Abstract

Smith–Purcell radiation (SPR) is electromagnetic radiation generated by free electrons passing over a periodic grating. Here, having the electron beam pass through 30 nm wide slots in an Al grating greatly shortens the SPR wavelength, and a directional, ultra-broadband, tunable light source spanning λ02301100nm is demonstrated. By adjusting the electron energy, backward SPR can be tuned over λ0=251340nm. This work greatly extends the wavelength of SPR from the previously reported 320 nm to 230 nm, and provides a means of realizing an integrated free-electron broadband light source covering the deep ultraviolet.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Angular radiation pattern of Smith–Purcell radiation

A. Gover, P. Dvorkis, and U. Elisha
J. Opt. Soc. Am. B 1(5) 723-728 (1984)

Measurements of Smith–Purcell radiation

I. Shih, W. W. Salisbury, D. L. Masters, and D. B. Chang
J. Opt. Soc. Am. B 7(3) 345-350 (1990)

Characteristic analysis of a Smith–Purcell terahertz source

Xian-Zhu Meng, Ming-Hong Wang, Li-Ming Zhang, and Zhong-Min Ren
Photon. Res. 4(5) 162-167 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
    [Crossref]
  2. S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109, 153902 (2012).
    [Crossref]
  3. J. K. So, F. J. García de Abajo, K. F. MacDonald, and N. I. Zheludev, “Amplification of the evanescent field of free electrons,” ACS Photon. 2, 1236–1240 (2015).
    [Crossref]
  4. I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7, 011003 (2017).
    [Crossref]
  5. Z. Duan, X. Tang, Z. Wang, Y. Zhang, X. Chen, M. Chen, and Y. Gong, “Observation of the reversed Cherenkov radiation,” Nat. Commun. 8, 14901 (2017).
    [Crossref]
  6. Y. Tian, J. Liu, Y. Bai, S. Zhou, H. Sun, W. Liu, J. Zhao, R. Li, and Z. Xu, “Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation,” Nat. Photonics 11, 242–246 (2017).
    [Crossref]
  7. M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schäfer, and C. Ropers, “Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics,” Science 345, 200–204 (2014).
    [Crossref]
  8. T. M. Shaffer, E. C. Pratt, and J. Grimm, “Utilizing the power of Cerenkov light with nanotechnology,” Nat. Nanotechnol. 12, 106–117 (2017).
    [Crossref]
  9. G. Adamo, K. F. MacDonald, Y. H. Fu, C. M. Wang, D. P. Tsai, F. G. de Abajo, and N. I. Zheludev, “Light well: a tunable free-electron light source on a chip,” Phys. Rev. Lett. 103, 113901 (2009).
    [Crossref]
  10. G. Adamo, J. Y. Ou, J. K. So, S. D. Jenkins, F. De Angelis, K. F. MacDonald, E. Di Fabrizio, J. Ruostekosk, and N. I. Zheludev, “Electron-beam-driven collective-mode metamaterial light source,” Phys. Rev. Lett. 109, 217401 (2012).
    [Crossref]
  11. E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
    [Crossref]
  12. L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to x-ray sources,” Nat. Photonics 10, 46–52 (2016).
    [Crossref]
  13. F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated Cherenkov radiation emitter eliminating the electron velocity threshold,” Nat. Photonics 11, 289–292 (2017).
    [Crossref]
  14. F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
    [Crossref]
  15. S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069 (1953).
    [Crossref]
  16. J. R. Helliwell, “Synchrotron radiation facilities,” Nat. Struct. Biol. 5, 614–617 (1998).
    [Crossref]
  17. J. L. Hirshfield, D. E. Baldwin, and S. C. Brown, “Cyclotron radiation from a hot plasma,” Phys. Fluids 4, 198 (1961).
    [Crossref]
  18. Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell emission with Babinet metasurfaces,” Phys. Rev. Lett. 117, 157401 (2016).
    [Crossref]
  19. Y. Yang, C. Roques-Carmes, I. Kaminer, A. Zaidi, A. Massuda, Y. Yang, S. E. Kooi, K. K. Berggren, and M. Soljačić, “Manipulating Smith-Purcell radiation polarization with metasurfaces,” in Conference on Lasers and Electro-Optics (2018), paper FW4H.1.
  20. H. L. Andrews, C. H. Boulware, C. A. Brau, and J. D. Jarvis, “Superradiant emission of Smith-Purcell radiation,” Phys. Rev. ST Accel. Beams 8, 110702 (2005).
    [Crossref]
  21. J. Gardelle, P. Modin, and J. T. Donohue, “Start current and gain measurements for a Smith-Purcell free-electron laser,” Phys. Rev. Lett. 105, 224801 (2010).
    [Crossref]
  22. S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
    [Crossref]
  23. A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, K. K. Berggren, I. Kaminer, and M. Soljačić, “Smith-Purcell radiation from low-energy electrons,” ACS Photon. 5, 3513–3518(2018).
    [Crossref]
  24. A. Massuda, C. Roques-Carmes, A. Solanki, Y. Yang, S. E. Kooi, F. Habbal, I. Kaminer, and M. Soljačić, “High-order Smith-Purcell radiation in silicon nanowires,” in Conference on Lasers and Electro-Optics (2017), pp. JTh5B-8.
  25. Y. Yang, A. Massuda, C. S. Roques-Carmes, S. E. Kooi, T. Christensen, S. G. Johnson, J. D. Joannopoulos, O. D. Miller, I. Kaminer, and M. Soljačić, “Maximal spontaneous photon emission and energy loss from free electrons,” Nat. Phys. 14, 894–899 (2018).
    [Crossref]
  26. G. Doucas, J. H. Mulvey, M. Omori, J. Walsh, and M. F. Kimmitt, “First observation of Smith-Purcell radiation from relativistic electrons,” Phys. Rev. Lett. 69, 1761–1764 (1992).
    [Crossref]
  27. Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phys. Rev. E 57, 1061–1074 (1998).
    [Crossref]
  28. J. So, F. M. Kevin, and I. Z. Nikolay, “Fiber optic probe of free electron evanescent fields in the optical frequency range,” Appl. Phys. Lett. 104, 201101 (2014).
    [Crossref]
  29. J. Hodgkinson and P. T. Ralph, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 012004 (2012).
    [Crossref]
  30. C. C. E. Meulemans, Ozone Science & Engineering (Taylor & Francis, 1987), pp. 299–313.
  31. C. Wagner and N. Harned, “EUV lithography: lithography gets extreme,” Nat. Photonics 4, 24–26 (2010).
    [Crossref]
  32. R. R. Alfano, The Supercontinuum Laser Source: The Ultimate White Light (Springer, 2016).
  33. R. D. Saunders, W. R. Ott, and J. M. Bridges, “Spectral irradiance standard for the ultraviolet: the deuterium lamp,” Appl. Opt. 17, 593–600 (1978).
    [Crossref]
  34. J. H. Goncz and P. B. Newell, “Spectra of pulsed and continuous xenon discharges,” J. Opt. Soc. Am. 56, 87–92 (1966).
    [Crossref]
  35. R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
    [Crossref]
  36. X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
    [Crossref]
  37. J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. Rees, P. J. van der Slot, C. J. Lee, C. Fallnich, and K. Boller, “On-chip visible-to-infrared supercontinuum generation with more than 495  THz spectral bandwidth,” Opt. Express 23, 19596–19604 (2015).
    [Crossref]
  38. A. Gover, P. Dvorkis, and U. Elisha, “Angular radiation pattern of Smith-Purcell radiation,” J. Opt. Soc. Am. B 1, 723–728 (1984).
    [Crossref]
  39. O. Haeberlé, P. Rullhusen, J. M. Salomé, and N. Maene, “Calculations of Smith-Purcell radiation generated by electrons of 1-100  MeV,” Phys. Rev. E 49, 3340–3352 (1994).
    [Crossref]
  40. N. F. Yamamoto, G. A. Javier, and M. Viktor, “Interference of surface plasmons and Smith-Purcell emission probed by angle-resolved cathodoluminescence spectroscopy,” Phys. Rev. B 91, 125144 (2015).
    [Crossref]

2018 (2)

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, K. K. Berggren, I. Kaminer, and M. Soljačić, “Smith-Purcell radiation from low-energy electrons,” ACS Photon. 5, 3513–3518(2018).
[Crossref]

Y. Yang, A. Massuda, C. S. Roques-Carmes, S. E. Kooi, T. Christensen, S. G. Johnson, J. D. Joannopoulos, O. D. Miller, I. Kaminer, and M. Soljačić, “Maximal spontaneous photon emission and energy loss from free electrons,” Nat. Phys. 14, 894–899 (2018).
[Crossref]

2017 (6)

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7, 011003 (2017).
[Crossref]

Z. Duan, X. Tang, Z. Wang, Y. Zhang, X. Chen, M. Chen, and Y. Gong, “Observation of the reversed Cherenkov radiation,” Nat. Commun. 8, 14901 (2017).
[Crossref]

Y. Tian, J. Liu, Y. Bai, S. Zhou, H. Sun, W. Liu, J. Zhao, R. Li, and Z. Xu, “Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation,” Nat. Photonics 11, 242–246 (2017).
[Crossref]

T. M. Shaffer, E. C. Pratt, and J. Grimm, “Utilizing the power of Cerenkov light with nanotechnology,” Nat. Nanotechnol. 12, 106–117 (2017).
[Crossref]

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated Cherenkov radiation emitter eliminating the electron velocity threshold,” Nat. Photonics 11, 289–292 (2017).
[Crossref]

2016 (2)

L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to x-ray sources,” Nat. Photonics 10, 46–52 (2016).
[Crossref]

Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell emission with Babinet metasurfaces,” Phys. Rev. Lett. 117, 157401 (2016).
[Crossref]

2015 (4)

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. Rees, P. J. van der Slot, C. J. Lee, C. Fallnich, and K. Boller, “On-chip visible-to-infrared supercontinuum generation with more than 495  THz spectral bandwidth,” Opt. Express 23, 19596–19604 (2015).
[Crossref]

J. K. So, F. J. García de Abajo, K. F. MacDonald, and N. I. Zheludev, “Amplification of the evanescent field of free electrons,” ACS Photon. 2, 1236–1240 (2015).
[Crossref]

N. F. Yamamoto, G. A. Javier, and M. Viktor, “Interference of surface plasmons and Smith-Purcell emission probed by angle-resolved cathodoluminescence spectroscopy,” Phys. Rev. B 91, 125144 (2015).
[Crossref]

2014 (2)

M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schäfer, and C. Ropers, “Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics,” Science 345, 200–204 (2014).
[Crossref]

J. So, F. M. Kevin, and I. Z. Nikolay, “Fiber optic probe of free electron evanescent fields in the optical frequency range,” Appl. Phys. Lett. 104, 201101 (2014).
[Crossref]

2013 (1)

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

2012 (3)

G. Adamo, J. Y. Ou, J. K. So, S. D. Jenkins, F. De Angelis, K. F. MacDonald, E. Di Fabrizio, J. Ruostekosk, and N. I. Zheludev, “Electron-beam-driven collective-mode metamaterial light source,” Phys. Rev. Lett. 109, 217401 (2012).
[Crossref]

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109, 153902 (2012).
[Crossref]

J. Hodgkinson and P. T. Ralph, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 012004 (2012).
[Crossref]

2010 (3)

C. Wagner and N. Harned, “EUV lithography: lithography gets extreme,” Nat. Photonics 4, 24–26 (2010).
[Crossref]

J. Gardelle, P. Modin, and J. T. Donohue, “Start current and gain measurements for a Smith-Purcell free-electron laser,” Phys. Rev. Lett. 105, 224801 (2010).
[Crossref]

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
[Crossref]

2009 (1)

G. Adamo, K. F. MacDonald, Y. H. Fu, C. M. Wang, D. P. Tsai, F. G. de Abajo, and N. I. Zheludev, “Light well: a tunable free-electron light source on a chip,” Phys. Rev. Lett. 103, 113901 (2009).
[Crossref]

2005 (2)

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref]

H. L. Andrews, C. H. Boulware, C. A. Brau, and J. D. Jarvis, “Superradiant emission of Smith-Purcell radiation,” Phys. Rev. ST Accel. Beams 8, 110702 (2005).
[Crossref]

2003 (1)

C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[Crossref]

1998 (2)

J. R. Helliwell, “Synchrotron radiation facilities,” Nat. Struct. Biol. 5, 614–617 (1998).
[Crossref]

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phys. Rev. E 57, 1061–1074 (1998).
[Crossref]

1994 (1)

O. Haeberlé, P. Rullhusen, J. M. Salomé, and N. Maene, “Calculations of Smith-Purcell radiation generated by electrons of 1-100  MeV,” Phys. Rev. E 49, 3340–3352 (1994).
[Crossref]

1992 (1)

G. Doucas, J. H. Mulvey, M. Omori, J. Walsh, and M. F. Kimmitt, “First observation of Smith-Purcell radiation from relativistic electrons,” Phys. Rev. Lett. 69, 1761–1764 (1992).
[Crossref]

1984 (1)

1978 (1)

1966 (1)

1961 (1)

J. L. Hirshfield, D. E. Baldwin, and S. C. Brown, “Cyclotron radiation from a hot plasma,” Phys. Fluids 4, 198 (1961).
[Crossref]

1953 (1)

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069 (1953).
[Crossref]

Adamo, G.

G. Adamo, J. Y. Ou, J. K. So, S. D. Jenkins, F. De Angelis, K. F. MacDonald, E. Di Fabrizio, J. Ruostekosk, and N. I. Zheludev, “Electron-beam-driven collective-mode metamaterial light source,” Phys. Rev. Lett. 109, 217401 (2012).
[Crossref]

G. Adamo, K. F. MacDonald, Y. H. Fu, C. M. Wang, D. P. Tsai, F. G. de Abajo, and N. I. Zheludev, “Light well: a tunable free-electron light source on a chip,” Phys. Rev. Lett. 103, 113901 (2009).
[Crossref]

Alfano, R. R.

R. R. Alfano, The Supercontinuum Laser Source: The Ultimate White Light (Springer, 2016).

Andrews, H. L.

H. L. Andrews, C. H. Boulware, C. A. Brau, and J. D. Jarvis, “Superradiant emission of Smith-Purcell radiation,” Phys. Rev. ST Accel. Beams 8, 110702 (2005).
[Crossref]

Arie, A.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7, 011003 (2017).
[Crossref]

Babic, F.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

Bai, Y.

Y. Tian, J. Liu, Y. Bai, S. Zhou, H. Sun, W. Liu, J. Zhao, R. Li, and Z. Xu, “Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation,” Nat. Photonics 11, 242–246 (2017).
[Crossref]

Baldwin, D. E.

J. L. Hirshfield, D. E. Baldwin, and S. C. Brown, “Cyclotron radiation from a hot plasma,” Phys. Fluids 4, 198 (1961).
[Crossref]

Berggren, K. K.

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, K. K. Berggren, I. Kaminer, and M. Soljačić, “Smith-Purcell radiation from low-energy electrons,” ACS Photon. 5, 3513–3518(2018).
[Crossref]

Y. Yang, C. Roques-Carmes, I. Kaminer, A. Zaidi, A. Massuda, Y. Yang, S. E. Kooi, K. K. Berggren, and M. Soljačić, “Manipulating Smith-Purcell radiation polarization with metasurfaces,” in Conference on Lasers and Electro-Optics (2018), paper FW4H.1.

Bierlich, J.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Boller, K.

Boulware, C. H.

H. L. Andrews, C. H. Boulware, C. A. Brau, and J. D. Jarvis, “Superradiant emission of Smith-Purcell radiation,” Phys. Rev. ST Accel. Beams 8, 110702 (2005).
[Crossref]

Brau, C. A.

H. L. Andrews, C. H. Boulware, C. A. Brau, and J. D. Jarvis, “Superradiant emission of Smith-Purcell radiation,” Phys. Rev. ST Accel. Beams 8, 110702 (2005).
[Crossref]

Bridges, J. M.

Brown, S. C.

J. L. Hirshfield, D. E. Baldwin, and S. C. Brown, “Cyclotron radiation from a hot plasma,” Phys. Fluids 4, 198 (1961).
[Crossref]

Byer, R. L.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Chemnitz, M.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Chen, H.

Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell emission with Babinet metasurfaces,” Phys. Rev. Lett. 117, 157401 (2016).
[Crossref]

Chen, M.

Z. Duan, X. Tang, Z. Wang, Y. Zhang, X. Chen, M. Chen, and Y. Gong, “Observation of the reversed Cherenkov radiation,” Nat. Commun. 8, 14901 (2017).
[Crossref]

Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell emission with Babinet metasurfaces,” Phys. Rev. Lett. 117, 157401 (2016).
[Crossref]

Chen, X.

Z. Duan, X. Tang, Z. Wang, Y. Zhang, X. Chen, M. Chen, and Y. Gong, “Observation of the reversed Cherenkov radiation,” Nat. Commun. 8, 14901 (2017).
[Crossref]

Christensen, T.

Y. Yang, A. Massuda, C. S. Roques-Carmes, S. E. Kooi, T. Christensen, S. G. Johnson, J. D. Joannopoulos, O. D. Miller, I. Kaminer, and M. Soljačić, “Maximal spontaneous photon emission and energy loss from free electrons,” Nat. Phys. 14, 894–899 (2018).
[Crossref]

Colby, E. R.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Cowan, B.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Cui, K.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated Cherenkov radiation emitter eliminating the electron velocity threshold,” Nat. Photonics 11, 289–292 (2017).
[Crossref]

de Abajo, F. G.

G. Adamo, K. F. MacDonald, Y. H. Fu, C. M. Wang, D. P. Tsai, F. G. de Abajo, and N. I. Zheludev, “Light well: a tunable free-electron light source on a chip,” Phys. Rev. Lett. 103, 113901 (2009).
[Crossref]

De Angelis, F.

G. Adamo, J. Y. Ou, J. K. So, S. D. Jenkins, F. De Angelis, K. F. MacDonald, E. Di Fabrizio, J. Ruostekosk, and N. I. Zheludev, “Electron-beam-driven collective-mode metamaterial light source,” Phys. Rev. Lett. 109, 217401 (2012).
[Crossref]

Di Fabrizio, E.

G. Adamo, J. Y. Ou, J. K. So, S. D. Jenkins, F. De Angelis, K. F. MacDonald, E. Di Fabrizio, J. Ruostekosk, and N. I. Zheludev, “Electron-beam-driven collective-mode metamaterial light source,” Phys. Rev. Lett. 109, 217401 (2012).
[Crossref]

Donohue, J. T.

J. Gardelle, P. Modin, and J. T. Donohue, “Start current and gain measurements for a Smith-Purcell free-electron laser,” Phys. Rev. Lett. 105, 224801 (2010).
[Crossref]

Doucas, G.

G. Doucas, J. H. Mulvey, M. Omori, J. Walsh, and M. F. Kimmitt, “First observation of Smith-Purcell radiation from relativistic electrons,” Phys. Rev. Lett. 69, 1761–1764 (1992).
[Crossref]

Duan, Z.

Z. Duan, X. Tang, Z. Wang, Y. Zhang, X. Chen, M. Chen, and Y. Gong, “Observation of the reversed Cherenkov radiation,” Nat. Commun. 8, 14901 (2017).
[Crossref]

Dvorkis, P.

Elisha, U.

England, R. J.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Epping, J. P.

Fallnich, C.

Feng, X.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated Cherenkov radiation emitter eliminating the electron velocity threshold,” Nat. Photonics 11, 289–292 (2017).
[Crossref]

Finger, M. A.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

Fu, Y. H.

G. Adamo, K. F. MacDonald, Y. H. Fu, C. M. Wang, D. P. Tsai, F. G. de Abajo, and N. I. Zheludev, “Light well: a tunable free-electron light source on a chip,” Phys. Rev. Lett. 103, 113901 (2009).
[Crossref]

Fujita, Y.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phys. Rev. E 57, 1061–1074 (1998).
[Crossref]

García de Abajo, F. J.

J. K. So, F. J. García de Abajo, K. F. MacDonald, and N. I. Zheludev, “Amplification of the evanescent field of free electrons,” ACS Photon. 2, 1236–1240 (2015).
[Crossref]

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
[Crossref]

Gardelle, J.

J. Gardelle, P. Modin, and J. T. Donohue, “Start current and gain measurements for a Smith-Purcell free-electron laser,” Phys. Rev. Lett. 105, 224801 (2010).
[Crossref]

Goncz, J. H.

Gong, S.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109, 153902 (2012).
[Crossref]

Gong, Y.

Z. Duan, X. Tang, Z. Wang, Y. Zhang, X. Chen, M. Chen, and Y. Gong, “Observation of the reversed Cherenkov radiation,” Nat. Commun. 8, 14901 (2017).
[Crossref]

Gover, A.

Grigorova, T.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Grimm, J.

T. M. Shaffer, E. C. Pratt, and J. Grimm, “Utilizing the power of Cerenkov light with nanotechnology,” Nat. Nanotechnol. 12, 106–117 (2017).
[Crossref]

Gulde, M.

M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schäfer, and C. Ropers, “Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics,” Science 345, 200–204 (2014).
[Crossref]

Habbal, F.

A. Massuda, C. Roques-Carmes, A. Solanki, Y. Yang, S. E. Kooi, F. Habbal, I. Kaminer, and M. Soljačić, “High-order Smith-Purcell radiation in silicon nanowires,” in Conference on Lasers and Electro-Optics (2017), pp. JTh5B-8.

Haeberlé, O.

O. Haeberlé, P. Rullhusen, J. M. Salomé, and N. Maene, “Calculations of Smith-Purcell radiation generated by electrons of 1-100  MeV,” Phys. Rev. E 49, 3340–3352 (1994).
[Crossref]

Harned, N.

C. Wagner and N. Harned, “EUV lithography: lithography gets extreme,” Nat. Photonics 4, 24–26 (2010).
[Crossref]

Hartung, A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Hasebe, S.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phys. Rev. E 57, 1061–1074 (1998).
[Crossref]

Heideman, R. G.

Helliwell, J. R.

J. R. Helliwell, “Synchrotron radiation facilities,” Nat. Struct. Biol. 5, 614–617 (1998).
[Crossref]

Hellwig, T.

Hirshfield, J. L.

J. L. Hirshfield, D. E. Baldwin, and S. C. Brown, “Cyclotron radiation from a hot plasma,” Phys. Fluids 4, 198 (1961).
[Crossref]

Hodgkinson, J.

J. Hodgkinson and P. T. Ralph, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 012004 (2012).
[Crossref]

Hoekman, M.

Hoffmann, A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Hu, M.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109, 153902 (2012).
[Crossref]

Huang, Y.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated Cherenkov radiation emitter eliminating the electron velocity threshold,” Nat. Photonics 11, 289–292 (2017).
[Crossref]

Ibanescu, M.

C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[Crossref]

Ikezawa, M.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phys. Rev. E 57, 1061–1074 (1998).
[Crossref]

Ilic, O.

L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to x-ray sources,” Nat. Photonics 10, 46–52 (2016).
[Crossref]

Ishi, K.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phys. Rev. E 57, 1061–1074 (1998).
[Crossref]

Jarvis, J. D.

H. L. Andrews, C. H. Boulware, C. A. Brau, and J. D. Jarvis, “Superradiant emission of Smith-Purcell radiation,” Phys. Rev. ST Accel. Beams 8, 110702 (2005).
[Crossref]

Javier, G. A.

N. F. Yamamoto, G. A. Javier, and M. Viktor, “Interference of surface plasmons and Smith-Purcell emission probed by angle-resolved cathodoluminescence spectroscopy,” Phys. Rev. B 91, 125144 (2015).
[Crossref]

Jenkins, S. D.

G. Adamo, J. Y. Ou, J. K. So, S. D. Jenkins, F. De Angelis, K. F. MacDonald, E. Di Fabrizio, J. Ruostekosk, and N. I. Zheludev, “Electron-beam-driven collective-mode metamaterial light source,” Phys. Rev. Lett. 109, 217401 (2012).
[Crossref]

Jiang, X.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

Joannopoulos, J. D.

Y. Yang, A. Massuda, C. S. Roques-Carmes, S. E. Kooi, T. Christensen, S. G. Johnson, J. D. Joannopoulos, O. D. Miller, I. Kaminer, and M. Soljačić, “Maximal spontaneous photon emission and energy loss from free electrons,” Nat. Phys. 14, 894–899 (2018).
[Crossref]

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7, 011003 (2017).
[Crossref]

L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to x-ray sources,” Nat. Photonics 10, 46–52 (2016).
[Crossref]

C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[Crossref]

Johnson, S. G.

Y. Yang, A. Massuda, C. S. Roques-Carmes, S. E. Kooi, T. Christensen, S. G. Johnson, J. D. Joannopoulos, O. D. Miller, I. Kaminer, and M. Soljačić, “Maximal spontaneous photon emission and energy loss from free electrons,” Nat. Phys. 14, 894–899 (2018).
[Crossref]

C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[Crossref]

Joly, N. Y.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

Kaminer, I.

Y. Yang, A. Massuda, C. S. Roques-Carmes, S. E. Kooi, T. Christensen, S. G. Johnson, J. D. Joannopoulos, O. D. Miller, I. Kaminer, and M. Soljačić, “Maximal spontaneous photon emission and energy loss from free electrons,” Nat. Phys. 14, 894–899 (2018).
[Crossref]

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, K. K. Berggren, I. Kaminer, and M. Soljačić, “Smith-Purcell radiation from low-energy electrons,” ACS Photon. 5, 3513–3518(2018).
[Crossref]

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7, 011003 (2017).
[Crossref]

L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to x-ray sources,” Nat. Photonics 10, 46–52 (2016).
[Crossref]

Y. Yang, C. Roques-Carmes, I. Kaminer, A. Zaidi, A. Massuda, Y. Yang, S. E. Kooi, K. K. Berggren, and M. Soljačić, “Manipulating Smith-Purcell radiation polarization with metasurfaces,” in Conference on Lasers and Electro-Optics (2018), paper FW4H.1.

A. Massuda, C. Roques-Carmes, A. Solanki, Y. Yang, S. E. Kooi, F. Habbal, I. Kaminer, and M. Soljačić, “High-order Smith-Purcell radiation in silicon nanowires,” in Conference on Lasers and Electro-Optics (2017), pp. JTh5B-8.

Kartashov, D.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Kesar, A. S.

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref]

Kevin, F. M.

J. So, F. M. Kevin, and I. Z. Nikolay, “Fiber optic probe of free electron evanescent fields in the optical frequency range,” Appl. Phys. Lett. 104, 201101 (2014).
[Crossref]

Kimmitt, M. F.

G. Doucas, J. H. Mulvey, M. Omori, J. Walsh, and M. F. Kimmitt, “First observation of Smith-Purcell radiation from relativistic electrons,” Phys. Rev. Lett. 69, 1761–1764 (1992).
[Crossref]

Kobayashi, K.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phys. Rev. E 57, 1061–1074 (1998).
[Crossref]

Kobelke, J.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Kooi, S. E.

Y. Yang, A. Massuda, C. S. Roques-Carmes, S. E. Kooi, T. Christensen, S. G. Johnson, J. D. Joannopoulos, O. D. Miller, I. Kaminer, and M. Soljačić, “Maximal spontaneous photon emission and energy loss from free electrons,” Nat. Phys. 14, 894–899 (2018).
[Crossref]

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, K. K. Berggren, I. Kaminer, and M. Soljačić, “Smith-Purcell radiation from low-energy electrons,” ACS Photon. 5, 3513–3518(2018).
[Crossref]

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7, 011003 (2017).
[Crossref]

Y. Yang, C. Roques-Carmes, I. Kaminer, A. Zaidi, A. Massuda, Y. Yang, S. E. Kooi, K. K. Berggren, and M. Soljačić, “Manipulating Smith-Purcell radiation polarization with metasurfaces,” in Conference on Lasers and Electro-Optics (2018), paper FW4H.1.

A. Massuda, C. Roques-Carmes, A. Solanki, Y. Yang, S. E. Kooi, F. Habbal, I. Kaminer, and M. Soljačić, “High-order Smith-Purcell radiation in silicon nanowires,” in Conference on Lasers and Electro-Optics (2017), pp. JTh5B-8.

Korbly, S. E.

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref]

Lee, C. J.

Leedle, K. J.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Leinse, A.

Li, R.

Y. Tian, J. Liu, Y. Bai, S. Zhou, H. Sun, W. Liu, J. Zhao, R. Li, and Z. Xu, “Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation,” Nat. Photonics 11, 242–246 (2017).
[Crossref]

Liu, F.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated Cherenkov radiation emitter eliminating the electron velocity threshold,” Nat. Photonics 11, 289–292 (2017).
[Crossref]

Liu, J.

Y. Tian, J. Liu, Y. Bai, S. Zhou, H. Sun, W. Liu, J. Zhao, R. Li, and Z. Xu, “Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation,” Nat. Photonics 11, 242–246 (2017).
[Crossref]

Liu, S.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109, 153902 (2012).
[Crossref]

Liu, W.

Y. Tian, J. Liu, Y. Bai, S. Zhou, H. Sun, W. Liu, J. Zhao, R. Li, and Z. Xu, “Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation,” Nat. Photonics 11, 242–246 (2017).
[Crossref]

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109, 153902 (2012).
[Crossref]

Liu, Y.

Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell emission with Babinet metasurfaces,” Phys. Rev. Lett. 117, 157401 (2016).
[Crossref]

López, J. J.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7, 011003 (2017).
[Crossref]

Luo, C.

C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[Crossref]

MacDonald, K. F.

J. K. So, F. J. García de Abajo, K. F. MacDonald, and N. I. Zheludev, “Amplification of the evanescent field of free electrons,” ACS Photon. 2, 1236–1240 (2015).
[Crossref]

G. Adamo, J. Y. Ou, J. K. So, S. D. Jenkins, F. De Angelis, K. F. MacDonald, E. Di Fabrizio, J. Ruostekosk, and N. I. Zheludev, “Electron-beam-driven collective-mode metamaterial light source,” Phys. Rev. Lett. 109, 217401 (2012).
[Crossref]

G. Adamo, K. F. MacDonald, Y. H. Fu, C. M. Wang, D. P. Tsai, F. G. de Abajo, and N. I. Zheludev, “Light well: a tunable free-electron light source on a chip,” Phys. Rev. Lett. 103, 113901 (2009).
[Crossref]

Maene, N.

O. Haeberlé, P. Rullhusen, J. M. Salomé, and N. Maene, “Calculations of Smith-Purcell radiation generated by electrons of 1-100  MeV,” Phys. Rev. E 49, 3340–3352 (1994).
[Crossref]

Maiti, M.

M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schäfer, and C. Ropers, “Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics,” Science 345, 200–204 (2014).
[Crossref]

Massuda, A.

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, K. K. Berggren, I. Kaminer, and M. Soljačić, “Smith-Purcell radiation from low-energy electrons,” ACS Photon. 5, 3513–3518(2018).
[Crossref]

Y. Yang, A. Massuda, C. S. Roques-Carmes, S. E. Kooi, T. Christensen, S. G. Johnson, J. D. Joannopoulos, O. D. Miller, I. Kaminer, and M. Soljačić, “Maximal spontaneous photon emission and energy loss from free electrons,” Nat. Phys. 14, 894–899 (2018).
[Crossref]

A. Massuda, C. Roques-Carmes, A. Solanki, Y. Yang, S. E. Kooi, F. Habbal, I. Kaminer, and M. Soljačić, “High-order Smith-Purcell radiation in silicon nanowires,” in Conference on Lasers and Electro-Optics (2017), pp. JTh5B-8.

Y. Yang, C. Roques-Carmes, I. Kaminer, A. Zaidi, A. Massuda, Y. Yang, S. E. Kooi, K. K. Berggren, and M. Soljačić, “Manipulating Smith-Purcell radiation polarization with metasurfaces,” in Conference on Lasers and Electro-Optics (2018), paper FW4H.1.

Mateman, R.

Matsuyama, T.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phys. Rev. E 57, 1061–1074 (1998).
[Crossref]

McGuinness, C.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

McNeur, J.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Meulemans, C. C. E.

C. C. E. Meulemans, Ozone Science & Engineering (Taylor & Francis, 1987), pp. 299–313.

Miller, O. D.

Y. Yang, A. Massuda, C. S. Roques-Carmes, S. E. Kooi, T. Christensen, S. G. Johnson, J. D. Joannopoulos, O. D. Miller, I. Kaminer, and M. Soljačić, “Maximal spontaneous photon emission and energy loss from free electrons,” Nat. Phys. 14, 894–899 (2018).
[Crossref]

Modin, P.

J. Gardelle, P. Modin, and J. T. Donohue, “Start current and gain measurements for a Smith-Purcell free-electron laser,” Phys. Rev. Lett. 105, 224801 (2010).
[Crossref]

Montazeri, B.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Mulvey, J. H.

G. Doucas, J. H. Mulvey, M. Omori, J. Walsh, and M. F. Kimmitt, “First observation of Smith-Purcell radiation from relativistic electrons,” Phys. Rev. Lett. 69, 1761–1764 (1992).
[Crossref]

Murdia, C.

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, K. K. Berggren, I. Kaminer, and M. Soljačić, “Smith-Purcell radiation from low-energy electrons,” ACS Photon. 5, 3513–3518(2018).
[Crossref]

Nakazato, T.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phys. Rev. E 57, 1061–1074 (1998).
[Crossref]

Newell, P. B.

Nikolay, I. Z.

J. So, F. M. Kevin, and I. Z. Nikolay, “Fiber optic probe of free electron evanescent fields in the optical frequency range,” Appl. Phys. Lett. 104, 201101 (2014).
[Crossref]

Omori, M.

G. Doucas, J. H. Mulvey, M. Omori, J. Walsh, and M. F. Kimmitt, “First observation of Smith-Purcell radiation from relativistic electrons,” Phys. Rev. Lett. 69, 1761–1764 (1992).
[Crossref]

Ono, S.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phys. Rev. E 57, 1061–1074 (1998).
[Crossref]

Ott, W. R.

Ou, J. Y.

G. Adamo, J. Y. Ou, J. K. So, S. D. Jenkins, F. De Angelis, K. F. MacDonald, E. Di Fabrizio, J. Ruostekosk, and N. I. Zheludev, “Electron-beam-driven collective-mode metamaterial light source,” Phys. Rev. Lett. 109, 217401 (2012).
[Crossref]

Oyamada, M.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phys. Rev. E 57, 1061–1074 (1998).
[Crossref]

Peralta, E. A.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Pratt, E. C.

T. M. Shaffer, E. C. Pratt, and J. Grimm, “Utilizing the power of Cerenkov light with nanotechnology,” Nat. Nanotechnol. 12, 106–117 (2017).
[Crossref]

Purcell, E. M.

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069 (1953).
[Crossref]

Ralph, P. T.

J. Hodgkinson and P. T. Ralph, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 012004 (2012).
[Crossref]

Rees, A.

Remez, R.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7, 011003 (2017).
[Crossref]

Ropers, C.

M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schäfer, and C. Ropers, “Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics,” Science 345, 200–204 (2014).
[Crossref]

Roques-Carmes, C.

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, K. K. Berggren, I. Kaminer, and M. Soljačić, “Smith-Purcell radiation from low-energy electrons,” ACS Photon. 5, 3513–3518(2018).
[Crossref]

A. Massuda, C. Roques-Carmes, A. Solanki, Y. Yang, S. E. Kooi, F. Habbal, I. Kaminer, and M. Soljačić, “High-order Smith-Purcell radiation in silicon nanowires,” in Conference on Lasers and Electro-Optics (2017), pp. JTh5B-8.

Y. Yang, C. Roques-Carmes, I. Kaminer, A. Zaidi, A. Massuda, Y. Yang, S. E. Kooi, K. K. Berggren, and M. Soljačić, “Manipulating Smith-Purcell radiation polarization with metasurfaces,” in Conference on Lasers and Electro-Optics (2018), paper FW4H.1.

Roques-Carmes, C. S.

Y. Yang, A. Massuda, C. S. Roques-Carmes, S. E. Kooi, T. Christensen, S. G. Johnson, J. D. Joannopoulos, O. D. Miller, I. Kaminer, and M. Soljačić, “Maximal spontaneous photon emission and energy loss from free electrons,” Nat. Phys. 14, 894–899 (2018).
[Crossref]

Rullhusen, P.

O. Haeberlé, P. Rullhusen, J. M. Salomé, and N. Maene, “Calculations of Smith-Purcell radiation generated by electrons of 1-100  MeV,” Phys. Rev. E 49, 3340–3352 (1994).
[Crossref]

Ruostekosk, J.

G. Adamo, J. Y. Ou, J. K. So, S. D. Jenkins, F. De Angelis, K. F. MacDonald, E. Di Fabrizio, J. Ruostekosk, and N. I. Zheludev, “Electron-beam-driven collective-mode metamaterial light source,” Phys. Rev. Lett. 109, 217401 (2012).
[Crossref]

Russell, P. S. J.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

Salomé, J. M.

O. Haeberlé, P. Rullhusen, J. M. Salomé, and N. Maene, “Calculations of Smith-Purcell radiation generated by electrons of 1-100  MeV,” Phys. Rev. E 49, 3340–3352 (1994).
[Crossref]

Sauer, G.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Saunders, R. D.

Schäfer, S.

M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schäfer, and C. Ropers, “Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics,” Science 345, 200–204 (2014).
[Crossref]

Schmidt, M. A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Schwartz, B.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Schweda, S.

M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schäfer, and C. Ropers, “Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics,” Science 345, 200–204 (2014).
[Crossref]

Schwuchow, A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Shaffer, T. M.

T. M. Shaffer, E. C. Pratt, and J. Grimm, “Utilizing the power of Cerenkov light with nanotechnology,” Nat. Nanotechnol. 12, 106–117 (2017).
[Crossref]

Shen, Y.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7, 011003 (2017).
[Crossref]

Shibata, Y.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phys. Rev. E 57, 1061–1074 (1998).
[Crossref]

Shiloh, R.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7, 011003 (2017).
[Crossref]

Sirigiri, J. R.

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref]

Skirlo, S. A.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7, 011003 (2017).
[Crossref]

Smith, S. J.

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069 (1953).
[Crossref]

So, J.

J. So, F. M. Kevin, and I. Z. Nikolay, “Fiber optic probe of free electron evanescent fields in the optical frequency range,” Appl. Phys. Lett. 104, 201101 (2014).
[Crossref]

So, J. K.

J. K. So, F. J. García de Abajo, K. F. MacDonald, and N. I. Zheludev, “Amplification of the evanescent field of free electrons,” ACS Photon. 2, 1236–1240 (2015).
[Crossref]

G. Adamo, J. Y. Ou, J. K. So, S. D. Jenkins, F. De Angelis, K. F. MacDonald, E. Di Fabrizio, J. Ruostekosk, and N. I. Zheludev, “Electron-beam-driven collective-mode metamaterial light source,” Phys. Rev. Lett. 109, 217401 (2012).
[Crossref]

Solanki, A.

A. Massuda, C. Roques-Carmes, A. Solanki, Y. Yang, S. E. Kooi, F. Habbal, I. Kaminer, and M. Soljačić, “High-order Smith-Purcell radiation in silicon nanowires,” in Conference on Lasers and Electro-Optics (2017), pp. JTh5B-8.

Soljacic, M.

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, K. K. Berggren, I. Kaminer, and M. Soljačić, “Smith-Purcell radiation from low-energy electrons,” ACS Photon. 5, 3513–3518(2018).
[Crossref]

Y. Yang, A. Massuda, C. S. Roques-Carmes, S. E. Kooi, T. Christensen, S. G. Johnson, J. D. Joannopoulos, O. D. Miller, I. Kaminer, and M. Soljačić, “Maximal spontaneous photon emission and energy loss from free electrons,” Nat. Phys. 14, 894–899 (2018).
[Crossref]

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7, 011003 (2017).
[Crossref]

L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to x-ray sources,” Nat. Photonics 10, 46–52 (2016).
[Crossref]

Y. Yang, C. Roques-Carmes, I. Kaminer, A. Zaidi, A. Massuda, Y. Yang, S. E. Kooi, K. K. Berggren, and M. Soljačić, “Manipulating Smith-Purcell radiation polarization with metasurfaces,” in Conference on Lasers and Electro-Optics (2018), paper FW4H.1.

A. Massuda, C. Roques-Carmes, A. Solanki, Y. Yang, S. E. Kooi, F. Habbal, I. Kaminer, and M. Soljačić, “High-order Smith-Purcell radiation in silicon nanowires,” in Conference on Lasers and Electro-Optics (2017), pp. JTh5B-8.

Sollapur, R.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Soong, K.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Sozer, E. B.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Spielmann, C.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Storeck, G.

M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schäfer, and C. Ropers, “Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics,” Science 345, 200–204 (2014).
[Crossref]

Sun, H.

Y. Tian, J. Liu, Y. Bai, S. Zhou, H. Sun, W. Liu, J. Zhao, R. Li, and Z. Xu, “Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation,” Nat. Photonics 11, 242–246 (2017).
[Crossref]

Takahashi, T.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phys. Rev. E 57, 1061–1074 (1998).
[Crossref]

Tang, X.

Z. Duan, X. Tang, Z. Wang, Y. Zhang, X. Chen, M. Chen, and Y. Gong, “Observation of the reversed Cherenkov radiation,” Nat. Commun. 8, 14901 (2017).
[Crossref]

Temkin, R. J.

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref]

Tian, Y.

Y. Tian, J. Liu, Y. Bai, S. Zhou, H. Sun, W. Liu, J. Zhao, R. Li, and Z. Xu, “Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation,” Nat. Photonics 11, 242–246 (2017).
[Crossref]

Travers, J. C.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

Travish, G.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Tsai, D. P.

G. Adamo, K. F. MacDonald, Y. H. Fu, C. M. Wang, D. P. Tsai, F. G. de Abajo, and N. I. Zheludev, “Light well: a tunable free-electron light source on a chip,” Phys. Rev. Lett. 103, 113901 (2009).
[Crossref]

Urasawa, S.

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phys. Rev. E 57, 1061–1074 (1998).
[Crossref]

van der Slot, P. J.

Viktor, M.

N. F. Yamamoto, G. A. Javier, and M. Viktor, “Interference of surface plasmons and Smith-Purcell emission probed by angle-resolved cathodoluminescence spectroscopy,” Phys. Rev. B 91, 125144 (2015).
[Crossref]

Wagner, C.

C. Wagner and N. Harned, “EUV lithography: lithography gets extreme,” Nat. Photonics 4, 24–26 (2010).
[Crossref]

Walsh, J.

G. Doucas, J. H. Mulvey, M. Omori, J. Walsh, and M. F. Kimmitt, “First observation of Smith-Purcell radiation from relativistic electrons,” Phys. Rev. Lett. 69, 1761–1764 (1992).
[Crossref]

Walz, D.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Wang, C. M.

G. Adamo, K. F. MacDonald, Y. H. Fu, C. M. Wang, D. P. Tsai, F. G. de Abajo, and N. I. Zheludev, “Light well: a tunable free-electron light source on a chip,” Phys. Rev. Lett. 103, 113901 (2009).
[Crossref]

Wang, M.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated Cherenkov radiation emitter eliminating the electron velocity threshold,” Nat. Photonics 11, 289–292 (2017).
[Crossref]

Wang, Z.

Z. Duan, X. Tang, Z. Wang, Y. Zhang, X. Chen, M. Chen, and Y. Gong, “Observation of the reversed Cherenkov radiation,” Nat. Commun. 8, 14901 (2017).
[Crossref]

Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell emission with Babinet metasurfaces,” Phys. Rev. Lett. 117, 157401 (2016).
[Crossref]

Wodtke, A. M.

M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schäfer, and C. Ropers, “Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics,” Science 345, 200–204 (2014).
[Crossref]

Wong, G. K.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

Wong, L. J.

L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to x-ray sources,” Nat. Photonics 10, 46–52 (2016).
[Crossref]

Wu, Z.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Xiao, L.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated Cherenkov radiation emitter eliminating the electron velocity threshold,” Nat. Photonics 11, 289–292 (2017).
[Crossref]

Xu, Z.

Y. Tian, J. Liu, Y. Bai, S. Zhou, H. Sun, W. Liu, J. Zhao, R. Li, and Z. Xu, “Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation,” Nat. Photonics 11, 242–246 (2017).
[Crossref]

Yamamoto, N. F.

N. F. Yamamoto, G. A. Javier, and M. Viktor, “Interference of surface plasmons and Smith-Purcell emission probed by angle-resolved cathodoluminescence spectroscopy,” Phys. Rev. B 91, 125144 (2015).
[Crossref]

Yang, Y.

Y. Yang, A. Massuda, C. S. Roques-Carmes, S. E. Kooi, T. Christensen, S. G. Johnson, J. D. Joannopoulos, O. D. Miller, I. Kaminer, and M. Soljačić, “Maximal spontaneous photon emission and energy loss from free electrons,” Nat. Phys. 14, 894–899 (2018).
[Crossref]

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, K. K. Berggren, I. Kaminer, and M. Soljačić, “Smith-Purcell radiation from low-energy electrons,” ACS Photon. 5, 3513–3518(2018).
[Crossref]

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, K. K. Berggren, I. Kaminer, and M. Soljačić, “Smith-Purcell radiation from low-energy electrons,” ACS Photon. 5, 3513–3518(2018).
[Crossref]

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7, 011003 (2017).
[Crossref]

A. Massuda, C. Roques-Carmes, A. Solanki, Y. Yang, S. E. Kooi, F. Habbal, I. Kaminer, and M. Soljačić, “High-order Smith-Purcell radiation in silicon nanowires,” in Conference on Lasers and Electro-Optics (2017), pp. JTh5B-8.

Y. Yang, C. Roques-Carmes, I. Kaminer, A. Zaidi, A. Massuda, Y. Yang, S. E. Kooi, K. K. Berggren, and M. Soljačić, “Manipulating Smith-Purcell radiation polarization with metasurfaces,” in Conference on Lasers and Electro-Optics (2018), paper FW4H.1.

Y. Yang, C. Roques-Carmes, I. Kaminer, A. Zaidi, A. Massuda, Y. Yang, S. E. Kooi, K. K. Berggren, and M. Soljačić, “Manipulating Smith-Purcell radiation polarization with metasurfaces,” in Conference on Lasers and Electro-Optics (2018), paper FW4H.1.

Yao, K.

Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell emission with Babinet metasurfaces,” Phys. Rev. Lett. 117, 157401 (2016).
[Crossref]

Ye, Y.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated Cherenkov radiation emitter eliminating the electron velocity threshold,” Nat. Photonics 11, 289–292 (2017).
[Crossref]

Yu, H. K.

M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schäfer, and C. Ropers, “Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics,” Science 345, 200–204 (2014).
[Crossref]

Zaidi, A.

Y. Yang, C. Roques-Carmes, I. Kaminer, A. Zaidi, A. Massuda, Y. Yang, S. E. Kooi, K. K. Berggren, and M. Soljačić, “Manipulating Smith-Purcell radiation polarization with metasurfaces,” in Conference on Lasers and Electro-Optics (2018), paper FW4H.1.

Zhang, P.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109, 153902 (2012).
[Crossref]

Zhang, W.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated Cherenkov radiation emitter eliminating the electron velocity threshold,” Nat. Photonics 11, 289–292 (2017).
[Crossref]

Zhang, Y.

Z. Duan, X. Tang, Z. Wang, Y. Zhang, X. Chen, M. Chen, and Y. Gong, “Observation of the reversed Cherenkov radiation,” Nat. Commun. 8, 14901 (2017).
[Crossref]

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109, 153902 (2012).
[Crossref]

Zhao, J.

Y. Tian, J. Liu, Y. Bai, S. Zhou, H. Sun, W. Liu, J. Zhao, R. Li, and Z. Xu, “Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation,” Nat. Photonics 11, 242–246 (2017).
[Crossref]

Zheludev, N. I.

J. K. So, F. J. García de Abajo, K. F. MacDonald, and N. I. Zheludev, “Amplification of the evanescent field of free electrons,” ACS Photon. 2, 1236–1240 (2015).
[Crossref]

G. Adamo, J. Y. Ou, J. K. So, S. D. Jenkins, F. De Angelis, K. F. MacDonald, E. Di Fabrizio, J. Ruostekosk, and N. I. Zheludev, “Electron-beam-driven collective-mode metamaterial light source,” Phys. Rev. Lett. 109, 217401 (2012).
[Crossref]

G. Adamo, K. F. MacDonald, Y. H. Fu, C. M. Wang, D. P. Tsai, F. G. de Abajo, and N. I. Zheludev, “Light well: a tunable free-electron light source on a chip,” Phys. Rev. Lett. 103, 113901 (2009).
[Crossref]

Zhen, B.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7, 011003 (2017).
[Crossref]

Zhong, R.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109, 153902 (2012).
[Crossref]

Zhou, S.

Y. Tian, J. Liu, Y. Bai, S. Zhou, H. Sun, W. Liu, J. Zhao, R. Li, and Z. Xu, “Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation,” Nat. Photonics 11, 242–246 (2017).
[Crossref]

Zürch, M.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

ACS Photon. (2)

J. K. So, F. J. García de Abajo, K. F. MacDonald, and N. I. Zheludev, “Amplification of the evanescent field of free electrons,” ACS Photon. 2, 1236–1240 (2015).
[Crossref]

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, K. K. Berggren, I. Kaminer, and M. Soljačić, “Smith-Purcell radiation from low-energy electrons,” ACS Photon. 5, 3513–3518(2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. So, F. M. Kevin, and I. Z. Nikolay, “Fiber optic probe of free electron evanescent fields in the optical frequency range,” Appl. Phys. Lett. 104, 201101 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (1)

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light Sci. Appl. 6, e17124 (2017).
[Crossref]

Meas. Sci. Technol. (1)

J. Hodgkinson and P. T. Ralph, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 012004 (2012).
[Crossref]

Nat. Commun. (1)

Z. Duan, X. Tang, Z. Wang, Y. Zhang, X. Chen, M. Chen, and Y. Gong, “Observation of the reversed Cherenkov radiation,” Nat. Commun. 8, 14901 (2017).
[Crossref]

Nat. Nanotechnol. (1)

T. M. Shaffer, E. C. Pratt, and J. Grimm, “Utilizing the power of Cerenkov light with nanotechnology,” Nat. Nanotechnol. 12, 106–117 (2017).
[Crossref]

Nat. Photonics (5)

Y. Tian, J. Liu, Y. Bai, S. Zhou, H. Sun, W. Liu, J. Zhao, R. Li, and Z. Xu, “Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation,” Nat. Photonics 11, 242–246 (2017).
[Crossref]

L. J. Wong, I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, “Towards graphene plasmon-based free-electron infrared to x-ray sources,” Nat. Photonics 10, 46–52 (2016).
[Crossref]

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated Cherenkov radiation emitter eliminating the electron velocity threshold,” Nat. Photonics 11, 289–292 (2017).
[Crossref]

C. Wagner and N. Harned, “EUV lithography: lithography gets extreme,” Nat. Photonics 4, 24–26 (2010).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

Nat. Phys. (1)

Y. Yang, A. Massuda, C. S. Roques-Carmes, S. E. Kooi, T. Christensen, S. G. Johnson, J. D. Joannopoulos, O. D. Miller, I. Kaminer, and M. Soljačić, “Maximal spontaneous photon emission and energy loss from free electrons,” Nat. Phys. 14, 894–899 (2018).
[Crossref]

Nat. Struct. Biol. (1)

J. R. Helliwell, “Synchrotron radiation facilities,” Nat. Struct. Biol. 5, 614–617 (1998).
[Crossref]

Nature (1)

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Opt. Express (1)

Phys. Fluids (1)

J. L. Hirshfield, D. E. Baldwin, and S. C. Brown, “Cyclotron radiation from a hot plasma,” Phys. Fluids 4, 198 (1961).
[Crossref]

Phys. Rev. (1)

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069 (1953).
[Crossref]

Phys. Rev. B (1)

N. F. Yamamoto, G. A. Javier, and M. Viktor, “Interference of surface plasmons and Smith-Purcell emission probed by angle-resolved cathodoluminescence spectroscopy,” Phys. Rev. B 91, 125144 (2015).
[Crossref]

Phys. Rev. E (2)

O. Haeberlé, P. Rullhusen, J. M. Salomé, and N. Maene, “Calculations of Smith-Purcell radiation generated by electrons of 1-100  MeV,” Phys. Rev. E 49, 3340–3352 (1994).
[Crossref]

Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,” Phys. Rev. E 57, 1061–1074 (1998).
[Crossref]

Phys. Rev. Lett. (7)

G. Doucas, J. H. Mulvey, M. Omori, J. Walsh, and M. F. Kimmitt, “First observation of Smith-Purcell radiation from relativistic electrons,” Phys. Rev. Lett. 69, 1761–1764 (1992).
[Crossref]

J. Gardelle, P. Modin, and J. T. Donohue, “Start current and gain measurements for a Smith-Purcell free-electron laser,” Phys. Rev. Lett. 105, 224801 (2010).
[Crossref]

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref]

Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell emission with Babinet metasurfaces,” Phys. Rev. Lett. 117, 157401 (2016).
[Crossref]

G. Adamo, K. F. MacDonald, Y. H. Fu, C. M. Wang, D. P. Tsai, F. G. de Abajo, and N. I. Zheludev, “Light well: a tunable free-electron light source on a chip,” Phys. Rev. Lett. 103, 113901 (2009).
[Crossref]

G. Adamo, J. Y. Ou, J. K. So, S. D. Jenkins, F. De Angelis, K. F. MacDonald, E. Di Fabrizio, J. Ruostekosk, and N. I. Zheludev, “Electron-beam-driven collective-mode metamaterial light source,” Phys. Rev. Lett. 109, 217401 (2012).
[Crossref]

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109, 153902 (2012).
[Crossref]

Phys. Rev. ST Accel. Beams (1)

H. L. Andrews, C. H. Boulware, C. A. Brau, and J. D. Jarvis, “Superradiant emission of Smith-Purcell radiation,” Phys. Rev. ST Accel. Beams 8, 110702 (2005).
[Crossref]

Phys. Rev. X (1)

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7, 011003 (2017).
[Crossref]

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
[Crossref]

Science (2)

C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[Crossref]

M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schäfer, and C. Ropers, “Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics,” Science 345, 200–204 (2014).
[Crossref]

Other (4)

Y. Yang, C. Roques-Carmes, I. Kaminer, A. Zaidi, A. Massuda, Y. Yang, S. E. Kooi, K. K. Berggren, and M. Soljačić, “Manipulating Smith-Purcell radiation polarization with metasurfaces,” in Conference on Lasers and Electro-Optics (2018), paper FW4H.1.

A. Massuda, C. Roques-Carmes, A. Solanki, Y. Yang, S. E. Kooi, F. Habbal, I. Kaminer, and M. Soljačić, “High-order Smith-Purcell radiation in silicon nanowires,” in Conference on Lasers and Electro-Optics (2017), pp. JTh5B-8.

R. R. Alfano, The Supercontinuum Laser Source: The Ultimate White Light (Springer, 2016).

C. C. E. Meulemans, Ozone Science & Engineering (Taylor & Francis, 1987), pp. 299–313.

Supplementary Material (1)

NameDescription
» Supplement 1       supplementary

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. SPR covering the deep-UV to near-infrared. (a) An electron beam passing through the slot of an Al grating generates a broadband radiation covering the deep-UV to near-infrared. (b) Scanning electron microscope images of the Al grating with pitch of 190 nm. The nano-slot is trapezoid-shaped with bottom width of 15nm and top width of 50nm. The free-electron beam is precisely controlled to pass through the slot at the position with width of 30nm. (c) Schematic of measurement setup based on a cathode luminescence system. The emitted backward (θ180°) SPR is collected by a parabolic mirror, coupled into a fiber, and detected by the CCD in the spectral range of 200–1100 nm.
Fig. 2.
Fig. 2. Key to generating SPR in the UV region. (a) The SPR intensity as a function of the gap g between the electron beam (30 keV) and the conventional grating (pitch 80 nm). Insets are an SEM micrograph of a conventional grating and a schematic showing the gap g. (b) The SPR generated by the grating with a nano-slot (black curve) and conventional grating (gray curve) with the same pitch (190 nm) and electron beam (30 keV, 16 nA).
Fig. 3.
Fig. 3. SPR spectra of a nano-slot grating with a pitch of 190nm. (a) The calculated radiation angle θ versus wavelength of SPR according to Eq. (1) for different diffraction orders and electron energies E. (b)–(e) The measured spectra of the SPR at angle θ180° for electron energies of 30 keV (black curve), 25 keV (red curve), 20 keV (blue curve), and 15 keV (pink curve). The peak wavelengths of each order marked in (b)–(e) are in good agreement with those in Fig. 3(a) when θ=180°. Here, the current of the electron beam is fixed at 16 nA. The spectra in Fig. 3 are obtained by subtracting the noise as the electron beam hits the bulk Al directly (see Section S3 of Supplement 1).
Fig. 4.
Fig. 4. Observation of forward (θ0°) SPR. (a) The calculated radiation angle θ versus wavelength of SPR according to Eq. (1). (b) Measured SPR spectrum at θ180°. (c) Measured SPR spectrum (black curve) with a Pt wall at the end of the grating, which is utilized to reflect the forward (θ0°) SPR for detection. Solid and dashed blue Gaussian fitting curves correspond to first-order SPR around θ=0° and second-order SPR θ=180°, respectively. Inset shows a SEM micrograph of the grating and Pt wall with an aperture for the electron beam to pass through. Here, the pitch of the grating is 190nm and the electron energy is 20 keV.
Fig. 5.
Fig. 5. SPR spectra of cascaded grating with pitch of 120 nm (length 1.2 μm) and 260 nm (length 2.6 μm). (a) The calculated radiation angle θ versus SPR wavelength of the 120 nm and 260 nm pitch gratings. (b), (c) The simulated SPR spectrum covering θ0°180° and at approximately θ145° with grating pitches of 120 and 260 nm. In Fig. 5(c), the angle 145° was chosen to avoid the influence of the strong evanescent field of the electron beam. (d) The measured SPR spectrum of the cascaded grating (black curve) and two individual gratings (dark cyan and wine curves). Here, the 120 nm pitch grating and 260 nm pitch grating correspond to the dark cyan and wine curves, respectively. The electron energy is 30 keV, the current of electron beam is 16 nA, and the measured radiation angle is θ180°. The spectra are obtained by deducting the noise as electron beam hits the bulk Al directly.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ0=Lm(1βcosθ),