 481–501 (2013).
[Crossref]

Dexpert-Ghys, J.

N. Joffin, J. Dexpert-Ghys, M. Verelst, G. Baret, and A. Garcia, “The influence of microstructure on luminescent properties of Y2O3:Eu prepared by spray pyrolysis,” J. Lumin. 113, 249–257 (2005).
[Crossref]

Diego Gatta, G.

I. Aliatis, E. Lambruschi, L. Mantovani, D. Bersani, S. Andó, G. Diego Gatta, P. Gentile, E. Salvioli-Mariani, M. Prencipe, M. Tribaudino, and P. P. Lottici, “A comparison between ab initio calculated and measured Raman spectrum of triclinic albite (NaAlSi3O8),” J. Raman Spectrosc. 46, 501–508 (2015).
[Crossref]

Dirksen, G. J.

P. G. G. Slaats, G. J. Dirksen, and G. Blasse, “Luminescence of some activators in synthetic potassium feldspar crystals,” Mater. Chem. Phys. 30, 19–23 (1991).
[Crossref]

Dymshits, O.

O. Dymshits, M. Shepilov, and A. Zhilin, “Transparent glass-ceramics for optical applications,” MRS Bull. 42(3), 200–205 (2017).
[Crossref]

Ehrt, D.

D. Ehrt, “Photoluminescence in glasses and glass ceramics,” IOP Conf. Ser. Mater. Sci. Eng. 2, 012001 (2009).
[Crossref]

Enríquez, E.

V. Fuertes, M. J. Cabrera, J. Seores, D. Muñoz, J. F. Fernández, and E. Enríquez, “Hierarchical micro-nanostructured albite-based glass-ceramic for high dielectric strength insulators,” J. Eur. Ceram. Soc. 38, 2759–2766 (2018).
[Crossref]

E. Enríquez, V. Fuertes, M. J. Cabrera, J. Seores, D. Muñoz, and J. F. Fernández, “New strategy to mitigate urban heat island effect: energy saving by combining high albedo and low thermal diffusivity in glass ceramic materials,” Sol. Energy 149, 114–124 (2017).
[Crossref]

V. Fuertes, A. Mariscal, R. Serna, F. J. Mompeán, M. García-Hernández, J. F. Fernández, and E. Enríquez, “Multifunctional ZnO/Fe-O and graphene oxide nanocomposites: enhancement of optical and magnetic properties,” J. Eur. Ceram. Soc. 37, 3747–3758 (2017).
[Crossref]

V. F. de la Llave, A. del Campo, J. F. Fernández, and E. Enríquez, “Structural insights of hierarchically engineered feldspars by confocal Raman microscopy,” J. Raman Spectrosc. (2019) https://doi.org/10.1002/jrs.5556 (early view).
[Crossref]

Fabeni, P.

G. P. Pazzi, P. Fabeni, C. Susini, M. Nikl, E. Mihokova, N. Solovieva, K. Nitsch, M. Martini, A. Vedda, S. Baccaro, A. Cecilia, and V. Babin, “Defect states induced by UV-laser irradiation in scintillating glasses,” Nucl. Instrum. Methods Phys. Res. Sect. B 191, 366–370 (2002).
[Crossref]

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33, 593–596 (2001).
[Crossref]

Feldmann, C.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater. 13, 511–516 (2003).
[Crossref]

Fernandez, J. F.

R. E. Rojas-Hernandez, F. Rubio-Marcos, A. Serrano, A. D. Campo, and J. F. Fernandez, “Precise tuning of the nanostructured surface leading to the luminescence enhancement in SrAl2O4 based core/shell structure,” Sci. Rep. 7, 1–9 (2017).
[Crossref]

Fernández, J. F.

V. Fuertes, M. J. Cabrera, J. Seores, D. Muñoz, J. F. Fernández, and E. Enríquez, “Hierarchical micro-nanostructured albite-based glass-ceramic for high dielectric strength insulators,” J. Eur. Ceram. Soc. 38, 2759–2766 (2018).
[Crossref]

E. Enríquez, V. Fuertes, M. J. Cabrera, J. Seores, D. Muñoz, and J. F. Fernández, “New strategy to mitigate urban heat island effect: energy saving by combining high albedo and low thermal diffusivity in glass ceramic materials,” Sol. Energy 149, 114–124 (2017).
[Crossref]

V. Fuertes, A. Mariscal, R. Serna, F. J. Mompeán, M. García-Hernández, J. F. Fernández, and E. Enríquez, “Multifunctional ZnO/Fe-O and graphene oxide nanocomposites: enhancement of optical and magnetic properties,” J. Eur. Ceram. Soc. 37, 3747–3758 (2017).
[Crossref]

L. Sánchez-Munõz, A. Del Campo, and J. F. Fernández, “Symmetry constraints during the development of anisotropic spinodal patterns,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

V. F. de la Llave, A. del Campo, J. F. Fernández, and E. Enríquez, “Structural insights of hierarchically engineered feldspars by confocal Raman microscopy,” J. Raman Spectrosc. (2019) https://doi.org/10.1002/jrs.5556 (early view).
[Crossref]

Filonenko, O. V.

O. V. Filonenko, V. S. Kuts, M. I. Terebinska, and V. V. Lobanov, “Quantum chemical calculation of 29Si NMR spectrum of silicone dioxide fullerene-like molecules,” Chem. Phys. Technol. Surf. 6, 263–268 (2015).
[Crossref]

Finch, A. A.

J. Garcia-Guinea, V. Correcher, L. Sanchez-Muñoz, A. A. Finch, D. E. Hole, and P. D. Townsend, “On the luminescence emission band at 340  nm of stressed tectosilicate lattices,” Nucl. Instrum. Methods Phys. Res. Sect. A 580, 648–651 (2007).
[Crossref]

Fleury, E.

M. U. Kim, J. P. Ahn, H. K. Seok, E. Fleury, H. J. Chang, D. H. Kim, P. R. Cha, and Y. C. Kim, “Application of spinodal decomposition to produce metallic glass matrix composite with simultaneous improvement of strength and plasticity,” Met. Mater. Int. 15, 193–196 (2009).
[Crossref]

Freeman, J.

J. Freeman, E. Kuebler, L. Jolliff, and A. Haskin, “Characterization of natural feldspars by Raman spectroscopy for future planetary exploration,” Canad. Mineral. 46, 1477–1500 (2008).
[Crossref]

Fuertes, V.

V. Fuertes, M. J. Cabrera, J. Seores, D. Muñoz, J. F. Fernández, and E. Enríquez, “Hierarchical micro-nanostructured albite-based glass-ceramic for high dielectric strength insulators,” J. Eur. Ceram. Soc. 38, 2759–2766 (2018).
[Crossref]

E. Enríquez, V. Fuertes, M. J. Cabrera, J. Seores, D. Muñoz, and J. F. Fernández, “New strategy to mitigate urban heat island effect: energy saving by combining high albedo and low thermal diffusivity in glass ceramic materials,” Sol. Energy 149, 114–124 (2017).
[Crossref]

V. Fuertes, A. Mariscal, R. Serna, F. J. Mompeán, M. García-Hernández, J. F. Fernández, and E. Enríquez, “Multifunctional ZnO/Fe-O and graphene oxide nanocomposites: enhancement of optical and magnetic properties,” J. Eur. Ceram. Soc. 37, 3747–3758 (2017).
[Crossref]

Garcia, A.

N. Joffin, J. Dexpert-Ghys, M. Verelst, G. Baret, and A. Garcia, “The influence of microstructure on luminescent properties of Y2O3:Eu prepared by spray pyrolysis,” J. Lumin. 113, 249–257 (2005).
[Crossref]

Garcia-Guinea, J.

V. Correcher, J. Garcia-Guinea, L. Sanchez-Muñoz, and T. Rivera, “Luminescence characterization of a sodium-rich feldspar,” Radiat. Eff. Defects Solids 162, 709–714 (2007).
[Crossref]

J. Garcia-Guinea, V. Correcher, L. Sanchez-Muñoz, A. A. Finch, D. E. Hole, and P. D. Townsend, “On the luminescence emission band at 340  nm of stressed tectosilicate lattices,” Nucl. Instrum. Methods Phys. Res. Sect. A 580, 648–651 (2007).
[Crossref]

J. Garcia-Guinea, P. D. Townsend, L. Sanchez-Munoz, and J. M. Rojo, “Ultraviolet-blue ionic luminescence of alkali feldspars from bulk and interfaces,” Phys. Chem. Miner. 26, 658–667 (1999).
[Crossref]

García-Hernández, M.

V. Fuertes, A. Mariscal, R. Serna, F. J. Mompeán, M. García-Hernández, J. F. Fernández, and E. Enríquez, “Multifunctional ZnO/Fe-O and graphene oxide nanocomposites: enhancement of optical and magnetic properties,” J. Eur. Ceram. Soc. 37, 3747–3758 (2017).
[Crossref]

Gatta, G. D.

D. Bersani, I. Aliatis, M. Tribaudino, L. Mantovani, A. Benisek, M. A. Carpenter, G. D. Gatta, and P. P. Lottici, “Plagioclase composition by Raman spectroscopy,” J. Raman Spectrosc. 49, 684–698 (2018).
[Crossref]

Gentile, P.

I. Aliatis, E. Lambruschi, L. Mantovani, D. Bersani, S. Andó, G. Diego Gatta, P. Gentile, E. Salvioli-Mariani, M. Prencipe, M. Tribaudino, and P. P. Lottici, “A comparison between ab initio calculated and measured Raman spectrum of triclinic albite (NaAlSi3O8),” J. Raman Spectrosc. 46, 501–508 (2015).
[Crossref]

George, N. C.

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43, 481–501 (2013).
[Crossref]

Godfrey-Smith, D. I.

D. J. Huntley, D. I. Godfrey-Smith, and E. H. Haskell, “Light-induced emission spectra from some quartz and feldspars,” Int. J. Radiat. Appl. Instrum. Part D 18, 127–134 (1991).
[Crossref]

Götte, T.

D. K. Richter, T. Götte, and D. Habermann, “Cathodoluminescence of authigenic albite,” Sediment. Geol. 150, 367–374 (2002).
[Crossref]

Götze, J.

J. Götze, “Potential of cathodoluminescence (CL) microscopy and spectroscopy for the analysis of minerals and materials,” Anal. Bioanal. Chem. 374, 703–708 (2002).
[Crossref]

M. R. Krbetschek, J. Götze, G. Irmer, U. Rieser, and T. Trautmann, “The red luminescence emission of feldspar and its wavelength dependence on K, Na, Ca—composition,” Mineral. Petrol. 76, 167–177 (2002).
[Crossref]

J. Götze, M. Plötze, and D. Habermann, “Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz—a review,” Mineral. Petrol. 71, 225–250 (2001).
[Crossref]

J. Götze, “Defect structure and luminescence behaviour of agate—results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies,” Mineral. Mag. 63(2), 149–163 (1999).
[Crossref]

Habermann, D.

D. K. Richter, T. Götte, and D. Habermann, “Cathodoluminescence of authigenic albite,” Sediment. Geol. 150, 367–374 (2002).
[Crossref]

J. Götze, M. Plötze, and D. Habermann, “Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz—a review,” Mineral. Petrol. 71, 225–250 (2001).
[Crossref]

Haskell, E. H.

D. J. Huntley, D. I. Godfrey-Smith, and E. H. Haskell, “Light-induced emission spectra from some quartz and feldspars,” Int. J. Radiat. Appl. Instrum. Part D 18, 127–134 (1991).
[Crossref]

Haskin, A.

J. Freeman, E. Kuebler, L. Jolliff, and A. Haskin, “Characterization of natural feldspars by Raman spectroscopy for future planetary exploration,” Canad. Mineral. 46, 1477–1500 (2008).
[Crossref]

He, L.

S. U. Rehman, Q. Jiang, W. Lei, L. He, Q. Tan, Q. Quan, L. Wang, M. Zhong, S. Ma, A. Ul Haq, and Z. Zhong, “Improved microstructure and magnetic properties of Alnico 8 Alloys by B-doping,” IEEE Trans. Magn. 54, 1–6 (2018).
[Crossref]

Henderson, D. M.

W. H. Yang, R. J. Kirkpatrick, and D. M. Henderson, “High-resolution 29Si, 27Al and 23Na NMR spectroscopic study of Al-Si disordering in annealed albite and oligoclase,” Am. Mineral. 71, 712–726 (1986).

R. J. Kirkpatrick, R. A. Kinsey, K. A. Smith, D. M. Henderson, and E. Oldfields, “High resolution solid-state sodium-23, aluminum-27, and silicon-29 nuclear magnetic resonance spectroscopic reconnaissance of alkali and plagioclase feldspars,” Am. Mineral. 70, 106–123 (1985).

Hole, D. E.

J. Garcia-Guinea, V. Correcher, L. Sanchez-Muñoz, A. A. Finch, D. E. Hole, and P. D. Townsend, “On the luminescence emission band at 340  nm of stressed tectosilicate lattices,” Nucl. Instrum. Methods Phys. Res. Sect. A 580, 648–651 (2007).
[Crossref]

Huang, F.

X. Cui, Y. Cheng, H. Lin, F. Huang, Q. Wu, and Y. Wang, “Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles,” Nanoscale 9, 13794–13799 (2017).
[Crossref]

Huntley, D. J.

D. J. Huntley, D. I. Godfrey-Smith, and E. H. Haskell, “Light-induced emission spectra from some quartz and feldspars,” Int. J. Radiat. Appl. Instrum. Part D 18, 127–134 (1991).
[Crossref]

Irmer, G.

M. R. Krbetschek, J. Götze, G. Irmer, U. Rieser, and T. Trautmann, “The red luminescence emission of feldspar and its wavelength dependence on K, Na, Ca—composition,” Mineral. Petrol. 76, 167–177 (2002).
[Crossref]

Jiang, Q.

S. U. Rehman, Q. Jiang, W. Lei, L. He, Q. Tan, Q. Quan, L. Wang, M. Zhong, S. Ma, A. Ul Haq, and Z. Zhong, “Improved microstructure and magnetic properties of Alnico 8 Alloys by B-doping,” IEEE Trans. Magn. 54, 1–6 (2018).
[Crossref]

Joffin, N.

N. Joffin, J. Dexpert-Ghys, M. Verelst, G. Baret, and A. Garcia, “The influence of microstructure on luminescent properties of Y2O3:Eu prepared by spray pyrolysis,” J. Lumin. 113, 249–257 (2005).
[Crossref]

Jolliff, L.

J. Freeman, E. Kuebler, L. Jolliff, and A. Haskin, “Characterization of natural feldspars by Raman spectroscopy for future planetary exploration,” Canad. Mineral. 46, 1477–1500 (2008).
[Crossref]

Jüstel, T.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater. 13, 511–516 (2003).
[Crossref]

Karbowiak, M.

M. Karbowiak, A. Mech, A. Bednarkiewicz, W. Stręk, and L. Kępiński, “Comparison of different NaGdF4:Eu3+ synthesis routes and their influence on its structural and luminescent properties,” J. Phys. Chem. Solids 66, 1008–1019 (2005).
[Crossref]

Kasymdzhanov, M. A.

M. A. Kasymdzhanov and P. K. Khabibullaev, “Nanosecond duration broadband luminescence of quartz glasses,” Turkish J. Phys. 22, 475–480 (1998).

Kayama, M.

M. Kayama, S. Nakano, and H. Nishido, “Characteristics of emission centers in alkali feldspar: a new approach by using cathodoluminescence spectral deconvolution,” Am. Mineral. 95, 1783–1795 (2010).
[Crossref]

Kepinski, L.

M. Karbowiak, A. Mech, A. Bednarkiewicz, W. Stręk, and L. Kępiński, “Comparison of different NaGdF4:Eu3+ synthesis routes and their influence on its structural and luminescent properties,” J. Phys. Chem. Solids 66, 1008–1019 (2005).
[Crossref]

Khabibullaev, P. K.

M. A. Kasymdzhanov and P. K. Khabibullaev, “Nanosecond duration broadband luminescence of quartz glasses,” Turkish J. Phys. 22, 475–480 (1998).

Kim, D. H.

M. U. Kim, J. P. Ahn, H. K. Seok, E. Fleury, H. J. Chang, D. H. Kim, P. R. Cha, and Y. C. Kim, “Application of spinodal decomposition to produce metallic glass matrix composite with simultaneous improvement of strength and plasticity,” Met. Mater. Int. 15, 193–196 (2009).
[Crossref]

Kim, M. U.

M. U. Kim, J. P. Ahn, H. K. Seok, E. Fleury, H. J. Chang, D. H. Kim, P. R. Cha, and Y. C. Kim, “Application of spinodal decomposition to produce metallic glass matrix composite with simultaneous improvement of strength and plasticity,” Met. Mater. Int. 15, 193–196 (2009).
[Crossref]

Kim, Y. C.

M. U. Kim, J. P. Ahn, H. K. Seok, E. Fleury, H. J. Chang, D. H. Kim, P. R. Cha, and Y. C. Kim, “Application of spinodal decomposition to produce metallic glass matrix composite with simultaneous improvement of strength and plasticity,” Met. Mater. Int. 15, 193–196 (2009).
[Crossref]

Kinsey, R. A.

R. J. Kirkpatrick, R. A. Kinsey, K. A. Smith, D. M. Henderson, and E. Oldfields, “High resolution solid-state sodium-23, aluminum-27, and silicon-29 nuclear magnetic resonance spectroscopic reconnaissance of alkali and plagioclase feldspars,” Am. Mineral. 70, 106–123 (1985).

Kirkpatrick, R. J.

R. J. Kirkpatrick, M. A. Carpenter, W. H. Yang, and B. Montez, “29Si magic-angle NMR spectroscopy of low-temperature ordered plagioclase feldspars,” Nature 325, 236–238 (1987).
[Crossref]

W. H. Yang, R. J. Kirkpatrick, and D. M. Henderson, “High-resolution 29Si, 27Al and 23Na NMR spectroscopic study of Al-Si disordering in annealed albite and oligoclase,” Am. Mineral. 71, 712–726 (1986).

R. J. Kirkpatrick, R. A. Kinsey, K. A. Smith, D. M. Henderson, and E. Oldfields, “High resolution solid-state sodium-23, aluminum-27, and silicon-29 nuclear magnetic resonance spectroscopic reconnaissance of alkali and plagioclase feldspars,” Am. Mineral. 70, 106–123 (1985).

Kirsh, Y.

Y. Kirsh and P. D. Townsend, “Speculations on the blue and red bands in the TL emission spectrum of albite and microcline,” Int. J. Radiat. Appl. Instrum. Part D 14, 43–49 (1988).

Krasnikov, A.

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33, 593–596 (2001).
[Crossref]

Krbetschek, M. R.

M. R. Krbetschek, J. Götze, G. Irmer, U. Rieser, and T. Trautmann, “The red luminescence emission of feldspar and its wavelength dependence on K, Na, Ca—composition,” Mineral. Petrol. 76, 167–177 (2002).
[Crossref]

Krolikowski, S.

L. Wondraczek, S. Krolikowski, and P. Nass, “Europium partitioning, luminescence re-absorption and quantum efficiency in (Sr, Ca) åkermanite–feldspar bi-phasic glass ceramics,” J. Mater. Chem. C 1, 4078–4086 (2013).
[Crossref]

Kuebler, E.

J. Freeman, E. Kuebler, L. Jolliff, and A. Haskin, “Characterization of natural feldspars by Raman spectroscopy for future planetary exploration,” Canad. Mineral. 46, 1477–1500 (2008).
[Crossref]

Kuts, V. S.

O. V. Filonenko, V. S. Kuts, M. I. Terebinska, and V. V. Lobanov, “Quantum chemical calculation of 29Si NMR spectrum of silicone dioxide fullerene-like molecules,” Chem. Phys. Technol. Surf. 6, 263–268 (2015).
[Crossref]

Lambruschi, E.

I. Aliatis, E. Lambruschi, L. Mantovani, D. Bersani, S. Andó, G. Diego Gatta, P. Gentile, E. Salvioli-Mariani, M. Prencipe, M. Tribaudino, and P. P. Lottici, “A comparison between ab initio calculated and measured Raman spectrum of triclinic albite (NaAlSi3O8),” J. Raman Spectrosc. 46, 501–508 (2015).
[Crossref]

Lei, W.

S. U. Rehman, Q. Jiang, W. Lei, L. He, Q. Tan, Q. Quan, L. Wang, M. Zhong, S. Ma, A. Ul Haq, and Z. Zhong, “Improved microstructure and magnetic properties of Alnico 8 Alloys by B-doping,” IEEE Trans. Magn. 54, 1–6 (2018).
[Crossref]

Lin, H.

X. Cui, Y. Cheng, H. Lin, F. Huang, Q. Wu, and Y. Wang, “Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles,” Nanoscale 9, 13794–13799 (2017).
[Crossref]

Lobanov, V. V.

O. V. Filonenko, V. S. Kuts, M. I. Terebinska, and V. V. Lobanov, “Quantum chemical calculation of 29Si NMR spectrum of silicone dioxide fullerene-like molecules,” Chem. Phys. Technol. Surf. 6, 263–268 (2015).
[Crossref]

Lottici, P. P.

D. Bersani, I. Aliatis, M. Tribaudino, L. Mantovani, A. Benisek, M. A. Carpenter, G. D. Gatta, and P. P. Lottici, “Plagioclase composition by Raman spectroscopy,” J. Raman Spectrosc. 49, 684–698 (2018).
[Crossref]

I. Aliatis, E. Lambruschi, L. Mantovani, D. Bersani, S. Andó, G. Diego Gatta, P. Gentile, E. Salvioli-Mariani, M. Prencipe, M. Tribaudino, and P. P. Lottici, “A comparison between ab initio calculated and measured Raman spectrum of triclinic albite (NaAlSi3O8),” J. Raman Spectrosc. 46, 501–508 (2015).
[Crossref]

Luff, B. J.

W. J. Rink, H. Rendell, E. A. Marseglia, B. J. Luff, and P. D. Townsend, “Thermoluminescence spectra of igneous quartz and hydrothermal vein quartz,” Phys. Chem. Miner. 20, 353–361 (1993).
[Crossref]

Ma, S.

S. U. Rehman, Q. Jiang, W. Lei, L. He, Q. Tan, Q. Quan, L. Wang, M. Zhong, S. Ma, A. Ul Haq, and Z. Zhong, “Improved microstructure and magnetic properties of Alnico 8 Alloys by B-doping,” IEEE Trans. Magn. 54, 1–6 (2018).
[Crossref]

MacKenzie, K. J. D.

K. J. D. MacKenzie and E. S. Mark, Multinuclear Solid-State NMR of Inorganic Materials (Pergamon, 2002).

Maki, S.

S. Maki, S. Ohgo, and H. Nishido, “Cathodoluminescence characterization of feldspar minerals from granite-syenite rocks in Iwagijima Island, Ehime Prefecture, Japan,” Naturalistae 538, S13–S16 (2016).
[Crossref]

Mantovani, L.

D. Bersani, I. Aliatis, M. Tribaudino, L. Mantovani, A. Benisek, M. A. Carpenter, G. D. Gatta, and P. P. Lottici, “Plagioclase composition by Raman spectroscopy,” J. Raman Spectrosc. 49, 684–698 (2018).
[Crossref]

I. Aliatis, E. Lambruschi, L. Mantovani, D. Bersani, S. Andó, G. Diego Gatta, P. Gentile, E. Salvioli-Mariani, M. Prencipe, M. Tribaudino, and P. P. Lottici, “A comparison between ab initio calculated and measured Raman spectrum of triclinic albite (NaAlSi3O8),” J. Raman Spectrosc. 46, 501–508 (2015).
[Crossref]

Mares, J. A.

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33, 593–596 (2001).
[Crossref]

Marfunin, A. S.

A. S. Marfunin, Spectroscopy, Luminescence and Radiation Centers in Minerals (Springer, 1979).

Mariscal, A.

V. Fuertes, A. Mariscal, R. Serna, F. J. Mompeán, M. García-Hernández, J. F. Fernández, and E. Enríquez, “Multifunctional ZnO/Fe-O and graphene oxide nanocomposites: enhancement of optical and magnetic properties,” J. Eur. Ceram. Soc. 37, 3747–3758 (2017).
[Crossref]

Mark, E. S.

K. J. D. MacKenzie and E. S. Mark, Multinuclear Solid-State NMR of Inorganic Materials (Pergamon, 2002).

Marseglia, E. A.

W. J. Rink, H. Rendell, E. A. Marseglia, B. J. Luff, and P. D. Townsend, “Thermoluminescence spectra of igneous quartz and hydrothermal vein quartz,” Phys. Chem. Miner. 20, 353–361 (1993).
[Crossref]

Martini, M.

G. P. Pazzi, P. Fabeni, C. Susini, M. Nikl, E. Mihokova, N. Solovieva, K. Nitsch, M. Martini, A. Vedda, S. Baccaro, A. Cecilia, and V. Babin, “Defect states induced by UV-laser irradiation in scintillating glasses,” Nucl. Instrum. Methods Phys. Res. Sect. B 191, 366–370 (2002).
[Crossref]

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33, 593–596 (2001).
[Crossref]

Mech, A.

M. Karbowiak, A. Mech, A. Bednarkiewicz, W. Stręk, and L. Kępiński, “Comparison of different NaGdF4:Eu3+ synthesis routes and their influence on its structural and luminescent properties,” J. Phys. Chem. Solids 66, 1008–1019 (2005).
[Crossref]

Mihokova, E.

G. P. Pazzi, P. Fabeni, C. Susini, M. Nikl, E. Mihokova, N. Solovieva, K. Nitsch, M. Martini, A. Vedda, S. Baccaro, A. Cecilia, and V. Babin, “Defect states induced by UV-laser irradiation in scintillating glasses,” Nucl. Instrum. Methods Phys. Res. Sect. B 191, 366–370 (2002).
[Crossref]

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33, 593–596 (2001).
[Crossref]

Mompeán, F. J.

V. Fuertes, A. Mariscal, R. Serna, F. J. Mompeán, M. García-Hernández, J. F. Fernández, and E. Enríquez, “Multifunctional ZnO/Fe-O and graphene oxide nanocomposites: enhancement of optical and magnetic properties,” J. Eur. Ceram. Soc. 37, 3747–3758 (2017).
[Crossref]

Montez, B.

R. J. Kirkpatrick, M. A. Carpenter, W. H. Yang, and B. Montez, “29Si magic-angle NMR spectroscopy of low-temperature ordered plagioclase feldspars,” Nature 325, 236–238 (1987).
[Crossref]

Muñoz, D.

V. Fuertes, M. J. Cabrera, J. Seores, D. Muñoz, J. F. Fernández, and E. Enríquez, “Hierarchical micro-nanostructured albite-based glass-ceramic for high dielectric strength insulators,” J. Eur. Ceram. Soc. 38, 2759–2766 (2018).
[Crossref]

E. Enríquez, V. Fuertes, M. J. Cabrera, J. Seores, D. Muñoz, and J. F. Fernández, “New strategy to mitigate urban heat island effect: energy saving by combining high albedo and low thermal diffusivity in glass ceramic materials,” Sol. Energy 149, 114–124 (2017).
[Crossref]

Nakano, S.

M. Kayama, S. Nakano, and H. Nishido, “Characteristics of emission centers in alkali feldspar: a new approach by using cathodoluminescence spectral deconvolution,” Am. Mineral. 95, 1783–1795 (2010).
[Crossref]

Nass, P.

L. Wondraczek, S. Krolikowski, and P. Nass, “Europium partitioning, luminescence re-absorption and quantum efficiency in (Sr, Ca) åkermanite–feldspar bi-phasic glass ceramics,” J. Mater. Chem. C 1, 4078–4086 (2013).
[Crossref]

Nikl, M.

G. P. Pazzi, P. Fabeni, C. Susini, M. Nikl, E. Mihokova, N. Solovieva, K. Nitsch, M. Martini, A. Vedda, S. Baccaro, A. Cecilia, and V. Babin, “Defect states induced by UV-laser irradiation in scintillating glasses,” Nucl. Instrum. Methods Phys. Res. Sect. B 191, 366–370 (2002).
[Crossref]

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33, 593–596 (2001).
[Crossref]

Nishido, H.

S. Maki, S. Ohgo, and H. Nishido, “Cathodoluminescence characterization of feldspar minerals from granite-syenite rocks in Iwagijima Island, Ehime Prefecture, Japan,” Naturalistae 538, S13–S16 (2016).
[Crossref]

M. Kayama, S. Nakano, and H. Nishido, “Characteristics of emission centers in alkali feldspar: a new approach by using cathodoluminescence spectral deconvolution,” Am. Mineral. 95, 1783–1795 (2010).
[Crossref]

Nistor, L.

L. Sanchez-Muñoz, L. Nistor, G. Van Tendeloo, and J. Sanz, “Modulated structures in KAlSi3O8: a study by high resolution electron microscopy and 29Si MAS-NMR spectroscopy,” J. Electron Microsc. 47, 17–28 (1998).
[Crossref]

Nitsch, K.

G. P. Pazzi, P. Fabeni, C. Susini, M. Nikl, E. Mihokova, N. Solovieva, K. Nitsch, M. Martini, A. Vedda, S. Baccaro, A. Cecilia, and V. Babin, “Defect states induced by UV-laser irradiation in scintillating glasses,” Nucl. Instrum. Methods Phys. Res. Sect. B 191, 366–370 (2002).
[Crossref]

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33, 593–596 (2001).
[Crossref]

Ohgo, S.

S. Maki, S. Ohgo, and H. Nishido, “Cathodoluminescence characterization of feldspar minerals from granite-syenite rocks in Iwagijima Island, Ehime Prefecture, Japan,” Naturalistae 538, S13–S16 (2016).
[Crossref]

Ohnenstetter, P.

D. Barbin, V. Pagel, M. Blanc, and P. Ohnenstetter, Cathodoluminescence in Geosciences (Springer, 2000).

Oldfields, E.

R. J. Kirkpatrick, R. A. Kinsey, K. A. Smith, D. M. Henderson, and E. Oldfields, “High resolution solid-state sodium-23, aluminum-27, and silicon-29 nuclear magnetic resonance spectroscopic reconnaissance of alkali and plagioclase feldspars,” Am. Mineral. 70, 106–123 (1985).

Ostrooumov, M.

M. Ostrooumov, Amazonite : Mineralogy, Crystal Chemistry, and Typomorphism (Elsevier, 2016).

Pagel, V.

D. Barbin, V. Pagel, M. Blanc, and P. Ohnenstetter, Cathodoluminescence in Geosciences (Springer, 2000).

Pazzi, G. P.

G. P. Pazzi, P. Fabeni, C. Susini, M. Nikl, E. Mihokova, N. Solovieva, K. Nitsch, M. Martini, A. Vedda, S. Baccaro, A. Cecilia, and V. Babin, “Defect states induced by UV-laser irradiation in scintillating glasses,” Nucl. Instrum. Methods Phys. Res. Sect. B 191, 366–370 (2002).
[Crossref]

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33, 593–596 (2001).
[Crossref]

Pinckney, L. R.

G. H. Beall and L. R. Pinckney, “Nanophase glass-ceramics,” J. Am. Ceram. Soc. 82, 5–16 (1999).
[Crossref]

Plötze, M.

J. Götze, M. Plötze, and D. Habermann, “Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz—a review,” Mineral. Petrol. 71, 225–250 (2001).
[Crossref]

Prencipe, M.

I. Aliatis, E. Lambruschi, L. Mantovani, D. Bersani, S. Andó, G. Diego Gatta, P. Gentile, E. Salvioli-Mariani, M. Prencipe, M. Tribaudino, and P. P. Lottici, “A comparison between ab initio calculated and measured Raman spectrum of triclinic albite (NaAlSi3O8),” J. Raman Spectrosc. 46, 501–508 (2015).
[Crossref]

Putnis, A.

A. Putnis, “Transformation processes in minerals I: exsolution,” in An Introduction to Mineral Sciences (Cambridge University Press, 1992), pp. 333–384.

A. Putnis, “The crystal structure of minerals II—silicates,” in An Introduction to Mineral Sciences (Cambridge University Press, 1992), pp. 141–184.

Quan, Q.

S. U. Rehman, Q. Jiang, W. Lei, L. He, Q. Tan, Q. Quan, L. Wang, M. Zhong, S. Ma, A. Ul Haq, and Z. Zhong, “Improved microstructure and magnetic properties of Alnico 8 Alloys by B-doping,” IEEE Trans. Magn. 54, 1–6 (2018).
[Crossref]

Rehman, S. U.

S. U. Rehman, Q. Jiang, W. Lei, L. He, Q. Tan, Q. Quan, L. Wang, M. Zhong, S. Ma, A. Ul Haq, and Z. Zhong, “Improved microstructure and magnetic properties of Alnico 8 Alloys by B-doping,” IEEE Trans. Magn. 54, 1–6 (2018).
[Crossref]

Rendell, H.

W. J. Rink, H. Rendell, E. A. Marseglia, B. J. Luff, and P. D. Townsend, “Thermoluminescence spectra of igneous quartz and hydrothermal vein quartz,” Phys. Chem. Miner. 20, 353–361 (1993).
[Crossref]

Rendell, H. M.

M. L. Clarke and H. M. Rendell, “Infra-red stimulated luminescence spectra of alkali feldspars,” Radiat. Meas. 27, 221–236 (1997).
[Crossref]

Richter, D. K.

D. K. Richter, T. Götte, and D. Habermann, “Cathodoluminescence of authigenic albite,” Sediment. Geol. 150, 367–374 (2002).
[Crossref]

Rieser, U.

M. R. Krbetschek, J. Götze, G. Irmer, U. Rieser, and T. Trautmann, “The red luminescence emission of feldspar and its wavelength dependence on K, Na, Ca—composition,” Mineral. Petrol. 76, 167–177 (2002).
[Crossref]

Rink, W. J.

W. J. Rink, H. Rendell, E. A. Marseglia, B. J. Luff, and P. D. Townsend, “Thermoluminescence spectra of igneous quartz and hydrothermal vein quartz,” Phys. Chem. Miner. 20, 353–361 (1993).
[Crossref]

Rivera, T.

V. Correcher, J. Garcia-Guinea, L. Sanchez-Muñoz, and T. Rivera, “Luminescence characterization of a sodium-rich feldspar,” Radiat. Eff. Defects Solids 162, 709–714 (2007).
[Crossref]

Rodríguez, E. A.

J. E. Contreras and E. A. Rodríguez, “Nanostructured insulators—a review of nanotechnology concepts for outdoor ceramic insulators,” Ceram. Int. 43, 8545–8550 (2017).
[Crossref]

Rojas-Hernandez, R. E.

R. E. Rojas-Hernandez, F. Rubio-Marcos, A. Serrano, A. D. Campo, and J. F. Fernandez, “Precise tuning of the nanostructured surface leading to the luminescence enhancement in SrAl2O4 based core/shell structure,” Sci. Rep. 7, 1–9 (2017).
[Crossref]

Rojo, J. M.

J. Garcia-Guinea, P. D. Townsend, L. Sanchez-Munoz, and J. M. Rojo, “Ultraviolet-blue ionic luminescence of alkali feldspars from bulk and interfaces,” Phys. Chem. Miner. 26, 658–667 (1999).
[Crossref]

Ronda, C. R.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater. 13, 511–516 (2003).
[Crossref]

Rubio-Marcos, F.

R. E. Rojas-Hernandez, F. Rubio-Marcos, A. Serrano, A. D. Campo, and J. F. Fernandez, “Precise tuning of the nanostructured surface leading to the luminescence enhancement in SrAl2O4 based core/shell structure,” Sci. Rep. 7, 1–9 (2017).
[Crossref]

Salvioli-Mariani, E.

I. Aliatis, E. Lambruschi, L. Mantovani, D. Bersani, S. Andó, G. Diego Gatta, P. Gentile, E. Salvioli-Mariani, M. Prencipe, M. Tribaudino, and P. P. Lottici, “A comparison between ab initio calculated and measured Raman spectrum of triclinic albite (NaAlSi3O8),” J. Raman Spectrosc. 46, 501–508 (2015).
[Crossref]

Sanchez-Munoz, L.

J. Garcia-Guinea, P. D. Townsend, L. Sanchez-Munoz, and J. M. Rojo, “Ultraviolet-blue ionic luminescence of alkali feldspars from bulk and interfaces,” Phys. Chem. Miner. 26, 658–667 (1999).
[Crossref]

Sanchez-Muñoz, L.

V. Correcher, J. Garcia-Guinea, L. Sanchez-Muñoz, and T. Rivera, “Luminescence characterization of a sodium-rich feldspar,” Radiat. Eff. Defects Solids 162, 709–714 (2007).
[Crossref]

J. Garcia-Guinea, V. Correcher, L. Sanchez-Muñoz, A. A. Finch, D. E. Hole, and P. D. Townsend, “On the luminescence emission band at 340  nm of stressed tectosilicate lattices,” Nucl. Instrum. Methods Phys. Res. Sect. A 580, 648–651 (2007).
[Crossref]

L. Sanchez-Muñoz, L. Nistor, G. Van Tendeloo, and J. Sanz, “Modulated structures in KAlSi3O8: a study by high resolution electron microscopy and 29Si MAS-NMR spectroscopy,” J. Electron Microsc. 47, 17–28 (1998).
[Crossref]

Sánchez-Munõz, L.

L. Sánchez-Munõz, A. Del Campo, and J. F. Fernández, “Symmetry constraints during the development of anisotropic spinodal patterns,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

Sanz, J.

L. Sanchez-Muñoz, L. Nistor, G. Van Tendeloo, and J. Sanz, “Modulated structures in KAlSi3O8: a study by high resolution electron microscopy and 29Si MAS-NMR spectroscopy,” J. Electron Microsc. 47, 17–28 (1998).
[Crossref]

Schmidt, P. J.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater. 13, 511–516 (2003).
[Crossref]

Seok, H. K.

M. U. Kim, J. P. Ahn, H. K. Seok, E. Fleury, H. J. Chang, D. H. Kim, P. R. Cha, and Y. C. Kim, “Application of spinodal decomposition to produce metallic glass matrix composite with simultaneous improvement of strength and plasticity,” Met. Mater. Int. 15, 193–196 (2009).
[Crossref]

Seores, J.

V. Fuertes, M. J. Cabrera, J. Seores, D. Muñoz, J. F. Fernández, and E. Enríquez, “Hierarchical micro-nanostructured albite-based glass-ceramic for high dielectric strength insulators,” J. Eur. Ceram. Soc. 38, 2759–2766 (2018).
[Crossref]

E. Enríquez, V. Fuertes, M. J. Cabrera, J. Seores, D. Muñoz, and J. F. Fernández, “New strategy to mitigate urban heat island effect: energy saving by combining high albedo and low thermal diffusivity in glass ceramic materials,” Sol. Energy 149, 114–124 (2017).
[Crossref]

Serna, R.

V. Fuertes, A. Mariscal, R. Serna, F. J. Mompeán, M. García-Hernández, J. F. Fernández, and E. Enríquez, “Multifunctional ZnO/Fe-O and graphene oxide nanocomposites: enhancement of optical and magnetic properties,” J. Eur. Ceram. Soc. 37, 3747–3758 (2017).
[Crossref]

Serrano, A.

R. E. Rojas-Hernandez, F. Rubio-Marcos, A. Serrano, A. D. Campo, and J. F. Fernandez, “Precise tuning of the nanostructured surface leading to the luminescence enhancement in SrAl2O4 based core/shell structure,” Sci. Rep. 7, 1–9 (2017).
[Crossref]

Seshadri, R.

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43, 481–501 (2013).
[Crossref]

Shepilov, M.

O. Dymshits, M. Shepilov, and A. Zhilin, “Transparent glass-ceramics for optical applications,” MRS Bull. 42(3), 200–205 (2017).
[Crossref]

Slaats, P. G. G.

P. G. G. Slaats, G. J. Dirksen, and G. Blasse, “Luminescence of some activators in synthetic potassium feldspar crystals,” Mater. Chem. Phys. 30, 19–23 (1991).
[Crossref]

Smith, K. A.

R. J. Kirkpatrick, R. A. Kinsey, K. A. Smith, D. M. Henderson, and E. Oldfields, “High resolution solid-state sodium-23, aluminum-27, and silicon-29 nuclear magnetic resonance spectroscopic reconnaissance of alkali and plagioclase feldspars,” Am. Mineral. 70, 106–123 (1985).

Solovieva, N.

G. P. Pazzi, P. Fabeni, C. Susini, M. Nikl, E. Mihokova, N. Solovieva, K. Nitsch, M. Martini, A. Vedda, S. Baccaro, A. Cecilia, and V. Babin, “Defect states induced by UV-laser irradiation in scintillating glasses,” Nucl. Instrum. Methods Phys. Res. Sect. B 191, 366–370 (2002).
[Crossref]

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33, 593–596 (2001).
[Crossref]

Strek, W.

M. Karbowiak, A. Mech, A. Bednarkiewicz, W. Stręk, and L. Kępiński, “Comparison of different NaGdF4:Eu3+ synthesis routes and their influence on its structural and luminescent properties,” J. Phys. Chem. Solids 66, 1008–1019 (2005).
[Crossref]

Susini, C.

G. P. Pazzi, P. Fabeni, C. Susini, M. Nikl, E. Mihokova, N. Solovieva, K. Nitsch, M. Martini, A. Vedda, S. Baccaro, A. Cecilia, and V. Babin, “Defect states induced by UV-laser irradiation in scintillating glasses,” Nucl. Instrum. Methods Phys. Res. Sect. B 191, 366–370 (2002).
[Crossref]

Tan, Q.

S. U. Rehman, Q. Jiang, W. Lei, L. He, Q. Tan, Q. Quan, L. Wang, M. Zhong, S. Ma, A. Ul Haq, and Z. Zhong, “Improved microstructure and magnetic properties of Alnico 8 Alloys by B-doping,” IEEE Trans. Magn. 54, 1–6 (2018).
[Crossref]

Terebinska, M. I.

O. V. Filonenko, V. S. Kuts, M. I. Terebinska, and V. V. Lobanov, “Quantum chemical calculation of 29Si NMR spectrum of silicone dioxide fullerene-like molecules,” Chem. Phys. Technol. Surf. 6, 263–268 (2015).
[Crossref]

Townsend, P. D.

J. Garcia-Guinea, V. Correcher, L. Sanchez-Muñoz, A. A. Finch, D. E. Hole, and P. D. Townsend, “On the luminescence emission band at 340  nm of stressed tectosilicate lattices,” Nucl. Instrum. Methods Phys. Res. Sect. A 580, 648–651 (2007).
[Crossref]

J. Garcia-Guinea, P. D. Townsend, L. Sanchez-Munoz, and J. M. Rojo, “Ultraviolet-blue ionic luminescence of alkali feldspars from bulk and interfaces,” Phys. Chem. Miner. 26, 658–667 (1999).
[Crossref]

W. J. Rink, H. Rendell, E. A. Marseglia, B. J. Luff, and P. D. Townsend, “Thermoluminescence spectra of igneous quartz and hydrothermal vein quartz,” Phys. Chem. Miner. 20, 353–361 (1993).
[Crossref]

Y. Kirsh and P. D. Townsend, “Speculations on the blue and red bands in the TL emission spectrum of albite and microcline,” Int. J. Radiat. Appl. Instrum. Part D 14, 43–49 (1988).

Trautmann, T.

M. R. Krbetschek, J. Götze, G. Irmer, U. Rieser, and T. Trautmann, “The red luminescence emission of feldspar and its wavelength dependence on K, Na, Ca—composition,” Mineral. Petrol. 76, 167–177 (2002).
[Crossref]

Tribaudino, M.

D. Bersani, I. Aliatis, M. Tribaudino, L. Mantovani, A. Benisek, M. A. Carpenter, G. D. Gatta, and P. P. Lottici, “Plagioclase composition by Raman spectroscopy,” J. Raman Spectrosc. 49, 684–698 (2018).
[Crossref]

I. Aliatis, E. Lambruschi, L. Mantovani, D. Bersani, S. Andó, G. Diego Gatta, P. Gentile, E. Salvioli-Mariani, M. Prencipe, M. Tribaudino, and P. P. Lottici, “A comparison between ab initio calculated and measured Raman spectrum of triclinic albite (NaAlSi3O8),” J. Raman Spectrosc. 46, 501–508 (2015).
[Crossref]

Ul Haq, A.

S. U. Rehman, Q. Jiang, W. Lei, L. He, Q. Tan, Q. Quan, L. Wang, M. Zhong, S. Ma, A. Ul Haq, and Z. Zhong, “Improved microstructure and magnetic properties of Alnico 8 Alloys by B-doping,” IEEE Trans. Magn. 54, 1–6 (2018).
[Crossref]

Van Der Plas, L.

L. Van Der Plas, “The x-ray powder patterns of feldspars,” in Developments in Sedimentology (Elsevier, 1966), Vol. 6, pp. 211–212.

Van Tendeloo, G.

L. Sanchez-Muñoz, L. Nistor, G. Van Tendeloo, and J. Sanz, “Modulated structures in KAlSi3O8: a study by high resolution electron microscopy and 29Si MAS-NMR spectroscopy,” J. Electron Microsc. 47, 17–28 (1998).
[Crossref]

Vedda, A.

G. P. Pazzi, P. Fabeni, C. Susini, M. Nikl, E. Mihokova, N. Solovieva, K. Nitsch, M. Martini, A. Vedda, S. Baccaro, A. Cecilia, and V. Babin, “Defect states induced by UV-laser irradiation in scintillating glasses,” Nucl. Instrum. Methods Phys. Res. Sect. B 191, 366–370 (2002).
[Crossref]

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33, 593–596 (2001).
[Crossref]

Verelst, M.

N. Joffin, J. Dexpert-Ghys, M. Verelst, G. Baret, and A. Garcia, “The influence of microstructure on luminescent properties of Y2O3:Eu prepared by spray pyrolysis,” J. Lumin. 113, 249–257 (2005).
[Crossref]

Wang, L.

S. U. Rehman, Q. Jiang, W. Lei, L. He, Q. Tan, Q. Quan, L. Wang, M. Zhong, S. Ma, A. Ul Haq, and Z. Zhong, “Improved microstructure and magnetic properties of Alnico 8 Alloys by B-doping,” IEEE Trans. Magn. 54, 1–6 (2018).
[Crossref]

Wang, Y.

X. Cui, Y. Cheng, H. Lin, F. Huang, Q. Wu, and Y. Wang, “Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles,” Nanoscale 9, 13794–13799 (2017).
[Crossref]

Wondraczek, L.

L. Wondraczek, S. Krolikowski, and P. Nass, “Europium partitioning, luminescence re-absorption and quantum efficiency in (Sr, Ca) åkermanite–feldspar bi-phasic glass ceramics,” J. Mater. Chem. C 1, 4078–4086 (2013).
[Crossref]

Wu, Q.

X. Cui, Y. Cheng, H. Lin, F. Huang, Q. Wu, and Y. Wang, “Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles,” Nanoscale 9, 13794–13799 (2017).
[Crossref]

Yang, W. H.

R. J. Kirkpatrick, M. A. Carpenter, W. H. Yang, and B. Montez, “29Si magic-angle NMR spectroscopy of low-temperature ordered plagioclase feldspars,” Nature 325, 236–238 (1987).
[Crossref]

W. H. Yang, R. J. Kirkpatrick, and D. M. Henderson, “High-resolution 29Si, 27Al and 23Na NMR spectroscopic study of Al-Si disordering in annealed albite and oligoclase,” Am. Mineral. 71, 712–726 (1986).

Zazubovich, S.

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33, 593–596 (2001).
[Crossref]

Zhilin, A.

O. Dymshits, M. Shepilov, and A. Zhilin, “Transparent glass-ceramics for optical applications,” MRS Bull. 42(3), 200–205 (2017).
[Crossref]

Zhong, M.

S. U. Rehman, Q. Jiang, W. Lei, L. He, Q. Tan, Q. Quan, L. Wang, M. Zhong, S. Ma, A. Ul Haq, and Z. Zhong, “Improved microstructure and magnetic properties of Alnico 8 Alloys by B-doping,” IEEE Trans. Magn. 54, 1–6 (2018).
[Crossref]

Zhong, Z.

S. U. Rehman, Q. Jiang, W. Lei, L. He, Q. Tan, Q. Quan, L. Wang, M. Zhong, S. Ma, A. Ul Haq, and Z. Zhong, “Improved microstructure and magnetic properties of Alnico 8 Alloys by B-doping,” IEEE Trans. Magn. 54, 1–6 (2018).
[Crossref]

Adv. Funct. Mater. (1)

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater. 13, 511–516 (2003).
[Crossref]

Am. Mineral. (3)

M. Kayama, S. Nakano, and H. Nishido, “Characteristics of emission centers in alkali feldspar: a new approach by using cathodoluminescence spectral deconvolution,” Am. Mineral. 95, 1783–1795 (2010).
[Crossref]

R. J. Kirkpatrick, R. A. Kinsey, K. A. Smith, D. M. Henderson, and E. Oldfields, “High resolution solid-state sodium-23, aluminum-27, and silicon-29 nuclear magnetic resonance spectroscopic reconnaissance of alkali and plagioclase feldspars,” Am. Mineral. 70, 106–123 (1985).

W. H. Yang, R. J. Kirkpatrick, and D. M. Henderson, “High-resolution 29Si, 27Al and 23Na NMR spectroscopic study of Al-Si disordering in annealed albite and oligoclase,” Am. Mineral. 71, 712–726 (1986).

Anal. Bioanal. Chem. (1)

J. Götze, “Potential of cathodoluminescence (CL) microscopy and spectroscopy for the analysis of minerals and materials,” Anal. Bioanal. Chem. 374, 703–708 (2002).
[Crossref]

Annu. Rev. Mater. Res. (1)

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43, 481–501 (2013).
[Crossref]

Canad. Mineral. (1)

J. Freeman, E. Kuebler, L. Jolliff, and A. Haskin, “Characterization of natural feldspars by Raman spectroscopy for future planetary exploration,” Canad. Mineral. 46, 1477–1500 (2008).
[Crossref]

Ceram. Int. (1)

J. E. Contreras and E. A. Rodríguez, “Nanostructured insulators—a review of nanotechnology concepts for outdoor ceramic insulators,” Ceram. Int. 43, 8545–8550 (2017).
[Crossref]

Chem. Phys. Technol. Surf. (1)

O. V. Filonenko, V. S. Kuts, M. I. Terebinska, and V. V. Lobanov, “Quantum chemical calculation of 29Si NMR spectrum of silicone dioxide fullerene-like molecules,” Chem. Phys. Technol. Surf. 6, 263–268 (2015).
[Crossref]

IEEE Trans. Magn. (1)

S. U. Rehman, Q. Jiang, W. Lei, L. He, Q. Tan, Q. Quan, L. Wang, M. Zhong, S. Ma, A. Ul Haq, and Z. Zhong, “Improved microstructure and magnetic properties of Alnico 8 Alloys by B-doping,” IEEE Trans. Magn. 54, 1–6 (2018).
[Crossref]

Int. J. Radiat. Appl. Instrum. Part D (2)

D. J. Huntley, D. I. Godfrey-Smith, and E. H. Haskell, “Light-induced emission spectra from some quartz and feldspars,” Int. J. Radiat. Appl. Instrum. Part D 18, 127–134 (1991).
[Crossref]

Y. Kirsh and P. D. Townsend, “Speculations on the blue and red bands in the TL emission spectrum of albite and microcline,” Int. J. Radiat. Appl. Instrum. Part D 14, 43–49 (1988).

IOP Conf. Ser. Mater. Sci. Eng. (1)

D. Ehrt, “Photoluminescence in glasses and glass ceramics,” IOP Conf. Ser. Mater. Sci. Eng. 2, 012001 (2009).
[Crossref]

J. Am. Ceram. Soc. (1)

G. H. Beall and L. R. Pinckney, “Nanophase glass-ceramics,” J. Am. Ceram. Soc. 82, 5–16 (1999).
[Crossref]

J. Electron Microsc. (1)

L. Sanchez-Muñoz, L. Nistor, G. Van Tendeloo, and J. Sanz, “Modulated structures in KAlSi3O8: a study by high resolution electron microscopy and 29Si MAS-NMR spectroscopy,” J. Electron Microsc. 47, 17–28 (1998).
[Crossref]

J. Eur. Ceram. Soc. (2)

V. Fuertes, M. J. Cabrera, J. Seores, D. Muñoz, J. F. Fernández, and E. Enríquez, “Hierarchical micro-nanostructured albite-based glass-ceramic for high dielectric strength insulators,” J. Eur. Ceram. Soc. 38, 2759–2766 (2018).
[Crossref]

V. Fuertes, A. Mariscal, R. Serna, F. J. Mompeán, M. García-Hernández, J. F. Fernández, and E. Enríquez, “Multifunctional ZnO/Fe-O and graphene oxide nanocomposites: enhancement of optical and magnetic properties,” J. Eur. Ceram. Soc. 37, 3747–3758 (2017).
[Crossref]

J. Lumin. (1)

N. Joffin, J. Dexpert-Ghys, M. Verelst, G. Baret, and A. Garcia, “The influence of microstructure on luminescent properties of Y2O3:Eu prepared by spray pyrolysis,” J. Lumin. 113, 249–257 (2005).
[Crossref]

J. Mater. Chem. C (1)

L. Wondraczek, S. Krolikowski, and P. Nass, “Europium partitioning, luminescence re-absorption and quantum efficiency in (Sr, Ca) åkermanite–feldspar bi-phasic glass ceramics,” J. Mater. Chem. C 1, 4078–4086 (2013).
[Crossref]

J. Phys. Chem. Solids (1)

M. Karbowiak, A. Mech, A. Bednarkiewicz, W. Stręk, and L. Kępiński, “Comparison of different NaGdF4:Eu3+ synthesis routes and their influence on its structural and luminescent properties,” J. Phys. Chem. Solids 66, 1008–1019 (2005).
[Crossref]

J. Raman Spectrosc. (2)

D. Bersani, I. Aliatis, M. Tribaudino, L. Mantovani, A. Benisek, M. A. Carpenter, G. D. Gatta, and P. P. Lottici, “Plagioclase composition by Raman spectroscopy,” J. Raman Spectrosc. 49, 684–698 (2018).
[Crossref]

I. Aliatis, E. Lambruschi, L. Mantovani, D. Bersani, S. Andó, G. Diego Gatta, P. Gentile, E. Salvioli-Mariani, M. Prencipe, M. Tribaudino, and P. P. Lottici, “A comparison between ab initio calculated and measured Raman spectrum of triclinic albite (NaAlSi3O8),” J. Raman Spectrosc. 46, 501–508 (2015).
[Crossref]

Mater. Chem. Phys. (2)

P. G. G. Slaats, G. J. Dirksen, and G. Blasse, “Luminescence of some activators in synthetic potassium feldspar crystals,” Mater. Chem. Phys. 30, 19–23 (1991).
[Crossref]

G. Boulon, “Luminescence in glassy and glass ceramic materials,” Mater. Chem. Phys. 16, 301–347 (1987).
[Crossref]

Met. Mater. Int. (1)

M. U. Kim, J. P. Ahn, H. K. Seok, E. Fleury, H. J. Chang, D. H. Kim, P. R. Cha, and Y. C. Kim, “Application of spinodal decomposition to produce metallic glass matrix composite with simultaneous improvement of strength and plasticity,” Met. Mater. Int. 15, 193–196 (2009).
[Crossref]

Mineral. Mag. (1)

J. Götze, “Defect structure and luminescence behaviour of agate—results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies,” Mineral. Mag. 63(2), 149–163 (1999).
[Crossref]

Mineral. Petrol. (2)

J. Götze, M. Plötze, and D. Habermann, “Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz—a review,” Mineral. Petrol. 71, 225–250 (2001).
[Crossref]

M. R. Krbetschek, J. Götze, G. Irmer, U. Rieser, and T. Trautmann, “The red luminescence emission of feldspar and its wavelength dependence on K, Na, Ca—composition,” Mineral. Petrol. 76, 167–177 (2002).
[Crossref]

MRS Bull. (1)

O. Dymshits, M. Shepilov, and A. Zhilin, “Transparent glass-ceramics for optical applications,” MRS Bull. 42(3), 200–205 (2017).
[Crossref]

Nanoscale (1)

X. Cui, Y. Cheng, H. Lin, F. Huang, Q. Wu, and Y. Wang, “Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles,” Nanoscale 9, 13794–13799 (2017).
[Crossref]

Naturalistae (1)

S. Maki, S. Ohgo, and H. Nishido, “Cathodoluminescence characterization of feldspar minerals from granite-syenite rocks in Iwagijima Island, Ehime Prefecture, Japan,” Naturalistae 538, S13–S16 (2016).
[Crossref]

Nature (1)

R. J. Kirkpatrick, M. A. Carpenter, W. H. Yang, and B. Montez, “29Si magic-angle NMR spectroscopy of low-temperature ordered plagioclase feldspars,” Nature 325, 236–238 (1987).
[Crossref]

Nucl. Instrum. Methods Phys. Res. Sect. A (1)

J. Garcia-Guinea, V. Correcher, L. Sanchez-Muñoz, A. A. Finch, D. E. Hole, and P. D. Townsend, “On the luminescence emission band at 340  nm of stressed tectosilicate lattices,” Nucl. Instrum. Methods Phys. Res. Sect. A 580, 648–651 (2007).
[Crossref]

Nucl. Instrum. Methods Phys. Res. Sect. B (1)

G. P. Pazzi, P. Fabeni, C. Susini, M. Nikl, E. Mihokova, N. Solovieva, K. Nitsch, M. Martini, A. Vedda, S. Baccaro, A. Cecilia, and V. Babin, “Defect states induced by UV-laser irradiation in scintillating glasses,” Nucl. Instrum. Methods Phys. Res. Sect. B 191, 366–370 (2002).
[Crossref]

Phys. Chem. Miner. (2)

J. Garcia-Guinea, P. D. Townsend, L. Sanchez-Munoz, and J. M. Rojo, “Ultraviolet-blue ionic luminescence of alkali feldspars from bulk and interfaces,” Phys. Chem. Miner. 26, 658–667 (1999).
[Crossref]

W. J. Rink, H. Rendell, E. A. Marseglia, B. J. Luff, and P. D. Townsend, “Thermoluminescence spectra of igneous quartz and hydrothermal vein quartz,” Phys. Chem. Miner. 20, 353–361 (1993).
[Crossref]

Radiat. Eff. Defects Solids (1)

V. Correcher, J. Garcia-Guinea, L. Sanchez-Muñoz, and T. Rivera, “Luminescence characterization of a sodium-rich feldspar,” Radiat. Eff. Defects Solids 162, 709–714 (2007).
[Crossref]

Radiat. Meas. (2)

M. L. Clarke and H. M. Rendell, “Infra-red stimulated luminescence spectra of alkali feldspars,” Radiat. Meas. 27, 221–236 (1997).
[Crossref]

M. Nikl, J. A. Mares, E. Mihokova, K. Nitsch, N. Solovieva, V. Babin, A. Krasnikov, S. Zazubovich, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses,” Radiat. Meas. 33, 593–596 (2001).
[Crossref]

Sci. Rep. (2)

R. E. Rojas-Hernandez, F. Rubio-Marcos, A. Serrano, A. D. Campo, and J. F. Fernandez, “Precise tuning of the nanostructured surface leading to the luminescence enhancement in SrAl2O4 based core/shell structure,” Sci. Rep. 7, 1–9 (2017).
[Crossref]

L. Sánchez-Munõz, A. Del Campo, and J. F. Fernández, “Symmetry constraints during the development of anisotropic spinodal patterns,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

Sediment. Geol. (1)

D. K. Richter, T. Götte, and D. Habermann, “Cathodoluminescence of authigenic albite,” Sediment. Geol. 150, 367–374 (2002).
[Crossref]

Sol. Energy (1)

E. Enríquez, V. Fuertes, M. J. Cabrera, J. Seores, D. Muñoz, and J. F. Fernández, “New strategy to mitigate urban heat island effect: energy saving by combining high albedo and low thermal diffusivity in glass ceramic materials,” Sol. Energy 149, 114–124 (2017).
[Crossref]

Spectrosc. Lett. (1)

A. Aparicio and M. Á. Bustillo, “Cathodoluminescence spectral characteristics of quartz and feldspars in unaltered and hydrothermally altered volcanic rocks (Almeria, Spain),” Spectrosc. Lett. 45, 104–108 (2012).
[Crossref]

Turkish J. Phys. (1)

M. A. Kasymdzhanov and P. K. Khabibullaev, “Nanosecond duration broadband luminescence of quartz glasses,” Turkish J. Phys. 22, 475–480 (1998).

Other (8)

V. F. de la Llave, A. del Campo, J. F. Fernández, and E. Enríquez, “Structural insights of hierarchically engineered feldspars by confocal Raman microscopy,” J. Raman Spectrosc. (2019) https://doi.org/10.1002/jrs.5556 (early view).
[Crossref]

M. Ostrooumov, Amazonite : Mineralogy, Crystal Chemistry, and Typomorphism (Elsevier, 2016).

D. Barbin, V. Pagel, M. Blanc, and P. Ohnenstetter, Cathodoluminescence in Geosciences (Springer, 2000).

A. S. Marfunin, Spectroscopy, Luminescence and Radiation Centers in Minerals (Springer, 1979).

A. Putnis, “The crystal structure of minerals II—silicates,” in An Introduction to Mineral Sciences (Cambridge University Press, 1992), pp. 141–184.

L. Van Der Plas, “The x-ray powder patterns of feldspars,” in Developments in Sedimentology (Elsevier, 1966), Vol. 6, pp. 211–212.

A. Putnis, “Transformation processes in minerals I: exsolution,” in An Introduction to Mineral Sciences (Cambridge University Press, 1992), pp. 333–384.

K. J. D. MacKenzie and E. S. Mark, Multinuclear Solid-State NMR of Inorganic Materials (Pergamon, 2002).

Supplementary Material (1)

NameDescription
» Supplement 1       Revised Supplementary material

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Enhancement of photoluminescence in glass-ceramic in comparison with thermally treated (TT) Na-rich feldspar mineral. Room-temperature photoluminescence spectra in 1220 °C, 6 min thermal-treated glass-ceramic (blue) and in a Na-rich feldspar mineral TT (black): (a), (c) excitation spectra under λem=394nm for glass-ceramic material and λem=390nm for the Na-rich feldspar mineral TT; (b) UV–blue emission spectra for λexc=322nm [blue highlighted band in (a)]; (d) emission spectra in the range 550–700 nm [red highlighted band in (c)] under λexc=355nm and 356 nm for glass-ceramic and Na-rich feldspar mineral TT, respectively; and (e), (f) deconvolution of UV–blue emission for glass-ceramic and Na-rich feldspar mineral TT, respectively. Each defect-related emission is associated with the same color in order to make easier the comparison between each.
Fig. 2.
Fig. 2. Structural, microstructural, and morphological characterization of glass-ceramic and mineral Na-rich feldspar: (a) XRD pattern for Na-rich feldspar mineral (in black), Na-rich feldspar glass (in pink), and the glass-ceramic (in blue); (b) Raman spectrum of the glass-ceramic showing that Na-rich plagioclase is the major phase; (c) FESEM micrograph for glass-ceramic showing the presence of large microcrystals almost isolated by nanostructured regions; (d) TEM micrograph showing stripped patterns of microcrystals in addition of the appearance on nanocrystals in the nanostructured regions; (e) detailed presence of nanocrystals embedded in a glass matrix in the nanostructured regions; (f) HRTEM micrograph of a selected region in microcrystal with high crystallinity; and (g) HRTEM micrographs of microcrystals showing crystalline modulation of the interplanar spacing.
Fig. 3.
Fig. 3. Processing dependence of luminescence in glass-ceramics: FESEM micrographs for glass-ceramic for different thermal treatments: (a) 1100°C and quenched, (b) 1220°C and quenched, and (c) 1220°C and slow cooled. Emission spectra for glass-ceramic thermally treated at 1100°C and quenched (in black), at 1220°C and quenched (in orange), and at 1220°C and slow cooled (in blue) are showed for different excitation wavelengths: (d) λexc=322 and (e) λexc=355nm.
Fig. 4.
Fig. 4. Microscopic analysis of the cathodoluminescence occurrence: (a) SEM-CL micrograph of micro-nanostructured fast-sintered glass-ceramic; (b) characteristic SEM-CL spectra for microstructured and nanostructured regions; and (c), (d) the corresponding deconvolutions of CL spectra for microcrystals and nanocrystals, respectively, showing different emission bands associated with defects tabulated in Table 3.
Fig. 5.
Fig. 5. Structural evolution of Si29 NMR spectra with crystallization: (a) the precursor frit and (b) the micro-nanostructured glass-ceramic sintered at 1220°C and slow cooled. Deconvolution of Si29 NMR spectrum in different chemical shift peaks is shown by colored peaks indicating a different polymerization state of Qn units (assignment of chemical shift peak is summarized in Table 4).

Tables (4)

Tables Icon

Table 1. Chemical Composition of the Glass-Ceramic and the Natural Na-Rich Feldspar, Expressed as wt. % of Equivalent Oxides

Tables Icon

Table 2. PL Emission Peaks, Excitation Wavelength (First Wavelength Corresponds to the Glass-Ceramic While the Second One to the Thermally Treated Mineral), Intensity Ratios, and Peak Assignments for Glass-Ceramic and Thermally Treated Mineral Feldspar Peaks

Tables Icon

Table 3. Assignment of the Main Emission Peaks: CL Emission Peak Positions of Deconvoluted Spectra for Microcrystals and Nanocrystals in the Glass-Ceramica

Tables Icon

Table 4. Assignments of Deconvoluted Si29 NMR Spectrum: Chemical Shift (ppm), Area Contribution (%), and Assignment for Each Deconvoluted Band of the Si29 NMR Spectrum for the Precursor Frit and the Micro-Nanostructured Glass-Ceramic Sintered at 1220°C and Slow Cooleda