Abstract

The increasing importance of hydrogen as an energy carrier and industrial material calls for hydrogen sensors with higher sensitivity, better selectivity, faster response, and wider dynamic range. Here, we report a nanofiber (NF) sensor that satisfies these requirements with a single sensing element. The sensor is based on stimulated Raman scattering spectroscopy, but the tightly confined evanescent field associated with the NF enhances the Raman gain per unit length by a factor of 30 to 102 over the state-of-the-art hollow-core photonic crystal fibers and more than 104 over free-space beams. The NF has excellent mode quality, which ensures mode-noise-free measurement and maximizes the signal-to-noise ratio. An experiment with a 700-nm-diameter, 48-mm-long silica NF operating in the telecom wavelength band demonstrates hydrogen detection from a few parts per million to 100% with a response time less than 10 s. The sensor would be useful for a range of applications, including detection of hydrogen leakage as well as monitoring of battery charging, fuel cells, and electric power transformer health conditions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Towards label-free distributed fiber hydrogen sensor with stimulated Raman spectroscopy

F. Yang, Y. Zhao, Y. Qi, Y. Z. Tan, H. L. Ho, and W. Jin
Opt. Express 27(9) 12869-12882 (2019)

Differential high-resolution stimulated CW Raman spectroscopy of hydrogen in a hollow-core fiber

Philip G. Westergaard, Mikael Lassen, and Jan C. Petersen
Opt. Express 23(12) 16320-16328 (2015)

Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers

Joel Villatoro and David Monzón-Hernández
Opt. Express 13(13) 5087-5092 (2005)

References

  • View by:
  • |
  • |
  • |

  1. Y. S. Najjar, “Hydrogen safety: the road toward green technology,” Int. J. Hydrogen Energy 38, 10716–10728 (2013).
    [Crossref]
  2. W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, “An overview of hydrogen safety sensors and requirements,” Int. J. Hydrogen Energy 36, 2462–2470 (2011).
    [Crossref]
  3. T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors-a review,” Sens. Actuators B. 157, 329–352 (2011).
    [Crossref]
  4. L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, and U. Banach, “Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications,” Int. J. Hydrogen Energy 35, 373–384 (2010).
    [Crossref]
  5. T. Hübert, L. Boon-Brett, V. Palmisano, and M. A. Bader, “Developments in gas sensor technology for hydrogen safety,” Int. J. Hydrogen Energy 39, 20474–20483 (2014).
    [Crossref]
  6. J. Dakin and B. Culshaw, Optical Fiber Sensors: Principles and Components (Artech House, 1988), Vol. 1, p. 343 [for individual items, see A90–36770 to A90–36775].
  7. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
    [Crossref]
  8. W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
    [Crossref]
  9. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
    [Crossref]
  10. L. S. Meng, P. A. Roos, and J. L. Carlsten, “Continuous-wave rotational Raman laser in H2,” Opt. Lett. 27, 1226–1228 (2002).
    [Crossref]
  11. S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. R. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87, 982–988 (2014).
    [Crossref]
  12. F. Yang and W. Jin, “All-fiber hydrogen sensor based on stimulated Raman gain spectroscopy with a 1550  nm hollow-core fiber,” in 25th Optical Fiber Sensors Conference (OFS) (IEEE, 2017), 1–4.
  13. F. Yang, W. Jin, Y. Lin, C. Wang, H. L. Ho, and Y. Tan, “Hollow-core microstructured optical fiber gas sensors,” J. Lightwave Technol. 35, 3413–3424 (2016).
    [Crossref]
  14. S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
    [Crossref]
  15. L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibers,” Appl. Phys. Lett. 102, 201110 (2013).
    [Crossref]
  16. J. J. Ottusch and D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 24, 2076–2080 (1988).
    [Crossref]
  17. F. Yang, W. Jin, Y. Cao, H. L. Ho, and Y. Wang, “Towards high sensitivity gas detection with hollow-core photonic bandgap fibers,” Opt. Express 22, 24894–24907 (2014).
    [Crossref]
  18. F. Le Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
    [Crossref]
  19. R. Minck, E. Hagenlocker, and W. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
    [Crossref]
  20. J. Carlsten and R. Wenzel, “Stimulated rotational Raman scattering in CO2-pumped para-H2,” IEEE J. Quantum Electron. 19, 1407–1413 (1983).
    [Crossref]
  21. T. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
    [Crossref]
  22. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 2886–2892 (2002).
    [Crossref]
  23. J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
    [Crossref]
  24. F. Farahi, P. A. Leilabady, J. Jones, and D. Jackson, “Interferometric fibre-optic hydrogen sensor,” J. Phys. E 20, 432–434 (1987).
    [Crossref]
  25. X. Wei, T. Wei, H. Xiao, and Y. Lin, “Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B 134, 687–693 (2008).
    [Crossref]
  26. K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer,” Opt. Lasers Eng. 47, 1018–1022 (2009).
    [Crossref]
  27. J. S. Zeakes, K. A. Murphy, A. Elshabini-Riad, and R. O. Claus, “Modified extrinsic Fabry-Perot interferometric hydrogen gas sensor,” in Lasers and Electro-Optics Society Annual Meeting, 1994. LEOS’94 Conference Proceedings (IEEE, 1994), pp. 235–236.
  28. X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13, 118–124 (2001).
    [Crossref]
  29. M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56, 158–163 (1999).
    [Crossref]
  30. Y. Oki, S. Nakazono, Y. Nonaka, and M. Maeda, “Sensitive H2 detection by use of thermal-lens Raman spectroscopy without a tunable laser,” Opt. Lett. 25, 1040–1042 (2000).
    [Crossref]
  31. C. L. Spencer, V. Watson, and M. Hippler, “Trace gas detection of molecular hydrogen H2 by photoacoustic stimulated Raman spectroscopy (PARS),” Analyst 137, 1384–1388 (2012).
    [Crossref]
  32. R. Wynne and B. Barabadi, “Gas-filling dynamics of a hollow-core photonic bandgap fiber for nonvacuum conditions,” Appl. Opt. 54, 1751–1757 (2015).
    [Crossref]
  33. H. Xuan, J. Ju, and W. Jin, “Highly birefringent optical microfibers,” Opt. Express 18, 3828–3839 (2010).
    [Crossref]
  34. G. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A 34, 1944–1951 (1986).
    [Crossref]
  35. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489–2494 (1972).
    [Crossref]

2016 (1)

2015 (2)

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref]

R. Wynne and B. Barabadi, “Gas-filling dynamics of a hollow-core photonic bandgap fiber for nonvacuum conditions,” Appl. Opt. 54, 1751–1757 (2015).
[Crossref]

2014 (3)

T. Hübert, L. Boon-Brett, V. Palmisano, and M. A. Bader, “Developments in gas sensor technology for hydrogen safety,” Int. J. Hydrogen Energy 39, 20474–20483 (2014).
[Crossref]

F. Yang, W. Jin, Y. Cao, H. L. Ho, and Y. Wang, “Towards high sensitivity gas detection with hollow-core photonic bandgap fibers,” Opt. Express 22, 24894–24907 (2014).
[Crossref]

S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. R. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87, 982–988 (2014).
[Crossref]

2013 (2)

L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibers,” Appl. Phys. Lett. 102, 201110 (2013).
[Crossref]

Y. S. Najjar, “Hydrogen safety: the road toward green technology,” Int. J. Hydrogen Energy 38, 10716–10728 (2013).
[Crossref]

2012 (1)

C. L. Spencer, V. Watson, and M. Hippler, “Trace gas detection of molecular hydrogen H2 by photoacoustic stimulated Raman spectroscopy (PARS),” Analyst 137, 1384–1388 (2012).
[Crossref]

2011 (2)

W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, “An overview of hydrogen safety sensors and requirements,” Int. J. Hydrogen Energy 36, 2462–2470 (2011).
[Crossref]

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors-a review,” Sens. Actuators B. 157, 329–352 (2011).
[Crossref]

2010 (2)

L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, and U. Banach, “Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications,” Int. J. Hydrogen Energy 35, 373–384 (2010).
[Crossref]

H. Xuan, J. Ju, and W. Jin, “Highly birefringent optical microfibers,” Opt. Express 18, 3828–3839 (2010).
[Crossref]

2009 (1)

K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer,” Opt. Lasers Eng. 47, 1018–1022 (2009).
[Crossref]

2008 (2)

X. Wei, T. Wei, H. Xiao, and Y. Lin, “Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B 134, 687–693 (2008).
[Crossref]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

2006 (1)

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
[Crossref]

2004 (1)

F. Le Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[Crossref]

2002 (3)

2001 (1)

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13, 118–124 (2001).
[Crossref]

2000 (1)

1999 (1)

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56, 158–163 (1999).
[Crossref]

1992 (1)

T. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[Crossref]

1988 (1)

J. J. Ottusch and D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 24, 2076–2080 (1988).
[Crossref]

1987 (1)

F. Farahi, P. A. Leilabady, J. Jones, and D. Jackson, “Interferometric fibre-optic hydrogen sensor,” J. Phys. E 20, 432–434 (1987).
[Crossref]

1986 (1)

G. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A 34, 1944–1951 (1986).
[Crossref]

1983 (1)

J. Carlsten and R. Wenzel, “Stimulated rotational Raman scattering in CO2-pumped para-H2,” IEEE J. Quantum Electron. 19, 1407–1413 (1983).
[Crossref]

1981 (1)

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[Crossref]

1972 (1)

1966 (1)

R. Minck, E. Hagenlocker, and W. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[Crossref]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

Bader, M. A.

T. Hübert, L. Boon-Brett, V. Palmisano, and M. A. Bader, “Developments in gas sensor technology for hydrogen safety,” Int. J. Hydrogen Energy 39, 20474–20483 (2014).
[Crossref]

Balykin, V.

F. Le Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[Crossref]

Banach, U.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors-a review,” Sens. Actuators B. 157, 329–352 (2011).
[Crossref]

L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, and U. Banach, “Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications,” Int. J. Hydrogen Energy 35, 373–384 (2010).
[Crossref]

Barabadi, B.

Beausoleil, R. G.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

Benabid, F.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

Bevenot, X.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13, 118–124 (2001).
[Crossref]

Birks, T.

T. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[Crossref]

Bischel, W. K.

G. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A 34, 1944–1951 (1986).
[Crossref]

Black, G.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors-a review,” Sens. Actuators B. 157, 329–352 (2011).
[Crossref]

L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, and U. Banach, “Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications,” Int. J. Hydrogen Energy 35, 373–384 (2010).
[Crossref]

Bögözi, T.

S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. R. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87, 982–988 (2014).
[Crossref]

Boon-Brett, L.

T. Hübert, L. Boon-Brett, V. Palmisano, and M. A. Bader, “Developments in gas sensor technology for hydrogen safety,” Int. J. Hydrogen Energy 39, 20474–20483 (2014).
[Crossref]

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors-a review,” Sens. Actuators B. 157, 329–352 (2011).
[Crossref]

L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, and U. Banach, “Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications,” Int. J. Hydrogen Energy 35, 373–384 (2010).
[Crossref]

Bousek, J.

L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, and U. Banach, “Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications,” Int. J. Hydrogen Energy 35, 373–384 (2010).
[Crossref]

Burgess, R.

W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, “An overview of hydrogen safety sensors and requirements,” Int. J. Hydrogen Energy 36, 2462–2470 (2011).
[Crossref]

Buttner, W. J.

W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, “An overview of hydrogen safety sensors and requirements,” Int. J. Hydrogen Energy 36, 2462–2470 (2011).
[Crossref]

Cantrell, C. D.

Cao, Y.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref]

F. Yang, W. Jin, Y. Cao, H. L. Ho, and Y. Wang, “Towards high sensitivity gas detection with hollow-core photonic bandgap fibers,” Opt. Express 22, 24894–24907 (2014).
[Crossref]

Carlsten, J.

J. Carlsten and R. Wenzel, “Stimulated rotational Raman scattering in CO2-pumped para-H2,” IEEE J. Quantum Electron. 19, 1407–1413 (1983).
[Crossref]

Carlsten, J. L.

Castello, P.

L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, and U. Banach, “Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications,” Int. J. Hydrogen Energy 35, 373–384 (2010).
[Crossref]

Claus, R. O.

J. S. Zeakes, K. A. Murphy, A. Elshabini-Riad, and R. O. Claus, “Modified extrinsic Fabry-Perot interferometric hydrogen gas sensor,” in Lasers and Electro-Optics Society Annual Meeting, 1994. LEOS’94 Conference Proceedings (IEEE, 1994), pp. 235–236.

Clement, M.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13, 118–124 (2001).
[Crossref]

Culshaw, B.

J. Dakin and B. Culshaw, Optical Fiber Sensors: Principles and Components (Artech House, 1988), Vol. 1, p. 343 [for individual items, see A90–36770 to A90–36775].

Dakin, J.

J. Dakin and B. Culshaw, Optical Fiber Sensors: Principles and Components (Artech House, 1988), Vol. 1, p. 343 [for individual items, see A90–36770 to A90–36775].

Dyer, M. J.

G. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A 34, 1944–1951 (1986).
[Crossref]

Ecke, W.

K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer,” Opt. Lasers Eng. 47, 1018–1022 (2009).
[Crossref]

Elshabini-Riad, A.

J. S. Zeakes, K. A. Murphy, A. Elshabini-Riad, and R. O. Claus, “Modified extrinsic Fabry-Perot interferometric hydrogen gas sensor,” in Lasers and Electro-Optics Society Annual Meeting, 1994. LEOS’94 Conference Proceedings (IEEE, 1994), pp. 235–236.

Farahi, F.

F. Farahi, P. A. Leilabady, J. Jones, and D. Jackson, “Interferometric fibre-optic hydrogen sensor,” J. Phys. E 20, 432–434 (1987).
[Crossref]

Frosch, T.

S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. R. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87, 982–988 (2014).
[Crossref]

Gagnaire, H.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13, 118–124 (2001).
[Crossref]

Hagenlocker, E.

R. Minck, E. Hagenlocker, and W. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[Crossref]

Hakuta, K.

F. Le Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[Crossref]

Hall, M.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

Hanf, S.

S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. R. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87, 982–988 (2014).
[Crossref]

Herring, G.

G. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A 34, 1944–1951 (1986).
[Crossref]

Hippler, M.

C. L. Spencer, V. Watson, and M. Hippler, “Trace gas detection of molecular hydrogen H2 by photoacoustic stimulated Raman spectroscopy (PARS),” Analyst 137, 1384–1388 (2012).
[Crossref]

Ho, H. L.

Hollenbeck, D.

Hübert, T.

T. Hübert, L. Boon-Brett, V. Palmisano, and M. A. Bader, “Developments in gas sensor technology for hydrogen safety,” Int. J. Hydrogen Energy 39, 20474–20483 (2014).
[Crossref]

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors-a review,” Sens. Actuators B. 157, 329–352 (2011).
[Crossref]

L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, and U. Banach, “Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications,” Int. J. Hydrogen Energy 35, 373–384 (2010).
[Crossref]

Jackson, D.

F. Farahi, P. A. Leilabady, J. Jones, and D. Jackson, “Interferometric fibre-optic hydrogen sensor,” J. Phys. E 20, 432–434 (1987).
[Crossref]

Jin, W.

F. Yang, W. Jin, Y. Lin, C. Wang, H. L. Ho, and Y. Tan, “Hollow-core microstructured optical fiber gas sensors,” J. Lightwave Technol. 35, 3413–3424 (2016).
[Crossref]

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref]

F. Yang, W. Jin, Y. Cao, H. L. Ho, and Y. Wang, “Towards high sensitivity gas detection with hollow-core photonic bandgap fibers,” Opt. Express 22, 24894–24907 (2014).
[Crossref]

H. Xuan, J. Ju, and W. Jin, “Highly birefringent optical microfibers,” Opt. Express 18, 3828–3839 (2010).
[Crossref]

F. Yang and W. Jin, “All-fiber hydrogen sensor based on stimulated Raman gain spectroscopy with a 1550  nm hollow-core fiber,” in 25th Optical Fiber Sensors Conference (OFS) (IEEE, 2017), 1–4.

Jones, J.

F. Farahi, P. A. Leilabady, J. Jones, and D. Jackson, “Interferometric fibre-optic hydrogen sensor,” J. Phys. E 20, 432–434 (1987).
[Crossref]

Jones, R. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
[Crossref]

Ju, J.

Kazemi, A.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56, 158–163 (1999).
[Crossref]

Keiner, R.

S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. R. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87, 982–988 (2014).
[Crossref]

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

Kumar, P.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

Labrie, D.

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[Crossref]

Le Kien, F.

F. Le Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[Crossref]

Lebrun, S.

L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibers,” Appl. Phys. Lett. 102, 201110 (2013).
[Crossref]

Leilabady, P. A.

F. Farahi, P. A. Leilabady, J. Jones, and D. Jackson, “Interferometric fibre-optic hydrogen sensor,” J. Phys. E 20, 432–434 (1987).
[Crossref]

Li, Y. W.

T. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[Crossref]

Liang, J.

F. Le Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[Crossref]

Lin, Y.

F. Yang, W. Jin, Y. Lin, C. Wang, H. L. Ho, and Y. Tan, “Hollow-core microstructured optical fiber gas sensors,” J. Lightwave Technol. 35, 3413–3424 (2016).
[Crossref]

X. Wei, T. Wei, H. Xiao, and Y. Lin, “Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B 134, 687–693 (2008).
[Crossref]

Maeda, M.

Meng, L. S.

Minck, R.

R. Minck, E. Hagenlocker, and W. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[Crossref]

Moll, K. D.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
[Crossref]

Moretto, P.

L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, and U. Banach, “Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications,” Int. J. Hydrogen Energy 35, 373–384 (2010).
[Crossref]

Murphy, K. A.

J. S. Zeakes, K. A. Murphy, A. Elshabini-Riad, and R. O. Claus, “Modified extrinsic Fabry-Perot interferometric hydrogen gas sensor,” in Lasers and Electro-Optics Society Annual Meeting, 1994. LEOS’94 Conference Proceedings (IEEE, 1994), pp. 235–236.

Najjar, Y. S.

Y. S. Najjar, “Hydrogen safety: the road toward green technology,” Int. J. Hydrogen Energy 38, 10716–10728 (2013).
[Crossref]

Nakazono, S.

Nonaka, Y.

Oki, Y.

Ottusch, J. J.

J. J. Ottusch and D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 24, 2076–2080 (1988).
[Crossref]

Palmisano, V.

T. Hübert, L. Boon-Brett, V. Palmisano, and M. A. Bader, “Developments in gas sensor technology for hydrogen safety,” Int. J. Hydrogen Energy 39, 20474–20483 (2014).
[Crossref]

Pati, G. S.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

Pauliat, G.

L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibers,” Appl. Phys. Lett. 102, 201110 (2013).
[Crossref]

Petrick, R.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56, 158–163 (1999).
[Crossref]

Popp, J. R.

S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. R. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87, 982–988 (2014).
[Crossref]

Post, M. B.

W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, “An overview of hydrogen safety sensors and requirements,” Int. J. Hydrogen Energy 36, 2462–2470 (2011).
[Crossref]

Rado, W.

R. Minck, E. Hagenlocker, and W. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[Crossref]

Reid, J.

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[Crossref]

Rivkin, C.

W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, “An overview of hydrogen safety sensors and requirements,” Int. J. Hydrogen Energy 36, 2462–2470 (2011).
[Crossref]

Rockwell, D. A.

J. J. Ottusch and D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 24, 2076–2080 (1988).
[Crossref]

Roos, P. A.

Russell, P. S. J.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

Safdi, B.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
[Crossref]

Salit, K.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

Schroeder, K.

K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer,” Opt. Lasers Eng. 47, 1018–1022 (2009).
[Crossref]

Shahriar, M. S.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

Shan, L.

L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibers,” Appl. Phys. Lett. 102, 201110 (2013).
[Crossref]

Smith, R. G.

Spencer, C. L.

C. L. Spencer, V. Watson, and M. Hippler, “Trace gas detection of molecular hydrogen H2 by photoacoustic stimulated Raman spectroscopy (PARS),” Analyst 137, 1384–1388 (2012).
[Crossref]

Spillane, S. M.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

Sutapun, B.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56, 158–163 (1999).
[Crossref]

Tabib-Azar, M.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56, 158–163 (1999).
[Crossref]

Tan, Y.

Thorpe, M. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
[Crossref]

Tong, L.

L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibers,” Appl. Phys. Lett. 102, 201110 (2013).
[Crossref]

Trouillet, A.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13, 118–124 (2001).
[Crossref]

Veillas, C.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13, 118–124 (2001).
[Crossref]

Vienne, G.

L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibers,” Appl. Phys. Lett. 102, 201110 (2013).
[Crossref]

Wang, C.

Wang, Y.

Watson, V.

C. L. Spencer, V. Watson, and M. Hippler, “Trace gas detection of molecular hydrogen H2 by photoacoustic stimulated Raman spectroscopy (PARS),” Analyst 137, 1384–1388 (2012).
[Crossref]

Wei, T.

X. Wei, T. Wei, H. Xiao, and Y. Lin, “Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B 134, 687–693 (2008).
[Crossref]

Wei, X.

X. Wei, T. Wei, H. Xiao, and Y. Lin, “Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B 134, 687–693 (2008).
[Crossref]

Wenzel, R.

J. Carlsten and R. Wenzel, “Stimulated rotational Raman scattering in CO2-pumped para-H2,” IEEE J. Quantum Electron. 19, 1407–1413 (1983).
[Crossref]

Willsch, R.

K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer,” Opt. Lasers Eng. 47, 1018–1022 (2009).
[Crossref]

Wynne, R.

Xiao, H.

X. Wei, T. Wei, H. Xiao, and Y. Lin, “Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B 134, 687–693 (2008).
[Crossref]

Xuan, H.

Yang, F.

F. Yang, W. Jin, Y. Lin, C. Wang, H. L. Ho, and Y. Tan, “Hollow-core microstructured optical fiber gas sensors,” J. Lightwave Technol. 35, 3413–3424 (2016).
[Crossref]

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref]

F. Yang, W. Jin, Y. Cao, H. L. Ho, and Y. Wang, “Towards high sensitivity gas detection with hollow-core photonic bandgap fibers,” Opt. Express 22, 24894–24907 (2014).
[Crossref]

F. Yang and W. Jin, “All-fiber hydrogen sensor based on stimulated Raman gain spectroscopy with a 1550  nm hollow-core fiber,” in 25th Optical Fiber Sensors Conference (OFS) (IEEE, 2017), 1–4.

Ye, J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
[Crossref]

Zeakes, J. S.

J. S. Zeakes, K. A. Murphy, A. Elshabini-Riad, and R. O. Claus, “Modified extrinsic Fabry-Perot interferometric hydrogen gas sensor,” in Lasers and Electro-Optics Society Annual Meeting, 1994. LEOS’94 Conference Proceedings (IEEE, 1994), pp. 235–236.

Anal. Chem. (1)

S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. R. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87, 982–988 (2014).
[Crossref]

Analyst (1)

C. L. Spencer, V. Watson, and M. Hippler, “Trace gas detection of molecular hydrogen H2 by photoacoustic stimulated Raman spectroscopy (PARS),” Analyst 137, 1384–1388 (2012).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[Crossref]

Appl. Phys. Lett. (1)

L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibers,” Appl. Phys. Lett. 102, 201110 (2013).
[Crossref]

IEEE J. Quantum Electron. (2)

J. J. Ottusch and D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 24, 2076–2080 (1988).
[Crossref]

J. Carlsten and R. Wenzel, “Stimulated rotational Raman scattering in CO2-pumped para-H2,” IEEE J. Quantum Electron. 19, 1407–1413 (1983).
[Crossref]

Int. J. Hydrogen Energy (4)

Y. S. Najjar, “Hydrogen safety: the road toward green technology,” Int. J. Hydrogen Energy 38, 10716–10728 (2013).
[Crossref]

W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, “An overview of hydrogen safety sensors and requirements,” Int. J. Hydrogen Energy 36, 2462–2470 (2011).
[Crossref]

L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, and U. Banach, “Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications,” Int. J. Hydrogen Energy 35, 373–384 (2010).
[Crossref]

T. Hübert, L. Boon-Brett, V. Palmisano, and M. A. Bader, “Developments in gas sensor technology for hydrogen safety,” Int. J. Hydrogen Energy 39, 20474–20483 (2014).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

J. Phys. E (1)

F. Farahi, P. A. Leilabady, J. Jones, and D. Jackson, “Interferometric fibre-optic hydrogen sensor,” J. Phys. E 20, 432–434 (1987).
[Crossref]

Meas. Sci. Technol. (1)

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13, 118–124 (2001).
[Crossref]

Nat. Commun. (1)

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref]

Opt. Commun. (1)

F. Le Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[Crossref]

Opt. Express (2)

Opt. Lasers Eng. (1)

K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer,” Opt. Lasers Eng. 47, 1018–1022 (2009).
[Crossref]

Opt. Lett. (2)

Phys. Rev. A (1)

G. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A 34, 1944–1951 (1986).
[Crossref]

Phys. Rev. Lett. (2)

R. Minck, E. Hagenlocker, and W. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[Crossref]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

Science (2)

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

Sens. Actuators B (2)

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56, 158–163 (1999).
[Crossref]

X. Wei, T. Wei, H. Xiao, and Y. Lin, “Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B 134, 687–693 (2008).
[Crossref]

Sens. Actuators B. (1)

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors-a review,” Sens. Actuators B. 157, 329–352 (2011).
[Crossref]

Other (3)

J. Dakin and B. Culshaw, Optical Fiber Sensors: Principles and Components (Artech House, 1988), Vol. 1, p. 343 [for individual items, see A90–36770 to A90–36775].

F. Yang and W. Jin, “All-fiber hydrogen sensor based on stimulated Raman gain spectroscopy with a 1550  nm hollow-core fiber,” in 25th Optical Fiber Sensors Conference (OFS) (IEEE, 2017), 1–4.

J. S. Zeakes, K. A. Murphy, A. Elshabini-Riad, and R. O. Claus, “Modified extrinsic Fabry-Perot interferometric hydrogen gas sensor,” in Lasers and Electro-Optics Society Annual Meeting, 1994. LEOS’94 Conference Proceedings (IEEE, 1994), pp. 235–236.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Spectroscopy with stimulated Raman scattering. (a) Energy diagram of stimulated Raman transition of a hydrogen molecule; the S0(0) rotational transition is used here as an example. The transition is excited by a pump (νP) and a Stokes (νS) beam. The pump and Stokes beams co-propagate in (b) free space, (c) a HC-PCF, and (d) a silica NF.
Fig. 2.
Fig. 2. Enhancement of SRS with NFs over HC-PCFs. The wavelength of the pump beams is 1530, 1060, 800, 580, and 440 nm, which matches the transmission bands of NKT Photonics’ HC-1550-02, HC-1060-02, HC-800-02, HC-580-02, and HC-440-02 HC-PCFs with MFDs of 9, 7.5, 5.5, 5.3, and 4 μm, respectively. The MFD and the fractional evanescent wave power in air varies significantly with pump wavelength and the diameter of NF, resulting in a wavelength- and diameter-dependent enhancement factor.
Fig. 3.
Fig. 3. Theoretical SRS gain coefficient for different diameters of silica NFs with the pump at 1532 nm and Stokes at 1620 nm, corresponding to the S0(0) transition of hydrogen. The gain coefficient has a unit of cm1·W1·ppm1, representing the gain per centimeter-long NF, per watts of input pump power and per parts per million (ppm) of trace hydrogen. For any polarizations of the input pump and Stokes beams, the SRS gain coefficient should lie between those of the counter-directional (purple line) and co-directional (green line) circularly polarized configurations.
Fig. 4.
Fig. 4. Experimental details. (a) Experimental setup of NF-based SRS for trace hydrogen detection. DFB, distributed-feedback laser (Eudyna FLD5F15CX) with a linewidth of 5 MHz; EDFA, erbium-doped fiber amplifier (Amonics AEDFA-EX); F1, filter 1, for minimizing ASE noise from EDFA, with bandwidth of 0.8 nm; PC, polarization controller; WDM, 1530/1620 wavelength-division multiplexer; ECDL, external-cavity diode laser (Agilent 81600B), with linewidth of 300 kHz; F2, filter 2, for elimination of the pump beam, with bandwidth of 0.8 nm; PD, photodetector (Nirvana-2017); Lock-in, lock-in amplifier (Stanford Research Systems SR830); DAQ, data acquisition (National Instrument USB 6212); MFC, mass-flow controller (Sevenstar CS200); DF, dust filter (TAIYO SFF-08). (b) Scanning electron microscope image of the nanofiber. (c) Rationale of the wavelength modulation. The narrow Raman gain line of hydrogen can be distinguished from the broad and flat Raman gain spectrum of silica by method of wavelength modulation. Inset: Raman spectra of silica [22] and rotational Raman transition line positions of hydrogen [11] over a larger range of wavenumber.
Fig. 5.
Fig. 5. Results of hydrogen detection with SRS and a NF. (a) Second-harmonic output of lock-in amplifier when the pump is scanned across the Raman line; (b) second-harmonic output as function of hydrogen concentration. The pump level is 305 mW, and the time constant of the lock-in is set to 10 s with 18 dB/Oct roll-off.
Fig. 6.
Fig. 6. (a) Second-harmonic output of lock-in amplifier for different pump power levels with a fixed hydrogen concentration of 0.4%. (b) Evaluation of noise equivalent concentration (NEC) by Allan deviation. The lock-in time constants for (a) and (b) are 10 s and 100 ms, respectively, with the same roll-off speed of 18 dB/Oct.
Fig. 7.
Fig. 7. Response and recovery time of NF-based on SRS hydrogen sensor.

Tables (1)

Tables Icon

Table 1. Comparison of Optical Techniques for Hydrogen Sensinga

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ΔIsIs0gIpLαAeff1PpNL,
PωSIm=AcEp2(Esvs+Esovso),where,{Ac=2π2ε02np(J+1)(J+2)γ002ΔN15ns(2J+1)(2J+3)hΓvi=3ep*[ep·ei]+3ep[ep*·ep]2ep[ep*·ei],
{Esz=ωs22βsε0c02(cs,sEs+cso,sEso)Ep2AcEsoz=ωs22βsε0c02(cs,soEs+cso,soEso)Ep2Ac,whereci,j=ρ(vi·ej*)ds|ej|2ds,