Abstract

Monolithic integration of efficient III–V light-emitting sources on planar on-axis Si (001) has been recognized as an enabling technology for realizing Si-based photonic integrated circuits (PICs). The field of microdisk lasers employing quantum dot (QD) materials is gaining significant momentum because it allows massive-scalable, streamlined fabrication of Si-based PICs to be made cost effectively. Here, we present InAs/GaAs QD microdisk lasers monolithically grown on on-axis Si (001) substrate with an ultra-low lasing threshold at room temperature under continuous-wave optical pumping. The lasing characteristics of microdisk lasers with small diameter (D) around 2 μm and sub-wavelength scale (D1.1μm) are demonstrated, with a lasing threshold as low as 3μW. The promising lasing characteristics of the microdisk lasers with ultra-low power consumption and small footprint represent a major advance towards large-scale, low-cost integration of laser sources on the Si platform.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates

Siming Chen, Mengya Liao, Mingchu Tang, Jiang Wu, Mickael Martin, Thierry Baron, Alwyn Seeds, and Huiyun Liu
Opt. Express 25(5) 4632-4639 (2017)

Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3  μm

Natalia Kryzhanovskaya, Eduard Moiseev, Yulia Polubavkina, Mikhail Maximov, Marina Kulagina, Sergey Troshkov, Yury Zadiranov, Yulia Guseva, Andrey Lipovskii, Mingchu Tang, Mengya Liao, Jiang Wu, Siming Chen, Huiyun Liu, and Alexey Zhukov
Opt. Lett. 42(17) 3319-3322 (2017)

1.3  μm submilliamp threshold quantum dot micro-lasers on Si

Yating Wan, Justin Norman, Qiang Li, M. J. Kennedy, Di Liang, Chong Zhang, Duanni Huang, Zeyu Zhang, Alan Y. Liu, Alfredo Torres, Daehwan Jung, Arthur C. Gossard, Evelyn L. Hu, Kei May Lau, and John E. Bowers
Optica 4(8) 940-944 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
    [Crossref]
  2. M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
    [Crossref]
  3. A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8, 579–582 (2014).
    [Crossref]
  4. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marrismorini, E. Cassan, L. Virot, and J. M. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
    [Crossref]
  5. Z. Wang, K. Van Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, and G. Roelkens, “A III-V-on-Si ultra-dense comb laser,” Light: Sci. Appl. 6, e16260 (2017).
    [Crossref]
  6. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
    [Crossref]
  7. R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
    [Crossref]
  8. H. Kroemer, K. J. Polasko, and S. C. Wright, “On the (110) orientation as the preferred orientation for the molecular beam epitaxial growth of GaAs on Ge, GaP on Si, and similar zincblende-on-diamond systems,” Appl. Phys. Lett. 36, 763–765 (1980).
    [Crossref]
  9. H. Kroemer, “Polar-on-nonpolar epitaxy,” J. Cryst. Growth 81, 193–204 (1987).
    [Crossref]
  10. M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 1900207 (2016).
    [Crossref]
  11. D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
    [Crossref]
  12. Z. Mi, P. Bhattacharya, J. Yang, and K. Pipe, “Room temperature self-organised In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).
    [Crossref]
  13. J.-R. Reboul, L. Cerutti, J.-B. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
    [Crossref]
  14. M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22, 11528–11535 (2014).
    [Crossref]
  15. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
    [Crossref]
  16. Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Rose, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
    [Crossref]
  17. Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
    [Crossref]
  18. Y. Wan, Q. Li, Y. Geng, B. Shi, and K. M. Lau, “InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3  μm band,” Appl. Phys. Lett. 107, 081106 (2015).
    [Crossref]
  19. B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
    [Crossref]
  20. Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
    [Crossref]
  21. Q. Li, Y. Wan, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 24, 21038–21045(2016).
    [Crossref]
  22. Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
    [Crossref]
  23. J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25, 3927–3934 (2017).
    [Crossref]
  24. Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
    [Crossref]
  25. Y. Han, W. K. Ng, C. Ma, Q. Li, S. Zhu, C. C. Chan, K. W. Ng, S. Lennon, R. A. Taylor, K. S. Wong, and K. M. Lau, “Room temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands,” Optica 5, 918–923 (2018).
    [Crossref]
  26. H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
    [Crossref]
  27. A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20, 22181–22187 (2012).
    [Crossref]
  28. A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19, 1901107(2013).
    [Crossref]
  29. N. Kryzhanovskaya, E. Moiseev, Y. S. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. M. Zadiranov, A. Lipovskii, N. Baidus, A. Dubinov, Z. Krasilnik, A. Novikov, D. Pavlov, A. Rykov, A. Sushkov, D. Yurasov, and A. Zhukov, “Electrically pumped InGaAs/GaAs quantum well microdisk lasers directly grown on Si (100) with Ge/GaAs buffer,” Opt. Express 25, 16754–16760 (2017).
    [Crossref]
  30. V. Y. Aleshkin, N. Baidus, A. Dubinov, A. Fefelov, Z. Krasilnik, K. Kudryavtsev, S. Nekorkin, A. Novikov, D. Pavlov, I. Samartsev, E. Skorokhodov, M. Shaleev, A. Sushkov, A. Yablonskiy, P. Yunin, and D. Yurasov, “Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si (001) substrate,” Appl. Phys. Lett. 109, 061111 (2016).
    [Crossref]
  31. D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
    [Crossref]
  32. A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3  μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
    [Crossref]
  33. S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous wave 1.3  μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25, 4632–4639 (2017).
    [Crossref]
  34. N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
    [Crossref]
  35. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers,” Opt. Lett. 32, 1495–1497 (2007).
    [Crossref]
  36. J. E. Bowers, J. T. Bovington, A. Y. Liu, and A. C. Gossard, “A path to 300  mm hybrid silicon photonic integrated circuits,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), pp. 1–3.
  37. Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III-Vs on Si for photonic applications—a monolithic approach,” Mater. Sci. Eng. B 177, 1551–1557 (2012).
    [Crossref]
  38. Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3  μm room temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
    [Crossref]
  39. B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55  μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
    [Crossref]
  40. B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
    [Crossref]
  41. R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, and Z. Ye, “Epitaxial growth of antiphase boundary free GaAs layer on 300  mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4, 083514 (2016).
    [Crossref]
  42. H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76, 3519–3521 (2000).
    [Crossref]
  43. S. Zhu, B. Shi, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks,” Opt. Lett. 42, 679–682 (2017).
    [Crossref]
  44. A. Zhukov, A. Kovsh, N. Maleev, S. Mikhrin, V. Ustinov, A. Tsatsul’nikov, M. Maximov, B. Volovik, D. Bedarev, Y. M. Shernyakov, P. S. Kop’ev, Z. I. Alferov, N. N. Ledenntsov, and D. Bimberg, “Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates,” Appl. Phys. Lett. 75, 1926–1928 (1999).
    [Crossref]

2018 (2)

2017 (11)

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25, 3927–3934 (2017).
[Crossref]

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

N. Kryzhanovskaya, E. Moiseev, Y. S. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. M. Zadiranov, A. Lipovskii, N. Baidus, A. Dubinov, Z. Krasilnik, A. Novikov, D. Pavlov, A. Rykov, A. Sushkov, D. Yurasov, and A. Zhukov, “Electrically pumped InGaAs/GaAs quantum well microdisk lasers directly grown on Si (100) with Ge/GaAs buffer,” Opt. Express 25, 16754–16760 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3  μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
[Crossref]

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous wave 1.3  μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25, 4632–4639 (2017).
[Crossref]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

Z. Wang, K. Van Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, and G. Roelkens, “A III-V-on-Si ultra-dense comb laser,” Light: Sci. Appl. 6, e16260 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55  μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

S. Zhu, B. Shi, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks,” Opt. Lett. 42, 679–682 (2017).
[Crossref]

2016 (10)

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, and Z. Ye, “Epitaxial growth of antiphase boundary free GaAs layer on 300  mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4, 083514 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3  μm room temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marrismorini, E. Cassan, L. Virot, and J. M. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 1900207 (2016).
[Crossref]

V. Y. Aleshkin, N. Baidus, A. Dubinov, A. Fefelov, Z. Krasilnik, K. Kudryavtsev, S. Nekorkin, A. Novikov, D. Pavlov, I. Samartsev, E. Skorokhodov, M. Shaleev, A. Sushkov, A. Yablonskiy, P. Yunin, and D. Yurasov, “Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si (001) substrate,” Appl. Phys. Lett. 109, 061111 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

Q. Li, Y. Wan, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 24, 21038–21045(2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

2015 (2)

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Y. Wan, Q. Li, Y. Geng, B. Shi, and K. M. Lau, “InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3  μm band,” Appl. Phys. Lett. 107, 081106 (2015).
[Crossref]

2014 (3)

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22, 11528–11535 (2014).
[Crossref]

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8, 579–582 (2014).
[Crossref]

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[Crossref]

2013 (1)

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19, 1901107(2013).
[Crossref]

2012 (3)

2011 (3)

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
[Crossref]

J.-R. Reboul, L. Cerutti, J.-B. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

2010 (1)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

2007 (1)

2006 (1)

2005 (1)

Z. Mi, P. Bhattacharya, J. Yang, and K. Pipe, “Room temperature self-organised In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).
[Crossref]

2000 (1)

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76, 3519–3521 (2000).
[Crossref]

1999 (1)

A. Zhukov, A. Kovsh, N. Maleev, S. Mikhrin, V. Ustinov, A. Tsatsul’nikov, M. Maximov, B. Volovik, D. Bedarev, Y. M. Shernyakov, P. S. Kop’ev, Z. I. Alferov, N. N. Ledenntsov, and D. Bimberg, “Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates,” Appl. Phys. Lett. 75, 1926–1928 (1999).
[Crossref]

1987 (1)

H. Kroemer, “Polar-on-nonpolar epitaxy,” J. Cryst. Growth 81, 193–204 (1987).
[Crossref]

1980 (1)

H. Kroemer, K. J. Polasko, and S. C. Wright, “On the (110) orientation as the preferred orientation for the molecular beam epitaxial growth of GaAs on Ge, GaP on Si, and similar zincblende-on-diamond systems,” Appl. Phys. Lett. 36, 763–765 (1980).
[Crossref]

Absil, P.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Alcotte, R.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, and Z. Ye, “Epitaxial growth of antiphase boundary free GaAs layer on 300  mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4, 083514 (2016).
[Crossref]

Aleshkin, V. Y.

V. Y. Aleshkin, N. Baidus, A. Dubinov, A. Fefelov, Z. Krasilnik, K. Kudryavtsev, S. Nekorkin, A. Novikov, D. Pavlov, I. Samartsev, E. Skorokhodov, M. Shaleev, A. Sushkov, A. Yablonskiy, P. Yunin, and D. Yurasov, “Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si (001) substrate,” Appl. Phys. Lett. 109, 061111 (2016).
[Crossref]

Alferov, Z. I.

A. Zhukov, A. Kovsh, N. Maleev, S. Mikhrin, V. Ustinov, A. Tsatsul’nikov, M. Maximov, B. Volovik, D. Bedarev, Y. M. Shernyakov, P. S. Kop’ev, Z. I. Alferov, N. N. Ledenntsov, and D. Bimberg, “Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates,” Appl. Phys. Lett. 75, 1926–1928 (1999).
[Crossref]

Asghari, M.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
[Crossref]

Baets, R.

Baidus, N.

N. Kryzhanovskaya, E. Moiseev, Y. S. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. M. Zadiranov, A. Lipovskii, N. Baidus, A. Dubinov, Z. Krasilnik, A. Novikov, D. Pavlov, A. Rykov, A. Sushkov, D. Yurasov, and A. Zhukov, “Electrically pumped InGaAs/GaAs quantum well microdisk lasers directly grown on Si (100) with Ge/GaAs buffer,” Opt. Express 25, 16754–16760 (2017).
[Crossref]

V. Y. Aleshkin, N. Baidus, A. Dubinov, A. Fefelov, Z. Krasilnik, K. Kudryavtsev, S. Nekorkin, A. Novikov, D. Pavlov, I. Samartsev, E. Skorokhodov, M. Shaleev, A. Sushkov, A. Yablonskiy, P. Yunin, and D. Yurasov, “Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si (001) substrate,” Appl. Phys. Lett. 109, 061111 (2016).
[Crossref]

Balthasar, G.

Baron, T.

Bassani, F.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, and Z. Ye, “Epitaxial growth of antiphase boundary free GaAs layer on 300  mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4, 083514 (2016).
[Crossref]

Beanland, R.

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 1900207 (2016).
[Crossref]

Bedarev, D.

A. Zhukov, A. Kovsh, N. Maleev, S. Mikhrin, V. Ustinov, A. Tsatsul’nikov, M. Maximov, B. Volovik, D. Bedarev, Y. M. Shernyakov, P. S. Kop’ev, Z. I. Alferov, N. N. Ledenntsov, and D. Bimberg, “Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates,” Appl. Phys. Lett. 75, 1926–1928 (1999).
[Crossref]

Benamara, M.

Bente, E.

Z. Wang, K. Van Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, and G. Roelkens, “A III-V-on-Si ultra-dense comb laser,” Light: Sci. Appl. 6, e16260 (2017).
[Crossref]

Bhattacharya, P.

Z. Mi, P. Bhattacharya, J. Yang, and K. Pipe, “Room temperature self-organised In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).
[Crossref]

Bimberg, D.

A. Zhukov, A. Kovsh, N. Maleev, S. Mikhrin, V. Ustinov, A. Tsatsul’nikov, M. Maximov, B. Volovik, D. Bedarev, Y. M. Shernyakov, P. S. Kop’ev, Z. I. Alferov, N. N. Ledenntsov, and D. Bimberg, “Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates,” Appl. Phys. Lett. 75, 1926–1928 (1999).
[Crossref]

Bogumilowicz, Y.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, and Z. Ye, “Epitaxial growth of antiphase boundary free GaAs layer on 300  mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4, 083514 (2016).
[Crossref]

Bovington, J. T.

J. E. Bowers, J. T. Bovington, A. Y. Liu, and A. C. Gossard, “A path to 300  mm hybrid silicon photonic integrated circuits,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), pp. 1–3.

Bowers, J. E.

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25, 3927–3934 (2017).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3  μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
[Crossref]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marrismorini, E. Cassan, L. Virot, and J. M. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3  μm room temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

Q. Li, Y. Wan, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 24, 21038–21045(2016).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

J. E. Bowers, J. T. Bovington, A. Y. Liu, and A. C. Gossard, “A path to 300  mm hybrid silicon photonic integrated circuits,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), pp. 1–3.

Callahan, P. G.

Cao, H.

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76, 3519–3521 (2000).
[Crossref]

Cassan, E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marrismorini, E. Cassan, L. Virot, and J. M. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Cerutti, L.

J.-R. Reboul, L. Cerutti, J.-B. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

Chan, C. C.

Chang, S. H.

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76, 3519–3521 (2000).
[Crossref]

Chang-Hasnain, C.

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[Crossref]

Chen, R.

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[Crossref]

Chen, S.

Chow, W. W.

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

Cipro, R.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, and Z. Ye, “Epitaxial growth of antiphase boundary free GaAs layer on 300  mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4, 083514 (2016).
[Crossref]

Cohen, O.

David, S.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, and Z. Ye, “Epitaxial growth of antiphase boundary free GaAs layer on 300  mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4, 083514 (2016).
[Crossref]

Dorogan, V. G.

Dubinov, A.

N. Kryzhanovskaya, E. Moiseev, Y. S. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. M. Zadiranov, A. Lipovskii, N. Baidus, A. Dubinov, Z. Krasilnik, A. Novikov, D. Pavlov, A. Rykov, A. Sushkov, D. Yurasov, and A. Zhukov, “Electrically pumped InGaAs/GaAs quantum well microdisk lasers directly grown on Si (100) with Ge/GaAs buffer,” Opt. Express 25, 16754–16760 (2017).
[Crossref]

V. Y. Aleshkin, N. Baidus, A. Dubinov, A. Fefelov, Z. Krasilnik, K. Kudryavtsev, S. Nekorkin, A. Novikov, D. Pavlov, I. Samartsev, E. Skorokhodov, M. Shaleev, A. Sushkov, A. Yablonskiy, P. Yunin, and D. Yurasov, “Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si (001) substrate,” Appl. Phys. Lett. 109, 061111 (2016).
[Crossref]

Ducroquet, F.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, and Z. Ye, “Epitaxial growth of antiphase boundary free GaAs layer on 300  mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4, 083514 (2016).
[Crossref]

Echlin, M. P.

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Fang, A. W.

Fédéli, J. M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marrismorini, E. Cassan, L. Virot, and J. M. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Fefelov, A.

V. Y. Aleshkin, N. Baidus, A. Dubinov, A. Fefelov, Z. Krasilnik, K. Kudryavtsev, S. Nekorkin, A. Novikov, D. Pavlov, I. Samartsev, E. Skorokhodov, M. Shaleev, A. Sushkov, A. Yablonskiy, P. Yunin, and D. Yurasov, “Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si (001) substrate,” Appl. Phys. Lett. 109, 061111 (2016).
[Crossref]

Freude, W.

Geng, Y.

Y. Wan, Q. Li, Y. Geng, B. Shi, and K. M. Lau, “InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3  μm band,” Appl. Phys. Lett. 107, 081106 (2015).
[Crossref]

Gossard, A. C.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25, 3927–3934 (2017).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3  μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
[Crossref]

Q. Li, Y. Wan, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 24, 21038–21045(2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3  μm room temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

J. E. Bowers, J. T. Bovington, A. Y. Liu, and A. C. Gossard, “A path to 300  mm hybrid silicon photonic integrated circuits,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), pp. 1–3.

Grech, P.

J.-R. Reboul, L. Cerutti, J.-B. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

Guo, W.

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Han, Y.

Hillerkuss, D.

Ho, S. T.

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76, 3519–3521 (2000).
[Crossref]

Hogg, R.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Hu, C.

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III-Vs on Si for photonic applications—a monolithic approach,” Mater. Sci. Eng. B 177, 1551–1557 (2012).
[Crossref]

Hu, E. L.

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55  μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

S. Zhu, B. Shi, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks,” Opt. Lett. 42, 679–682 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3  μm room temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

Q. Li, Y. Wan, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 24, 21038–21045(2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

Huang, X.

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 1900207 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22, 11528–11535 (2014).
[Crossref]

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19, 1901107(2013).
[Crossref]

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20, 22181–22187 (2012).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Jones, R.

Jordan, M.

Junesand, C.

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III-Vs on Si for photonic applications—a monolithic approach,” Mater. Sci. Eng. B 177, 1551–1557 (2012).
[Crossref]

Jung, D.

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3  μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

Jurczak, P.

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 1900207 (2016).
[Crossref]

Kennedy, K.

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 1900207 (2016).
[Crossref]

Kennedy, M. J.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25, 3927–3934 (2017).
[Crossref]

Ko, W. S.

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[Crossref]

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marrismorini, E. Cassan, L. Virot, and J. M. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Koos, C.

Kop’ev, P. S.

A. Zhukov, A. Kovsh, N. Maleev, S. Mikhrin, V. Ustinov, A. Tsatsul’nikov, M. Maximov, B. Volovik, D. Bedarev, Y. M. Shernyakov, P. S. Kop’ev, Z. I. Alferov, N. N. Ledenntsov, and D. Bimberg, “Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates,” Appl. Phys. Lett. 75, 1926–1928 (1999).
[Crossref]

Kovsh, A.

A. Zhukov, A. Kovsh, N. Maleev, S. Mikhrin, V. Ustinov, A. Tsatsul’nikov, M. Maximov, B. Volovik, D. Bedarev, Y. M. Shernyakov, P. S. Kop’ev, Z. I. Alferov, N. N. Ledenntsov, and D. Bimberg, “Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates,” Appl. Phys. Lett. 75, 1926–1928 (1999).
[Crossref]

Krasilnik, Z.

N. Kryzhanovskaya, E. Moiseev, Y. S. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. M. Zadiranov, A. Lipovskii, N. Baidus, A. Dubinov, Z. Krasilnik, A. Novikov, D. Pavlov, A. Rykov, A. Sushkov, D. Yurasov, and A. Zhukov, “Electrically pumped InGaAs/GaAs quantum well microdisk lasers directly grown on Si (100) with Ge/GaAs buffer,” Opt. Express 25, 16754–16760 (2017).
[Crossref]

V. Y. Aleshkin, N. Baidus, A. Dubinov, A. Fefelov, Z. Krasilnik, K. Kudryavtsev, S. Nekorkin, A. Novikov, D. Pavlov, I. Samartsev, E. Skorokhodov, M. Shaleev, A. Sushkov, A. Yablonskiy, P. Yunin, and D. Yurasov, “Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si (001) substrate,” Appl. Phys. Lett. 109, 061111 (2016).
[Crossref]

Krishnamoorthy, A. V.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
[Crossref]

Kroemer, H.

H. Kroemer, “Polar-on-nonpolar epitaxy,” J. Cryst. Growth 81, 193–204 (1987).
[Crossref]

H. Kroemer, K. J. Polasko, and S. C. Wright, “On the (110) orientation as the preferred orientation for the molecular beam epitaxial growth of GaAs on Ge, GaP on Si, and similar zincblende-on-diamond systems,” Appl. Phys. Lett. 36, 763–765 (1980).
[Crossref]

Kryzhanovskaya, N.

Kudryavtsev, K.

V. Y. Aleshkin, N. Baidus, A. Dubinov, A. Fefelov, Z. Krasilnik, K. Kudryavtsev, S. Nekorkin, A. Novikov, D. Pavlov, I. Samartsev, E. Skorokhodov, M. Shaleev, A. Sushkov, A. Yablonskiy, P. Yunin, and D. Yurasov, “Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si (001) substrate,” Appl. Phys. Lett. 109, 061111 (2016).
[Crossref]

Kulagina, M.

Kunert, B.

Kuyken, B.

Z. Wang, K. Van Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, and G. Roelkens, “A III-V-on-Si ultra-dense comb laser,” Light: Sci. Appl. 6, e16260 (2017).
[Crossref]

Latkowski, S.

Z. Wang, K. Van Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, and G. Roelkens, “A III-V-on-Si ultra-dense comb laser,” Light: Sci. Appl. 6, e16260 (2017).
[Crossref]

Lau, K. M.

Y. Han, W. K. Ng, C. Ma, Q. Li, S. Zhu, C. C. Chan, K. W. Ng, S. Lennon, R. A. Taylor, K. S. Wong, and K. M. Lau, “Room temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands,” Optica 5, 918–923 (2018).
[Crossref]

S. Zhu, B. Shi, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks,” Opt. Lett. 42, 679–682 (2017).
[Crossref]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25, 3927–3934 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55  μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

Q. Li, Y. Wan, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 24, 21038–21045(2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3  μm room temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

Y. Wan, Q. Li, Y. Geng, B. Shi, and K. M. Lau, “InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3  μm band,” Appl. Phys. Lett. 107, 081106 (2015).
[Crossref]

Ledenntsov, N. N.

A. Zhukov, A. Kovsh, N. Maleev, S. Mikhrin, V. Ustinov, A. Tsatsul’nikov, M. Maximov, B. Volovik, D. Bedarev, Y. M. Shernyakov, P. S. Kop’ev, Z. I. Alferov, N. N. Ledenntsov, and D. Bimberg, “Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates,” Appl. Phys. Lett. 75, 1926–1928 (1999).
[Crossref]

Lee, A.

Lee, A. D.

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19, 1901107(2013).
[Crossref]

Lee, M. L.

Lennon, S.

Leuthold, J.

Li, K.

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[Crossref]

Li, Q.

Y. Han, W. K. Ng, C. Ma, Q. Li, S. Zhu, C. C. Chan, K. W. Ng, S. Lennon, R. A. Taylor, K. S. Wong, and K. M. Lau, “Room temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands,” Optica 5, 918–923 (2018).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55  μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25, 3927–3934 (2017).
[Crossref]

Q. Li, Y. Wan, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 24, 21038–21045(2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3  μm room temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

Y. Wan, Q. Li, Y. Geng, B. Shi, and K. M. Lau, “InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3  μm band,” Appl. Phys. Lett. 107, 081106 (2015).
[Crossref]

Li, W.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Rose, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

Liao, M.

Lindenmann, N.

Lipovskii, A.

Liu, A. Y.

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25, 3927–3934 (2017).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3  μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3  μm room temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

Q. Li, Y. Wan, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 24, 21038–21045(2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

J. E. Bowers, J. T. Bovington, A. Y. Liu, and A. C. Gossard, “A path to 300  mm hybrid silicon photonic integrated circuits,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), pp. 1–3.

Liu, H.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Rose, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous wave 1.3  μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25, 4632–4639 (2017).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 1900207 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22, 11528–11535 (2014).
[Crossref]

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19, 1901107(2013).
[Crossref]

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20, 22181–22187 (2012).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Liu, L.

Liu, Z.

Lourdudoss, S.

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III-Vs on Si for photonic applications—a monolithic approach,” Mater. Sci. Eng. B 177, 1551–1557 (2012).
[Crossref]

Lu, F.

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[Crossref]

Ma, C.

Ma, Y.

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76, 3519–3521 (2000).
[Crossref]

Maleev, N.

A. Zhukov, A. Kovsh, N. Maleev, S. Mikhrin, V. Ustinov, A. Tsatsul’nikov, M. Maximov, B. Volovik, D. Bedarev, Y. M. Shernyakov, P. S. Kop’ev, Z. I. Alferov, N. N. Ledenntsov, and D. Bimberg, “Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates,” Appl. Phys. Lett. 75, 1926–1928 (1999).
[Crossref]

Marrismorini, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marrismorini, E. Cassan, L. Virot, and J. M. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Martin, M.

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous wave 1.3  μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25, 4632–4639 (2017).
[Crossref]

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, and Z. Ye, “Epitaxial growth of antiphase boundary free GaAs layer on 300  mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4, 083514 (2016).
[Crossref]

Maximov, M.

N. Kryzhanovskaya, E. Moiseev, Y. S. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. M. Zadiranov, A. Lipovskii, N. Baidus, A. Dubinov, Z. Krasilnik, A. Novikov, D. Pavlov, A. Rykov, A. Sushkov, D. Yurasov, and A. Zhukov, “Electrically pumped InGaAs/GaAs quantum well microdisk lasers directly grown on Si (100) with Ge/GaAs buffer,” Opt. Express 25, 16754–16760 (2017).
[Crossref]

A. Zhukov, A. Kovsh, N. Maleev, S. Mikhrin, V. Ustinov, A. Tsatsul’nikov, M. Maximov, B. Volovik, D. Bedarev, Y. M. Shernyakov, P. S. Kop’ev, Z. I. Alferov, N. N. Ledenntsov, and D. Bimberg, “Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates,” Appl. Phys. Lett. 75, 1926–1928 (1999).
[Crossref]

Mazur, Y. I.

Merckling, C.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Metaferia, W.

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III-Vs on Si for photonic applications—a monolithic approach,” Mater. Sci. Eng. B 177, 1551–1557 (2012).
[Crossref]

Mi, Z.

Z. Mi, P. Bhattacharya, J. Yang, and K. Pipe, “Room temperature self-organised In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).
[Crossref]

Mikhrin, S.

A. Zhukov, A. Kovsh, N. Maleev, S. Mikhrin, V. Ustinov, A. Tsatsul’nikov, M. Maximov, B. Volovik, D. Bedarev, Y. M. Shernyakov, P. S. Kop’ev, Z. I. Alferov, N. N. Ledenntsov, and D. Bimberg, “Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates,” Appl. Phys. Lett. 75, 1926–1928 (1999).
[Crossref]

Moeyaert, J.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, and Z. Ye, “Epitaxial growth of antiphase boundary free GaAs layer on 300  mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4, 083514 (2016).
[Crossref]

Moiseev, E.

Moskalenko, V.

Z. Wang, K. Van Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, and G. Roelkens, “A III-V-on-Si ultra-dense comb laser,” Light: Sci. Appl. 6, e16260 (2017).
[Crossref]

Mukherjee, K.

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

Nekorkin, S.

V. Y. Aleshkin, N. Baidus, A. Dubinov, A. Fefelov, Z. Krasilnik, K. Kudryavtsev, S. Nekorkin, A. Novikov, D. Pavlov, I. Samartsev, E. Skorokhodov, M. Shaleev, A. Sushkov, A. Yablonskiy, P. Yunin, and D. Yurasov, “Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si (001) substrate,” Appl. Phys. Lett. 109, 061111 (2016).
[Crossref]

Ng, K. W.

Y. Han, W. K. Ng, C. Ma, Q. Li, S. Zhu, C. C. Chan, K. W. Ng, S. Lennon, R. A. Taylor, K. S. Wong, and K. M. Lau, “Room temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands,” Optica 5, 918–923 (2018).
[Crossref]

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[Crossref]

Ng, W. K.

Norman, J.

Novikov, A.

N. Kryzhanovskaya, E. Moiseev, Y. S. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. M. Zadiranov, A. Lipovskii, N. Baidus, A. Dubinov, Z. Krasilnik, A. Novikov, D. Pavlov, A. Rykov, A. Sushkov, D. Yurasov, and A. Zhukov, “Electrically pumped InGaAs/GaAs quantum well microdisk lasers directly grown on Si (100) with Ge/GaAs buffer,” Opt. Express 25, 16754–16760 (2017).
[Crossref]

V. Y. Aleshkin, N. Baidus, A. Dubinov, A. Fefelov, Z. Krasilnik, K. Kudryavtsev, S. Nekorkin, A. Novikov, D. Pavlov, I. Samartsev, E. Skorokhodov, M. Shaleev, A. Sushkov, A. Yablonskiy, P. Yunin, and D. Yurasov, “Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si (001) substrate,” Appl. Phys. Lett. 109, 061111 (2016).
[Crossref]

Paniccia, M. J.

Pantouvaki, M.

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Parekh, D.

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[Crossref]

Park, H.

Pavlov, D.

N. Kryzhanovskaya, E. Moiseev, Y. S. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. M. Zadiranov, A. Lipovskii, N. Baidus, A. Dubinov, Z. Krasilnik, A. Novikov, D. Pavlov, A. Rykov, A. Sushkov, D. Yurasov, and A. Zhukov, “Electrically pumped InGaAs/GaAs quantum well microdisk lasers directly grown on Si (100) with Ge/GaAs buffer,” Opt. Express 25, 16754–16760 (2017).
[Crossref]

V. Y. Aleshkin, N. Baidus, A. Dubinov, A. Fefelov, Z. Krasilnik, K. Kudryavtsev, S. Nekorkin, A. Novikov, D. Pavlov, I. Samartsev, E. Skorokhodov, M. Shaleev, A. Sushkov, A. Yablonskiy, P. Yunin, and D. Yurasov, “Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si (001) substrate,” Appl. Phys. Lett. 109, 061111 (2016).
[Crossref]

Peters, J.

Pipe, K.

Z. Mi, P. Bhattacharya, J. Yang, and K. Pipe, “Room temperature self-organised In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).
[Crossref]

Polasko, K. J.

H. Kroemer, K. J. Polasko, and S. C. Wright, “On the (110) orientation as the preferred orientation for the molecular beam epitaxial growth of GaAs on Ge, GaP on Si, and similar zincblende-on-diamond systems,” Appl. Phys. Lett. 36, 763–765 (1980).
[Crossref]

Pollock, T. M.

Polubavkina, Y. S.

Pozzi, F.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Reboul, J.-R.

J.-R. Reboul, L. Cerutti, J.-B. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marrismorini, E. Cassan, L. Virot, and J. M. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Rickman, A.

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8, 579–582 (2014).
[Crossref]

Rodriguez, J.-B.

J.-R. Reboul, L. Cerutti, J.-B. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

Roelkens, G.

Z. Wang, K. Van Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, and G. Roelkens, “A III-V-on-Si ultra-dense comb laser,” Light: Sci. Appl. 6, e16260 (2017).
[Crossref]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers,” Opt. Lett. 32, 1495–1497 (2007).
[Crossref]

Rose, I.

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Rykov, A.

Salamo, G. J.

Samartsev, I.

V. Y. Aleshkin, N. Baidus, A. Dubinov, A. Fefelov, Z. Krasilnik, K. Kudryavtsev, S. Nekorkin, A. Novikov, D. Pavlov, I. Samartsev, E. Skorokhodov, M. Shaleev, A. Sushkov, A. Yablonskiy, P. Yunin, and D. Yurasov, “Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si (001) substrate,” Appl. Phys. Lett. 109, 061111 (2016).
[Crossref]

Sanchez, E.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, and Z. Ye, “Epitaxial growth of antiphase boundary free GaAs layer on 300  mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4, 083514 (2016).
[Crossref]

Schmogrow, R.

Seeds, A.

Seeds, A. J.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Rose, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19, 1901107(2013).
[Crossref]

Selvidge, J.

Shaleev, M.

V. Y. Aleshkin, N. Baidus, A. Dubinov, A. Fefelov, Z. Krasilnik, K. Kudryavtsev, S. Nekorkin, A. Novikov, D. Pavlov, I. Samartsev, E. Skorokhodov, M. Shaleev, A. Sushkov, A. Yablonskiy, P. Yunin, and D. Yurasov, “Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si (001) substrate,” Appl. Phys. Lett. 109, 061111 (2016).
[Crossref]

Shang, C.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Shernyakov, Y. M.

A. Zhukov, A. Kovsh, N. Maleev, S. Mikhrin, V. Ustinov, A. Tsatsul’nikov, M. Maximov, B. Volovik, D. Bedarev, Y. M. Shernyakov, P. S. Kop’ev, Z. I. Alferov, N. N. Ledenntsov, and D. Bimberg, “Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates,” Appl. Phys. Lett. 75, 1926–1928 (1999).
[Crossref]

Shi, B.

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55  μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

S. Zhu, B. Shi, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks,” Opt. Lett. 42, 679–682 (2017).
[Crossref]

Y. Wan, Q. Li, Y. Geng, B. Shi, and K. M. Lau, “InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3  μm band,” Appl. Phys. Lett. 107, 081106 (2015).
[Crossref]

Shi, Y.

Shin, B.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Skorokhodov, E.

V. Y. Aleshkin, N. Baidus, A. Dubinov, A. Fefelov, Z. Krasilnik, K. Kudryavtsev, S. Nekorkin, A. Novikov, D. Pavlov, I. Samartsev, E. Skorokhodov, M. Shaleev, A. Sushkov, A. Yablonskiy, P. Yunin, and D. Yurasov, “Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si (001) substrate,” Appl. Phys. Lett. 109, 061111 (2016).
[Crossref]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Solomon, G. S.

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76, 3519–3521 (2000).
[Crossref]

Sushkov, A.

N. Kryzhanovskaya, E. Moiseev, Y. S. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. M. Zadiranov, A. Lipovskii, N. Baidus, A. Dubinov, Z. Krasilnik, A. Novikov, D. Pavlov, A. Rykov, A. Sushkov, D. Yurasov, and A. Zhukov, “Electrically pumped InGaAs/GaAs quantum well microdisk lasers directly grown on Si (100) with Ge/GaAs buffer,” Opt. Express 25, 16754–16760 (2017).
[Crossref]

V. Y. Aleshkin, N. Baidus, A. Dubinov, A. Fefelov, Z. Krasilnik, K. Kudryavtsev, S. Nekorkin, A. Novikov, D. Pavlov, I. Samartsev, E. Skorokhodov, M. Shaleev, A. Sushkov, A. Yablonskiy, P. Yunin, and D. Yurasov, “Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si (001) substrate,” Appl. Phys. Lett. 109, 061111 (2016).
[Crossref]

Tang, C. W.

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

Tang, M.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Rose, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous wave 1.3  μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25, 4632–4639 (2017).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 1900207 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22, 11528–11535 (2014).
[Crossref]

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19, 1901107(2013).
[Crossref]

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20, 22181–22187 (2012).
[Crossref]

Taylor, R. A.

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marrismorini, E. Cassan, L. Virot, and J. M. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Tian, B.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Tournié, E.

J.-R. Reboul, L. Cerutti, J.-B. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

Tran, T.-T. D.

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[Crossref]

Troshkov, S.

Tsatsul’nikov, A.

A. Zhukov, A. Kovsh, N. Maleev, S. Mikhrin, V. Ustinov, A. Tsatsul’nikov, M. Maximov, B. Volovik, D. Bedarev, Y. M. Shernyakov, P. S. Kop’ev, Z. I. Alferov, N. N. Ledenntsov, and D. Bimberg, “Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates,” Appl. Phys. Lett. 75, 1926–1928 (1999).
[Crossref]

Tutu, F.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Ustinov, V.

A. Zhukov, A. Kovsh, N. Maleev, S. Mikhrin, V. Ustinov, A. Tsatsul’nikov, M. Maximov, B. Volovik, D. Bedarev, Y. M. Shernyakov, P. S. Kop’ev, Z. I. Alferov, N. N. Ledenntsov, and D. Bimberg, “Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates,” Appl. Phys. Lett. 75, 1926–1928 (1999).
[Crossref]

Van Campenhout, J.

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Van Gasse, K.

Z. Wang, K. Van Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, and G. Roelkens, “A III-V-on-Si ultra-dense comb laser,” Light: Sci. Appl. 6, e16260 (2017).
[Crossref]

Van Thourhout, D.

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers,” Opt. Lett. 32, 1495–1497 (2007).
[Crossref]

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marrismorini, E. Cassan, L. Virot, and J. M. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marrismorini, E. Cassan, L. Virot, and J. M. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Volovik, B.

A. Zhukov, A. Kovsh, N. Maleev, S. Mikhrin, V. Ustinov, A. Tsatsul’nikov, M. Maximov, B. Volovik, D. Bedarev, Y. M. Shernyakov, P. S. Kop’ev, Z. I. Alferov, N. N. Ledenntsov, and D. Bimberg, “Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates,” Appl. Phys. Lett. 75, 1926–1928 (1999).
[Crossref]

Wan, Y.

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55  μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

S. Zhu, B. Shi, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks,” Opt. Lett. 42, 679–682 (2017).
[Crossref]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25, 3927–3934 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3  μm room temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

Q. Li, Y. Wan, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 24, 21038–21045(2016).
[Crossref]

Y. Wan, Q. Li, Y. Geng, B. Shi, and K. M. Lau, “InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3  μm band,” Appl. Phys. Lett. 107, 081106 (2015).
[Crossref]

Wang, T.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Wang, Y.

Wang, Z.

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

Z. Wang, K. Van Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, and G. Roelkens, “A III-V-on-Si ultra-dense comb laser,” Light: Sci. Appl. 6, e16260 (2017).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III-Vs on Si for photonic applications—a monolithic approach,” Mater. Sci. Eng. B 177, 1551–1557 (2012).
[Crossref]

Wong, K. S.

Wosinski, L.

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III-Vs on Si for photonic applications—a monolithic approach,” Mater. Sci. Eng. B 177, 1551–1557 (2012).
[Crossref]

Wright, S. C.

H. Kroemer, K. J. Polasko, and S. C. Wright, “On the (110) orientation as the preferred orientation for the molecular beam epitaxial growth of GaAs on Ge, GaP on Si, and similar zincblende-on-diamond systems,” Appl. Phys. Lett. 36, 763–765 (1980).
[Crossref]

Wu, J.

Xiang, W. H.

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76, 3519–3521 (2000).
[Crossref]

Xu, J. Y.

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76, 3519–3521 (2000).
[Crossref]

Yablonskiy, A.

V. Y. Aleshkin, N. Baidus, A. Dubinov, A. Fefelov, Z. Krasilnik, K. Kudryavtsev, S. Nekorkin, A. Novikov, D. Pavlov, I. Samartsev, E. Skorokhodov, M. Shaleev, A. Sushkov, A. Yablonskiy, P. Yunin, and D. Yurasov, “Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si (001) substrate,” Appl. Phys. Lett. 109, 061111 (2016).
[Crossref]

Yang, C.

Yang, J.

Z. Mi, P. Bhattacharya, J. Yang, and K. Pipe, “Room temperature self-organised In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).
[Crossref]

Ye, Z.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, and Z. Ye, “Epitaxial growth of antiphase boundary free GaAs layer on 300  mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4, 083514 (2016).
[Crossref]

Yu, S.

Yu, Y.

Yunin, P.

V. Y. Aleshkin, N. Baidus, A. Dubinov, A. Fefelov, Z. Krasilnik, K. Kudryavtsev, S. Nekorkin, A. Novikov, D. Pavlov, I. Samartsev, E. Skorokhodov, M. Shaleev, A. Sushkov, A. Yablonskiy, P. Yunin, and D. Yurasov, “Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si (001) substrate,” Appl. Phys. Lett. 109, 061111 (2016).
[Crossref]

Yurasov, D.

N. Kryzhanovskaya, E. Moiseev, Y. S. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. M. Zadiranov, A. Lipovskii, N. Baidus, A. Dubinov, Z. Krasilnik, A. Novikov, D. Pavlov, A. Rykov, A. Sushkov, D. Yurasov, and A. Zhukov, “Electrically pumped InGaAs/GaAs quantum well microdisk lasers directly grown on Si (100) with Ge/GaAs buffer,” Opt. Express 25, 16754–16760 (2017).
[Crossref]

V. Y. Aleshkin, N. Baidus, A. Dubinov, A. Fefelov, Z. Krasilnik, K. Kudryavtsev, S. Nekorkin, A. Novikov, D. Pavlov, I. Samartsev, E. Skorokhodov, M. Shaleev, A. Sushkov, A. Yablonskiy, P. Yunin, and D. Yurasov, “Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si (001) substrate,” Appl. Phys. Lett. 109, 061111 (2016).
[Crossref]

Zadiranov, Y. M.

Zhang, Y.

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19, 1901107(2013).
[Crossref]

Zhou, L.

Zhu, S.

Y. Han, W. K. Ng, C. Ma, Q. Li, S. Zhu, C. C. Chan, K. W. Ng, S. Lennon, R. A. Taylor, K. S. Wong, and K. M. Lau, “Room temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands,” Optica 5, 918–923 (2018).
[Crossref]

S. Zhu, B. Shi, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks,” Opt. Lett. 42, 679–682 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55  μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

Zhukov, A.

N. Kryzhanovskaya, E. Moiseev, Y. S. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. M. Zadiranov, A. Lipovskii, N. Baidus, A. Dubinov, Z. Krasilnik, A. Novikov, D. Pavlov, A. Rykov, A. Sushkov, D. Yurasov, and A. Zhukov, “Electrically pumped InGaAs/GaAs quantum well microdisk lasers directly grown on Si (100) with Ge/GaAs buffer,” Opt. Express 25, 16754–16760 (2017).
[Crossref]

A. Zhukov, A. Kovsh, N. Maleev, S. Mikhrin, V. Ustinov, A. Tsatsul’nikov, M. Maximov, B. Volovik, D. Bedarev, Y. M. Shernyakov, P. S. Kop’ev, Z. I. Alferov, N. N. Ledenntsov, and D. Bimberg, “Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates,” Appl. Phys. Lett. 75, 1926–1928 (1999).
[Crossref]

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marrismorini, E. Cassan, L. Virot, and J. M. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

ACS Photon. (1)

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55  μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

APL Mater. (1)

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, and Z. Ye, “Epitaxial growth of antiphase boundary free GaAs layer on 300  mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4, 083514 (2016).
[Crossref]

Appl. Phys. Lett. (10)

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76, 3519–3521 (2000).
[Crossref]

A. Zhukov, A. Kovsh, N. Maleev, S. Mikhrin, V. Ustinov, A. Tsatsul’nikov, M. Maximov, B. Volovik, D. Bedarev, Y. M. Shernyakov, P. S. Kop’ev, Z. I. Alferov, N. N. Ledenntsov, and D. Bimberg, “Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates,” Appl. Phys. Lett. 75, 1926–1928 (1999).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

H. Kroemer, K. J. Polasko, and S. C. Wright, “On the (110) orientation as the preferred orientation for the molecular beam epitaxial growth of GaAs on Ge, GaP on Si, and similar zincblende-on-diamond systems,” Appl. Phys. Lett. 36, 763–765 (1980).
[Crossref]

J.-R. Reboul, L. Cerutti, J.-B. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

Y. Wan, Q. Li, Y. Geng, B. Shi, and K. M. Lau, “InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3  μm band,” Appl. Phys. Lett. 107, 081106 (2015).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

V. Y. Aleshkin, N. Baidus, A. Dubinov, A. Fefelov, Z. Krasilnik, K. Kudryavtsev, S. Nekorkin, A. Novikov, D. Pavlov, I. Samartsev, E. Skorokhodov, M. Shaleev, A. Sushkov, A. Yablonskiy, P. Yunin, and D. Yurasov, “Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si (001) substrate,” Appl. Phys. Lett. 109, 061111 (2016).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Electron. Lett. (1)

Z. Mi, P. Bhattacharya, J. Yang, and K. Pipe, “Room temperature self-organised In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 1900207 (2016).
[Crossref]

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19, 1901107(2013).
[Crossref]

J. Appl. Phys. (1)

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

J. Cryst. Growth (1)

H. Kroemer, “Polar-on-nonpolar epitaxy,” J. Cryst. Growth 81, 193–204 (1987).
[Crossref]

J. Opt. (1)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marrismorini, E. Cassan, L. Virot, and J. M. Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Light: Sci. Appl. (1)

Z. Wang, K. Van Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, and G. Roelkens, “A III-V-on-Si ultra-dense comb laser,” Light: Sci. Appl. 6, e16260 (2017).
[Crossref]

Mater. Sci. Eng. B (1)

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III-Vs on Si for photonic applications—a monolithic approach,” Mater. Sci. Eng. B 177, 1551–1557 (2012).
[Crossref]

Nano Lett. (1)

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Nat. Commun. (1)

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[Crossref]

Nat. Photonics (6)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
[Crossref]

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8, 579–582 (2014).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Opt. Express (8)

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20, 22181–22187 (2012).
[Crossref]

Q. Li, Y. Wan, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 24, 21038–21045(2016).
[Crossref]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25, 3927–3934 (2017).
[Crossref]

N. Kryzhanovskaya, E. Moiseev, Y. S. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. M. Zadiranov, A. Lipovskii, N. Baidus, A. Dubinov, Z. Krasilnik, A. Novikov, D. Pavlov, A. Rykov, A. Sushkov, D. Yurasov, and A. Zhukov, “Electrically pumped InGaAs/GaAs quantum well microdisk lasers directly grown on Si (100) with Ge/GaAs buffer,” Opt. Express 25, 16754–16760 (2017).
[Crossref]

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous wave 1.3  μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25, 4632–4639 (2017).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22, 11528–11535 (2014).
[Crossref]

Opt. Lett. (4)

Optica (3)

Other (1)

J. E. Bowers, J. T. Bovington, A. Y. Liu, and A. C. Gossard, “A path to 300  mm hybrid silicon photonic integrated circuits,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) TEM image of the QD structure grown on on-axis Si (001) substrate. (b) Schematic illustration of the epitaxial structure of the active region. (c), (d) High-resolution TEM images of the three stacked InAs QD layers and a single QD, respectively. (e) Atomic distribution profile of In obtained by XPS. (f) AFM image of uncapped InAs/GaAs QDs grown on Si (001) substrate. (g) Room-temperature PL spectra of the as-grown structure at various input powers.
Fig. 2.
Fig. 2. (a) Schematic diagram of a microdisk laser grown on planar on-axis Si (001) substrate. (b) SEM image of a fabricated microdisk laser. (c) Collected PL spectra below and above the lasing threshold of a microdisk with D1.9μm. (d) Corresponding collected intensity and mode linewidth as a function of input power for the emission peak at 1263 nm. The lasing threshold is 2.6±0.4μW. (e) Collected spectra above the threshold (4.4 μW) and curve fitting showing the spontaneous emission background and cavity emission. (f) Measured lasing wavelength under various incident pump powers.
Fig. 3.
Fig. 3. (a) Measured lasing spectra of the microdisk laser with D2μm under various pump powers. Lasing emissions from both ground state and excited states are observed. (b) L-L curve of the emission peaks at 1240 nm (first excited state) and 1317 nm (ground state), respectively.
Fig. 4.
Fig. 4. (a) Measured lasing spectra of the microdisk laser with D1.1μm and 1.4μm. The inset SEM image shows the fabricated sub-wavelength scale microdisk laser. (b) L-L curve and FWHM of lasing peak 1189nm of the sub-wavelength scale microdisk laser with D1.1μm, showing the lasing threshold of 2.9±0.4μW. (c), (d) Calculated cross section and top view of the magnetic field profiles for the TE1,6 mode, respectively. The green line represents the boundary of the microdisk, and the blue dashed line demonstrates the central plane of the microdisk.
Fig. 5.
Fig. 5. (a) Thresholds of microdisk lasers with various D. The lasing threshold was derived from the L-L curve of the main lasing peak, and all measured data came from a single microdisk laser.