Abstract

This work presents the fabrication of a one-lens camera using a biologically inspired artificial compound eye with multiple focal lengths. Traditional camera designs that consist of many separated lenses are difficult to assemble due to tight tolerance. The one-lens camera design is demonstrated experimentally in this work to avoid tolerance buildups. This structure is based on the principles of both the human eye as well as an insect’s compound eye. The artificial compound eye is a curved hexagonal microlens array, like an ommatidial array, wherein each artificial ommatidium collects light with a small angular acceptance. The ommatidia, in a typical hexagonal arrangement of 37 lenses, are arranged across a hemispherical photopolymer dome. The curved hexagonal array helps us to achieve a compact and wide field-of-view camera module. The fabrication process for the curved array is divided into two parts: creation of a planar hexagonal multi-lens array, and a replication process. To create the planar array, we use inkjet printing technology with the hydrophilic confinement effect to establish microlens shapes with different profiles. Next, the replication process converts the planar array into a curved shape. The spherical configuration of the hexagonal array is accomplished by applying the template architecture to a reconfigurable surface shape, that is, a photopolymer duplication using a deformed elastomer membrane with the hexagonal array pattern. In our experimental demonstration, microlenses in four rings with different focal lengths are fabricated on a single hemispherical lens with radius of curvature of 2.4 mm. The thickness of our proposed system is 3.04 mm, the f-number is 1.68, and the diagonal field of view is 92.6 deg. Above all, our presented camera module system uses a single one-piece lens.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of large micro-structured high-numerical-aperture optofluidic compound eyes with tunable angle of view

Qiao Xu, Bo Dai, Ziao Jiao, Ruijin Hong, Zhuoqin Yang, Dawei Zhang, and Songlin Zhuang
Opt. Express 26(25) 33356-33365 (2018)

Wide-angle camera with multichannel architecture using microlenses on a curved surface

Wei-Lun Liang, Hui-Kai Shen, and Guo-Dung J. Su
Appl. Opt. 53(17) 3696-3705 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Brady, W. B. Pang, H. Li, Z. Ma, Y. Tao, and X. Cao, “Parallel cameras,” Optica 5, 127–137 (2018).
    [Crossref]
  2. G. Haynes, F. Overdyk, and P. Arvanitis, “Perioperative data management with a portable memory device,” Anesthesiology 87, 1015A (1997).
    [Crossref]
  3. K. Ozcan and S. Velipasalar, “Wearable camera- and accelerometer-based fall detection on portable devices,” IEEE Embedded Syst. Lett. 8, 6–9 (2016).
    [Crossref]
  4. C. L. Hsieh, Y. H. Chang, Y. T. Chen, and C. S. Liu, “Design of VCM actuator with L-shape coil for smartphone cameras,” Microsyst. Technol. 24, 1033–1040 (2018).
    [Crossref]
  5. B. Ma, K. Sharma, K. P. Thompson, and J. P. Rolland, “Mobile device camera design with Q-type polynomials to achieve higher production yield,” Opt. Express 21, 17454–17463 (2013).
    [Crossref]
  6. S. Jung, D. H. Choi, B. L. Choi, and J. H. Kim, “Tolerance optimization of a mobile phone camera lens system,” Appl. Opt. 50, 4688–4700 (2011).
    [Crossref]
  7. W. L. Liang, H. K. Shen, and G. D. J. Su, “Wide-angle camera with multichannel architecture using microlenses on a curved surface,” Appl. Opt. 53, 3696–3705 (2014).
    [Crossref]
  8. W. L. Liang and G. D. J. Su, “Wide-angle and ultrathin camera module using a curved hexagonal microlens array and all spherical surfaces,” Appl. Opt. 53, H121–H128 (2014).
    [Crossref]
  9. M. Inoue, T. Noda, T. Mihashi, K. Ohnuma, H. Bissen-Miyajima, and A. Hirakata, “Quality of image of grating target placed in model of human eye with corneal aberrations as observed through multifocal intraocular lenses,” Am. J. Ophthalmol. 151, 644–652 (2011).
    [Crossref]
  10. S. Kim, J. J. Cassidy, B. Y. Yang, R. W. Carthew, and S. Hilgenfeldt, “Hexagonal patterning of the insect compound eye: facet area variation, defects, and disorder,” Biophys. J. 111, 2735–2746 (2016).
    [Crossref]
  11. J. Skeivalas and E. Parseliunas, “On identification of human eye retinas by the covariance analysis of their digital images,” Opt. Eng. 52, 073106 (2013).
    [Crossref]
  12. J. Polans, B. Jaeken, R. P. McNabb, P. Artal, and J. A. Izatt, “Wide-field optical model of the human eye with asymmetrically tilted and decentered lens that reproduces measured ocular aberrations,” Optica 2, 124–134 (2015).
    [Crossref]
  13. J. J. Ma, S. Masoodian, D. A. Starkey, and E. R. Fossum, “Photon-number-resolving megapixel image sensor at room temperature without avalanche gain,” Optica 4, 1474–1481 (2017).
    [Crossref]
  14. M. S. Kim, G. J. Lee, H. M. Kim, and Y. M. Song, “Parametric optimization of lateral NIPIN phototransistors for flexible image sensors,” Sensors 17, 1774 (2017).
    [Crossref]
  15. Y. P. Zhang and T. Ueda, “Design of a singlet lens and the corresponding aberration correction approaches for cell phone camera,” IEEJ Trans. Electr. Electron. Eng. 5, 474–485 (2010).
    [Crossref]
  16. W. C. Chen, T. J. Wu, W. J. Wu, and G. D. J. Su, “Fabrication of inkjet-printed SU-8 photoresist microlenses using hydrophilic confinement,” J. Micromech. Microeng. 23, 065008 (2013).
    [Crossref]
  17. X. L. Li, L. Zhang, X. W. Ma, and H. C. Zhang, “Dynamic characteristics of droplet impacting on prepared hydrophobic/superhydrophobic silicon surfaces,” Surf. Coat. Technol. 307, 243–253 (2016).
    [Crossref]
  18. I. Zada, W. Zhang, P. Sun, M. Imtiaz, W. Abbas, and D. Zhang, “Multifunctional, angle dependent antireflection, and hydrophilic properties of SiO2 inspired by nano-scale structures of cicada wings,” Appl. Phys. Lett. 111, 153701 (2017).
    [Crossref]
  19. J. Shimada, O. Ohguchi, and R. Sawada, “Microlens fabricated by the planar process,” J. Lightwave Technol. 9, 571–576 (1991).
    [Crossref]
  20. K. J. Seu, A. P. Pandey, F. Haque, E. A. Proctor, A. E. Ribbe, and J. S. Hovis, “Effect of surface treatment on diffusion and domain formation in supported lipid bilayers,” Biophys. J. 92, 2445–2450 (2007).
    [Crossref]
  21. K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
    [Crossref]
  22. Y. Liu, P. Zhang, Y. Deng, P. Hao, J. Fan, M. Chi, and Y. Wu, “Polymeric microlens array fabricated with PDMS mold-based hot embossing,” J. Micromech. Microeng. 24, 095028 (2014).
    [Crossref]
  23. J. Duparre, P. Dannberg, A. Brueckner, and A. Braeuer, “Image detection system of optical channels arranged next to one another,” U.S. patent7,897,903 B2 (March1, 2011).
  24. P. D. Cott and C. S. Levin, “Image processing algorithms to facilitate and enhance sentinel node detection using a hand-held gamma ray camera in surgical breast cancer staging,” Phys. Medica 21, 99–101 (2006).
    [Crossref]
  25. D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
    [Crossref]
  26. M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74, 59–73 (2007).
    [Crossref]
  27. S. Fathi and P. Dickens, “Jet array driven flow on the nozzle plate of an inkjet printhead in deposition of molten nylon materials,” J. Mater. Process. Technol. 213, 383–391 (2013).
    [Crossref]

2018 (2)

D. J. Brady, W. B. Pang, H. Li, Z. Ma, Y. Tao, and X. Cao, “Parallel cameras,” Optica 5, 127–137 (2018).
[Crossref]

C. L. Hsieh, Y. H. Chang, Y. T. Chen, and C. S. Liu, “Design of VCM actuator with L-shape coil for smartphone cameras,” Microsyst. Technol. 24, 1033–1040 (2018).
[Crossref]

2017 (3)

J. J. Ma, S. Masoodian, D. A. Starkey, and E. R. Fossum, “Photon-number-resolving megapixel image sensor at room temperature without avalanche gain,” Optica 4, 1474–1481 (2017).
[Crossref]

M. S. Kim, G. J. Lee, H. M. Kim, and Y. M. Song, “Parametric optimization of lateral NIPIN phototransistors for flexible image sensors,” Sensors 17, 1774 (2017).
[Crossref]

I. Zada, W. Zhang, P. Sun, M. Imtiaz, W. Abbas, and D. Zhang, “Multifunctional, angle dependent antireflection, and hydrophilic properties of SiO2 inspired by nano-scale structures of cicada wings,” Appl. Phys. Lett. 111, 153701 (2017).
[Crossref]

2016 (3)

X. L. Li, L. Zhang, X. W. Ma, and H. C. Zhang, “Dynamic characteristics of droplet impacting on prepared hydrophobic/superhydrophobic silicon surfaces,” Surf. Coat. Technol. 307, 243–253 (2016).
[Crossref]

K. Ozcan and S. Velipasalar, “Wearable camera- and accelerometer-based fall detection on portable devices,” IEEE Embedded Syst. Lett. 8, 6–9 (2016).
[Crossref]

S. Kim, J. J. Cassidy, B. Y. Yang, R. W. Carthew, and S. Hilgenfeldt, “Hexagonal patterning of the insect compound eye: facet area variation, defects, and disorder,” Biophys. J. 111, 2735–2746 (2016).
[Crossref]

2015 (1)

2014 (3)

2013 (4)

S. Fathi and P. Dickens, “Jet array driven flow on the nozzle plate of an inkjet printhead in deposition of molten nylon materials,” J. Mater. Process. Technol. 213, 383–391 (2013).
[Crossref]

J. Skeivalas and E. Parseliunas, “On identification of human eye retinas by the covariance analysis of their digital images,” Opt. Eng. 52, 073106 (2013).
[Crossref]

B. Ma, K. Sharma, K. P. Thompson, and J. P. Rolland, “Mobile device camera design with Q-type polynomials to achieve higher production yield,” Opt. Express 21, 17454–17463 (2013).
[Crossref]

W. C. Chen, T. J. Wu, W. J. Wu, and G. D. J. Su, “Fabrication of inkjet-printed SU-8 photoresist microlenses using hydrophilic confinement,” J. Micromech. Microeng. 23, 065008 (2013).
[Crossref]

2012 (1)

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

2011 (2)

S. Jung, D. H. Choi, B. L. Choi, and J. H. Kim, “Tolerance optimization of a mobile phone camera lens system,” Appl. Opt. 50, 4688–4700 (2011).
[Crossref]

M. Inoue, T. Noda, T. Mihashi, K. Ohnuma, H. Bissen-Miyajima, and A. Hirakata, “Quality of image of grating target placed in model of human eye with corneal aberrations as observed through multifocal intraocular lenses,” Am. J. Ophthalmol. 151, 644–652 (2011).
[Crossref]

2010 (1)

Y. P. Zhang and T. Ueda, “Design of a singlet lens and the corresponding aberration correction approaches for cell phone camera,” IEEJ Trans. Electr. Electron. Eng. 5, 474–485 (2010).
[Crossref]

2007 (2)

M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74, 59–73 (2007).
[Crossref]

K. J. Seu, A. P. Pandey, F. Haque, E. A. Proctor, A. E. Ribbe, and J. S. Hovis, “Effect of surface treatment on diffusion and domain formation in supported lipid bilayers,” Biophys. J. 92, 2445–2450 (2007).
[Crossref]

2006 (2)

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[Crossref]

P. D. Cott and C. S. Levin, “Image processing algorithms to facilitate and enhance sentinel node detection using a hand-held gamma ray camera in surgical breast cancer staging,” Phys. Medica 21, 99–101 (2006).
[Crossref]

1997 (1)

G. Haynes, F. Overdyk, and P. Arvanitis, “Perioperative data management with a portable memory device,” Anesthesiology 87, 1015A (1997).
[Crossref]

1991 (1)

J. Shimada, O. Ohguchi, and R. Sawada, “Microlens fabricated by the planar process,” J. Lightwave Technol. 9, 571–576 (1991).
[Crossref]

Abbas, W.

I. Zada, W. Zhang, P. Sun, M. Imtiaz, W. Abbas, and D. Zhang, “Multifunctional, angle dependent antireflection, and hydrophilic properties of SiO2 inspired by nano-scale structures of cicada wings,” Appl. Phys. Lett. 111, 153701 (2017).
[Crossref]

Artal, P.

Arvanitis, P.

G. Haynes, F. Overdyk, and P. Arvanitis, “Perioperative data management with a portable memory device,” Anesthesiology 87, 1015A (1997).
[Crossref]

Bissen-Miyajima, H.

M. Inoue, T. Noda, T. Mihashi, K. Ohnuma, H. Bissen-Miyajima, and A. Hirakata, “Quality of image of grating target placed in model of human eye with corneal aberrations as observed through multifocal intraocular lenses,” Am. J. Ophthalmol. 151, 644–652 (2011).
[Crossref]

Brady, D. J.

D. J. Brady, W. B. Pang, H. Li, Z. Ma, Y. Tao, and X. Cao, “Parallel cameras,” Optica 5, 127–137 (2018).
[Crossref]

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Braeuer, A.

J. Duparre, P. Dannberg, A. Brueckner, and A. Braeuer, “Image detection system of optical channels arranged next to one another,” U.S. patent7,897,903 B2 (March1, 2011).

Brown, M.

M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74, 59–73 (2007).
[Crossref]

Brueckner, A.

J. Duparre, P. Dannberg, A. Brueckner, and A. Braeuer, “Image detection system of optical channels arranged next to one another,” U.S. patent7,897,903 B2 (March1, 2011).

Cao, X.

Carthew, R. W.

S. Kim, J. J. Cassidy, B. Y. Yang, R. W. Carthew, and S. Hilgenfeldt, “Hexagonal patterning of the insect compound eye: facet area variation, defects, and disorder,” Biophys. J. 111, 2735–2746 (2016).
[Crossref]

Cassidy, J. J.

S. Kim, J. J. Cassidy, B. Y. Yang, R. W. Carthew, and S. Hilgenfeldt, “Hexagonal patterning of the insect compound eye: facet area variation, defects, and disorder,” Biophys. J. 111, 2735–2746 (2016).
[Crossref]

Chang, Y. H.

C. L. Hsieh, Y. H. Chang, Y. T. Chen, and C. S. Liu, “Design of VCM actuator with L-shape coil for smartphone cameras,” Microsyst. Technol. 24, 1033–1040 (2018).
[Crossref]

Chen, W. C.

W. C. Chen, T. J. Wu, W. J. Wu, and G. D. J. Su, “Fabrication of inkjet-printed SU-8 photoresist microlenses using hydrophilic confinement,” J. Micromech. Microeng. 23, 065008 (2013).
[Crossref]

Chen, Y. T.

C. L. Hsieh, Y. H. Chang, Y. T. Chen, and C. S. Liu, “Design of VCM actuator with L-shape coil for smartphone cameras,” Microsyst. Technol. 24, 1033–1040 (2018).
[Crossref]

Chi, M.

Y. Liu, P. Zhang, Y. Deng, P. Hao, J. Fan, M. Chi, and Y. Wu, “Polymeric microlens array fabricated with PDMS mold-based hot embossing,” J. Micromech. Microeng. 24, 095028 (2014).
[Crossref]

Choi, B. L.

Choi, D. H.

Cott, P. D.

P. D. Cott and C. S. Levin, “Image processing algorithms to facilitate and enhance sentinel node detection using a hand-held gamma ray camera in surgical breast cancer staging,” Phys. Medica 21, 99–101 (2006).
[Crossref]

Dannberg, P.

J. Duparre, P. Dannberg, A. Brueckner, and A. Braeuer, “Image detection system of optical channels arranged next to one another,” U.S. patent7,897,903 B2 (March1, 2011).

Deng, Y.

Y. Liu, P. Zhang, Y. Deng, P. Hao, J. Fan, M. Chi, and Y. Wu, “Polymeric microlens array fabricated with PDMS mold-based hot embossing,” J. Micromech. Microeng. 24, 095028 (2014).
[Crossref]

Dickens, P.

S. Fathi and P. Dickens, “Jet array driven flow on the nozzle plate of an inkjet printhead in deposition of molten nylon materials,” J. Mater. Process. Technol. 213, 383–391 (2013).
[Crossref]

Duparre, J.

J. Duparre, P. Dannberg, A. Brueckner, and A. Braeuer, “Image detection system of optical channels arranged next to one another,” U.S. patent7,897,903 B2 (March1, 2011).

Fan, J.

Y. Liu, P. Zhang, Y. Deng, P. Hao, J. Fan, M. Chi, and Y. Wu, “Polymeric microlens array fabricated with PDMS mold-based hot embossing,” J. Micromech. Microeng. 24, 095028 (2014).
[Crossref]

Fathi, S.

S. Fathi and P. Dickens, “Jet array driven flow on the nozzle plate of an inkjet printhead in deposition of molten nylon materials,” J. Mater. Process. Technol. 213, 383–391 (2013).
[Crossref]

Feller, S. D.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Fossum, E. R.

Gehm, M. E.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Golish, D. R.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Hao, P.

Y. Liu, P. Zhang, Y. Deng, P. Hao, J. Fan, M. Chi, and Y. Wu, “Polymeric microlens array fabricated with PDMS mold-based hot embossing,” J. Micromech. Microeng. 24, 095028 (2014).
[Crossref]

Haque, F.

K. J. Seu, A. P. Pandey, F. Haque, E. A. Proctor, A. E. Ribbe, and J. S. Hovis, “Effect of surface treatment on diffusion and domain formation in supported lipid bilayers,” Biophys. J. 92, 2445–2450 (2007).
[Crossref]

Haynes, G.

G. Haynes, F. Overdyk, and P. Arvanitis, “Perioperative data management with a portable memory device,” Anesthesiology 87, 1015A (1997).
[Crossref]

Hilgenfeldt, S.

S. Kim, J. J. Cassidy, B. Y. Yang, R. W. Carthew, and S. Hilgenfeldt, “Hexagonal patterning of the insect compound eye: facet area variation, defects, and disorder,” Biophys. J. 111, 2735–2746 (2016).
[Crossref]

Hirakata, A.

M. Inoue, T. Noda, T. Mihashi, K. Ohnuma, H. Bissen-Miyajima, and A. Hirakata, “Quality of image of grating target placed in model of human eye with corneal aberrations as observed through multifocal intraocular lenses,” Am. J. Ophthalmol. 151, 644–652 (2011).
[Crossref]

Hovis, J. S.

K. J. Seu, A. P. Pandey, F. Haque, E. A. Proctor, A. E. Ribbe, and J. S. Hovis, “Effect of surface treatment on diffusion and domain formation in supported lipid bilayers,” Biophys. J. 92, 2445–2450 (2007).
[Crossref]

Hsieh, C. L.

C. L. Hsieh, Y. H. Chang, Y. T. Chen, and C. S. Liu, “Design of VCM actuator with L-shape coil for smartphone cameras,” Microsyst. Technol. 24, 1033–1040 (2018).
[Crossref]

Imtiaz, M.

I. Zada, W. Zhang, P. Sun, M. Imtiaz, W. Abbas, and D. Zhang, “Multifunctional, angle dependent antireflection, and hydrophilic properties of SiO2 inspired by nano-scale structures of cicada wings,” Appl. Phys. Lett. 111, 153701 (2017).
[Crossref]

Inoue, M.

M. Inoue, T. Noda, T. Mihashi, K. Ohnuma, H. Bissen-Miyajima, and A. Hirakata, “Quality of image of grating target placed in model of human eye with corneal aberrations as observed through multifocal intraocular lenses,” Am. J. Ophthalmol. 151, 644–652 (2011).
[Crossref]

Izatt, J. A.

Jaeken, B.

Jeong, K. H.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[Crossref]

Jung, S.

Kim, H. M.

M. S. Kim, G. J. Lee, H. M. Kim, and Y. M. Song, “Parametric optimization of lateral NIPIN phototransistors for flexible image sensors,” Sensors 17, 1774 (2017).
[Crossref]

Kim, J.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[Crossref]

Kim, J. H.

Kim, M. S.

M. S. Kim, G. J. Lee, H. M. Kim, and Y. M. Song, “Parametric optimization of lateral NIPIN phototransistors for flexible image sensors,” Sensors 17, 1774 (2017).
[Crossref]

Kim, S.

S. Kim, J. J. Cassidy, B. Y. Yang, R. W. Carthew, and S. Hilgenfeldt, “Hexagonal patterning of the insect compound eye: facet area variation, defects, and disorder,” Biophys. J. 111, 2735–2746 (2016).
[Crossref]

Kittle, D. S.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Lee, G. J.

M. S. Kim, G. J. Lee, H. M. Kim, and Y. M. Song, “Parametric optimization of lateral NIPIN phototransistors for flexible image sensors,” Sensors 17, 1774 (2017).
[Crossref]

Lee, L. P.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[Crossref]

Levin, C. S.

P. D. Cott and C. S. Levin, “Image processing algorithms to facilitate and enhance sentinel node detection using a hand-held gamma ray camera in surgical breast cancer staging,” Phys. Medica 21, 99–101 (2006).
[Crossref]

Li, H.

Li, X. L.

X. L. Li, L. Zhang, X. W. Ma, and H. C. Zhang, “Dynamic characteristics of droplet impacting on prepared hydrophobic/superhydrophobic silicon surfaces,” Surf. Coat. Technol. 307, 243–253 (2016).
[Crossref]

Liang, W. L.

Liu, C. S.

C. L. Hsieh, Y. H. Chang, Y. T. Chen, and C. S. Liu, “Design of VCM actuator with L-shape coil for smartphone cameras,” Microsyst. Technol. 24, 1033–1040 (2018).
[Crossref]

Liu, Y.

Y. Liu, P. Zhang, Y. Deng, P. Hao, J. Fan, M. Chi, and Y. Wu, “Polymeric microlens array fabricated with PDMS mold-based hot embossing,” J. Micromech. Microeng. 24, 095028 (2014).
[Crossref]

Lowe, D. G.

M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74, 59–73 (2007).
[Crossref]

Ma, B.

Ma, J. J.

Ma, X. W.

X. L. Li, L. Zhang, X. W. Ma, and H. C. Zhang, “Dynamic characteristics of droplet impacting on prepared hydrophobic/superhydrophobic silicon surfaces,” Surf. Coat. Technol. 307, 243–253 (2016).
[Crossref]

Ma, Z.

Marks, D. L.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Masoodian, S.

McNabb, R. P.

Mihashi, T.

M. Inoue, T. Noda, T. Mihashi, K. Ohnuma, H. Bissen-Miyajima, and A. Hirakata, “Quality of image of grating target placed in model of human eye with corneal aberrations as observed through multifocal intraocular lenses,” Am. J. Ophthalmol. 151, 644–652 (2011).
[Crossref]

Noda, T.

M. Inoue, T. Noda, T. Mihashi, K. Ohnuma, H. Bissen-Miyajima, and A. Hirakata, “Quality of image of grating target placed in model of human eye with corneal aberrations as observed through multifocal intraocular lenses,” Am. J. Ophthalmol. 151, 644–652 (2011).
[Crossref]

Ohguchi, O.

J. Shimada, O. Ohguchi, and R. Sawada, “Microlens fabricated by the planar process,” J. Lightwave Technol. 9, 571–576 (1991).
[Crossref]

Ohnuma, K.

M. Inoue, T. Noda, T. Mihashi, K. Ohnuma, H. Bissen-Miyajima, and A. Hirakata, “Quality of image of grating target placed in model of human eye with corneal aberrations as observed through multifocal intraocular lenses,” Am. J. Ophthalmol. 151, 644–652 (2011).
[Crossref]

Overdyk, F.

G. Haynes, F. Overdyk, and P. Arvanitis, “Perioperative data management with a portable memory device,” Anesthesiology 87, 1015A (1997).
[Crossref]

Ozcan, K.

K. Ozcan and S. Velipasalar, “Wearable camera- and accelerometer-based fall detection on portable devices,” IEEE Embedded Syst. Lett. 8, 6–9 (2016).
[Crossref]

Pandey, A. P.

K. J. Seu, A. P. Pandey, F. Haque, E. A. Proctor, A. E. Ribbe, and J. S. Hovis, “Effect of surface treatment on diffusion and domain formation in supported lipid bilayers,” Biophys. J. 92, 2445–2450 (2007).
[Crossref]

Pang, W. B.

Parseliunas, E.

J. Skeivalas and E. Parseliunas, “On identification of human eye retinas by the covariance analysis of their digital images,” Opt. Eng. 52, 073106 (2013).
[Crossref]

Polans, J.

Proctor, E. A.

K. J. Seu, A. P. Pandey, F. Haque, E. A. Proctor, A. E. Ribbe, and J. S. Hovis, “Effect of surface treatment on diffusion and domain formation in supported lipid bilayers,” Biophys. J. 92, 2445–2450 (2007).
[Crossref]

Ribbe, A. E.

K. J. Seu, A. P. Pandey, F. Haque, E. A. Proctor, A. E. Ribbe, and J. S. Hovis, “Effect of surface treatment on diffusion and domain formation in supported lipid bilayers,” Biophys. J. 92, 2445–2450 (2007).
[Crossref]

Rolland, J. P.

Sawada, R.

J. Shimada, O. Ohguchi, and R. Sawada, “Microlens fabricated by the planar process,” J. Lightwave Technol. 9, 571–576 (1991).
[Crossref]

Seu, K. J.

K. J. Seu, A. P. Pandey, F. Haque, E. A. Proctor, A. E. Ribbe, and J. S. Hovis, “Effect of surface treatment on diffusion and domain formation in supported lipid bilayers,” Biophys. J. 92, 2445–2450 (2007).
[Crossref]

Sharma, K.

Shen, H. K.

Shimada, J.

J. Shimada, O. Ohguchi, and R. Sawada, “Microlens fabricated by the planar process,” J. Lightwave Technol. 9, 571–576 (1991).
[Crossref]

Skeivalas, J.

J. Skeivalas and E. Parseliunas, “On identification of human eye retinas by the covariance analysis of their digital images,” Opt. Eng. 52, 073106 (2013).
[Crossref]

Song, Y. M.

M. S. Kim, G. J. Lee, H. M. Kim, and Y. M. Song, “Parametric optimization of lateral NIPIN phototransistors for flexible image sensors,” Sensors 17, 1774 (2017).
[Crossref]

Stack, R. A.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Starkey, D. A.

Su, G. D. J.

Sun, P.

I. Zada, W. Zhang, P. Sun, M. Imtiaz, W. Abbas, and D. Zhang, “Multifunctional, angle dependent antireflection, and hydrophilic properties of SiO2 inspired by nano-scale structures of cicada wings,” Appl. Phys. Lett. 111, 153701 (2017).
[Crossref]

Tao, Y.

Thompson, K. P.

Ueda, T.

Y. P. Zhang and T. Ueda, “Design of a singlet lens and the corresponding aberration correction approaches for cell phone camera,” IEEJ Trans. Electr. Electron. Eng. 5, 474–485 (2010).
[Crossref]

Velipasalar, S.

K. Ozcan and S. Velipasalar, “Wearable camera- and accelerometer-based fall detection on portable devices,” IEEE Embedded Syst. Lett. 8, 6–9 (2016).
[Crossref]

Vera, E. M.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Wu, T. J.

W. C. Chen, T. J. Wu, W. J. Wu, and G. D. J. Su, “Fabrication of inkjet-printed SU-8 photoresist microlenses using hydrophilic confinement,” J. Micromech. Microeng. 23, 065008 (2013).
[Crossref]

Wu, W. J.

W. C. Chen, T. J. Wu, W. J. Wu, and G. D. J. Su, “Fabrication of inkjet-printed SU-8 photoresist microlenses using hydrophilic confinement,” J. Micromech. Microeng. 23, 065008 (2013).
[Crossref]

Wu, Y.

Y. Liu, P. Zhang, Y. Deng, P. Hao, J. Fan, M. Chi, and Y. Wu, “Polymeric microlens array fabricated with PDMS mold-based hot embossing,” J. Micromech. Microeng. 24, 095028 (2014).
[Crossref]

Yang, B. Y.

S. Kim, J. J. Cassidy, B. Y. Yang, R. W. Carthew, and S. Hilgenfeldt, “Hexagonal patterning of the insect compound eye: facet area variation, defects, and disorder,” Biophys. J. 111, 2735–2746 (2016).
[Crossref]

Zada, I.

I. Zada, W. Zhang, P. Sun, M. Imtiaz, W. Abbas, and D. Zhang, “Multifunctional, angle dependent antireflection, and hydrophilic properties of SiO2 inspired by nano-scale structures of cicada wings,” Appl. Phys. Lett. 111, 153701 (2017).
[Crossref]

Zhang, D.

I. Zada, W. Zhang, P. Sun, M. Imtiaz, W. Abbas, and D. Zhang, “Multifunctional, angle dependent antireflection, and hydrophilic properties of SiO2 inspired by nano-scale structures of cicada wings,” Appl. Phys. Lett. 111, 153701 (2017).
[Crossref]

Zhang, H. C.

X. L. Li, L. Zhang, X. W. Ma, and H. C. Zhang, “Dynamic characteristics of droplet impacting on prepared hydrophobic/superhydrophobic silicon surfaces,” Surf. Coat. Technol. 307, 243–253 (2016).
[Crossref]

Zhang, L.

X. L. Li, L. Zhang, X. W. Ma, and H. C. Zhang, “Dynamic characteristics of droplet impacting on prepared hydrophobic/superhydrophobic silicon surfaces,” Surf. Coat. Technol. 307, 243–253 (2016).
[Crossref]

Zhang, P.

Y. Liu, P. Zhang, Y. Deng, P. Hao, J. Fan, M. Chi, and Y. Wu, “Polymeric microlens array fabricated with PDMS mold-based hot embossing,” J. Micromech. Microeng. 24, 095028 (2014).
[Crossref]

Zhang, W.

I. Zada, W. Zhang, P. Sun, M. Imtiaz, W. Abbas, and D. Zhang, “Multifunctional, angle dependent antireflection, and hydrophilic properties of SiO2 inspired by nano-scale structures of cicada wings,” Appl. Phys. Lett. 111, 153701 (2017).
[Crossref]

Zhang, Y. P.

Y. P. Zhang and T. Ueda, “Design of a singlet lens and the corresponding aberration correction approaches for cell phone camera,” IEEJ Trans. Electr. Electron. Eng. 5, 474–485 (2010).
[Crossref]

Am. J. Ophthalmol. (1)

M. Inoue, T. Noda, T. Mihashi, K. Ohnuma, H. Bissen-Miyajima, and A. Hirakata, “Quality of image of grating target placed in model of human eye with corneal aberrations as observed through multifocal intraocular lenses,” Am. J. Ophthalmol. 151, 644–652 (2011).
[Crossref]

Anesthesiology (1)

G. Haynes, F. Overdyk, and P. Arvanitis, “Perioperative data management with a portable memory device,” Anesthesiology 87, 1015A (1997).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

I. Zada, W. Zhang, P. Sun, M. Imtiaz, W. Abbas, and D. Zhang, “Multifunctional, angle dependent antireflection, and hydrophilic properties of SiO2 inspired by nano-scale structures of cicada wings,” Appl. Phys. Lett. 111, 153701 (2017).
[Crossref]

Biophys. J. (2)

K. J. Seu, A. P. Pandey, F. Haque, E. A. Proctor, A. E. Ribbe, and J. S. Hovis, “Effect of surface treatment on diffusion and domain formation in supported lipid bilayers,” Biophys. J. 92, 2445–2450 (2007).
[Crossref]

S. Kim, J. J. Cassidy, B. Y. Yang, R. W. Carthew, and S. Hilgenfeldt, “Hexagonal patterning of the insect compound eye: facet area variation, defects, and disorder,” Biophys. J. 111, 2735–2746 (2016).
[Crossref]

IEEE Embedded Syst. Lett. (1)

K. Ozcan and S. Velipasalar, “Wearable camera- and accelerometer-based fall detection on portable devices,” IEEE Embedded Syst. Lett. 8, 6–9 (2016).
[Crossref]

IEEJ Trans. Electr. Electron. Eng. (1)

Y. P. Zhang and T. Ueda, “Design of a singlet lens and the corresponding aberration correction approaches for cell phone camera,” IEEJ Trans. Electr. Electron. Eng. 5, 474–485 (2010).
[Crossref]

Int. J. Comput. Vis. (1)

M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74, 59–73 (2007).
[Crossref]

J. Lightwave Technol. (1)

J. Shimada, O. Ohguchi, and R. Sawada, “Microlens fabricated by the planar process,” J. Lightwave Technol. 9, 571–576 (1991).
[Crossref]

J. Mater. Process. Technol. (1)

S. Fathi and P. Dickens, “Jet array driven flow on the nozzle plate of an inkjet printhead in deposition of molten nylon materials,” J. Mater. Process. Technol. 213, 383–391 (2013).
[Crossref]

J. Micromech. Microeng. (2)

Y. Liu, P. Zhang, Y. Deng, P. Hao, J. Fan, M. Chi, and Y. Wu, “Polymeric microlens array fabricated with PDMS mold-based hot embossing,” J. Micromech. Microeng. 24, 095028 (2014).
[Crossref]

W. C. Chen, T. J. Wu, W. J. Wu, and G. D. J. Su, “Fabrication of inkjet-printed SU-8 photoresist microlenses using hydrophilic confinement,” J. Micromech. Microeng. 23, 065008 (2013).
[Crossref]

Microsyst. Technol. (1)

C. L. Hsieh, Y. H. Chang, Y. T. Chen, and C. S. Liu, “Design of VCM actuator with L-shape coil for smartphone cameras,” Microsyst. Technol. 24, 1033–1040 (2018).
[Crossref]

Nature (1)

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Opt. Eng. (1)

J. Skeivalas and E. Parseliunas, “On identification of human eye retinas by the covariance analysis of their digital images,” Opt. Eng. 52, 073106 (2013).
[Crossref]

Opt. Express (1)

Optica (3)

Phys. Medica (1)

P. D. Cott and C. S. Levin, “Image processing algorithms to facilitate and enhance sentinel node detection using a hand-held gamma ray camera in surgical breast cancer staging,” Phys. Medica 21, 99–101 (2006).
[Crossref]

Science (1)

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[Crossref]

Sensors (1)

M. S. Kim, G. J. Lee, H. M. Kim, and Y. M. Song, “Parametric optimization of lateral NIPIN phototransistors for flexible image sensors,” Sensors 17, 1774 (2017).
[Crossref]

Surf. Coat. Technol. (1)

X. L. Li, L. Zhang, X. W. Ma, and H. C. Zhang, “Dynamic characteristics of droplet impacting on prepared hydrophobic/superhydrophobic silicon surfaces,” Surf. Coat. Technol. 307, 243–253 (2016).
[Crossref]

Other (1)

J. Duparre, P. Dannberg, A. Brueckner, and A. Braeuer, “Image detection system of optical channels arranged next to one another,” U.S. patent7,897,903 B2 (March1, 2011).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Designing a single-lens system for correction of significant field curvature. (a) Sharpest focus of a hemispherical lens is in a portion of the image space. (b) Curved hexagonal MLA consists of four hexagonal microlens rings on a spherical substrate; hexagonal microlenses of the same radius of curvature are arranged in a ring of the same color. (c) Curved hexagonal MLA is attached to hemispherical lens. (d) Curved hexagonal MLA is used to project a sharp image onto a flat surface.
Fig. 2.
Fig. 2. (a) and (b) Schematic of microlens fabrication using inkjet printing with the confinement effect. (c) to (h) Outline of the fabrication process for a planar hexagonal MLA. Here, the methods of (a) and (b) are used in (g) and (h). (a) Filling of hexagonal hydrophilic hole for microlens fabrication. (b) Inkjet printer system used in this research. (c) Oxidized silicon wafer whose surface is hydrophilic. (d) Spin-coating of the wafer with a negative photoresist. (e) Masked UV exposure of the negative photoresist. (f) Unexposed areas are removed during the developing stage. (g) Fluid is added with the same number of droplets into each hole in each of four hexagonal rings. (h) Planar hexagonal MLA with convex microlens shapes has been created.
Fig. 3.
Fig. 3. Schematic view of the fabrication process (a) to (d) of a hexagonal MLA membrane with concave microlens shapes, and (f) to (i) replication process and shape inspection of a curved hexagonal MLA. (a) PDMS membrane layer is spin-coated onto the planar MLA with convex microlens shapes. (b) PDMS membrane is stripped off. (c) Released membrane is a planar MLA with concave microlens shapes. (d) Cutaway of (c). (e) 3D-printed chamber (on a U.S. $100 bill for scale). (f) Operational process of making a curved surface to fill with UV-curing adhesive. 3D-printed chamber is connected to a vacuum pump. After the concave PDMS MLA is placed onto the 3D-printed chamber and deformed by negative pressure (step 1), liquid UV-curing adhesive is dropped into the curved membrane (step 2). Glass substrate is needed to cover the adhesive (step 3). (g) Section view of the upper half of the 3D-printed chamber, with the adhesive being exposed to UV light. (h) Plano–convex adhesive lens on glass substrate with curved hexagonal MLA peeled off. (i) Hemispherical lens sectioned by a dicing saw.
Fig. 4.
Fig. 4. Hexagonal microlens described by radius of curvature (R and R), base radius (r and r), center of curvature of the spherical surface of the microlens (c and c), and height at vertex h for (a) the longest diagonals and (b) the separation of parallel sides of the microlens.
Fig. 5.
Fig. 5. Scanning profiles along the longest distance between corners in the hexagonal microlenses of the first (center) ring, second ring, third ring, and fourth ring of the MLA.
Fig. 6.
Fig. 6. Images projected by the microlenses of the (a) first and (b) second hexagonal microlens rings.
Fig. 7.
Fig. 7. SEM images of hemispherical hexagonal MLA. (a) Top view, and (b) enlargement of the right corner. (c) Oblique view after cutting with a dicing saw and (d) enlargement. (e) Side view and (f) enlargement.
Fig. 8.
Fig. 8. (a) Image captured by the proposed optical system. (b) Image trimming.
Fig. 9.
Fig. 9. Completely stitched photograph processed from sub-images.

Tables (1)

Tables Icon

Table 1. Structural Parameters of the Hexagonal Micro-Lenses in the Four Rings

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R=r2+h22h.
f=Rn1,
%Error=|ftfmft|×100,