Abstract

Photonic structures are commonly designed to manipulate scattered or emitted light. However, in recent years, they were demonstrated to affect a variety of phenomena, including chemical reactions, which lie outside the traditional electrodynamics domain. In this work, we have studied the effect of a Fabry–Perot cavity on the chemical reaction of practical importance—photodegradation of the semiconducting polymer 2,5-poly(3-hexylthiophene) (P3HT), which is the material of choice in organic photovoltaics. Experimentally, Fabry–Perot cavities, composed of two silver mirrors and filled with P3HT polymer, were photoexposed over tens of hours, and the concentration of the remaining thiophene rings (composing P3HT) was studied as a function of time. It has been found that in the regime of strong coupling with the cavity, characterized by one of the largest values of the Rabi splitting reported in the literature (1.0 eV), the normalized rate of photodegradation is reduced threefold, substantially larger than in the weak coupling regime reported in our recent study. This result adds to the toolbox of strong coupling phenomena and paves the road towards long-range control of chemical reactions and catalysis.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and solid dye lasers

Mark D. Rahn, Terence A. King, Anthony A. Gorman, and Ian Hamblett
Appl. Opt. 36(24) 5862-5871 (1997)

Direct observation of strong light-exciton coupling in thin WS2 flakes

Qi Wang, Liaoxin Sun, Bo Zhang, Changqing Chen, Xuechu Shen, and Wei Lu
Opt. Express 24(7) 7151-7157 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35, 1863–1865 (2010).
    [Crossref]
  2. Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
    [Crossref]
  3. J. K. Kitur, L. Gu, T. Tumkur, C. E. Bonner, and M. A. Noginov, “Stimulated emission of surface plasmons on top of metamaterials with hyperbolic dispersion,” ACS Photon. 2, 1019–1024 (2015).
    [Crossref]
  4. P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290, 785–788 (2000).
    [Crossref]
  5. C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. Mosk, V. Subramania, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109, 203601 (2012).
    [Crossref]
  6. T. Tumkur, J. Kitur, C. E. Bonner, A. Poddubny, E. E. Narimanov, and M. A. Noginov, “Control of Förster energy transfer in vicinity of metallic surfaces and hyperbolic metamaterials,” Faraday Discuss. 178, 395–412 (2015).
    [Crossref]
  7. M. A. Noginov, Y. A. Barnakov, V. Liberman, S. Prayakarao, C. E. Bonner, and E. E. Narimanov, “Long-range wetting transparency on top of layered metal-dielectric substrates,” Sci. Rep. 6, 27834 (2016).
    [Crossref]
  8. V. N. Peters, T. U. Tumkur, G. Zhu, and M. A. Noginov, “Control of a chemical reaction (photodegradation of the P3HT polymer) with nonlocal dielectric environments,” Sci. Rep. 5, 14620 (2015).
    [Crossref]
  9. T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
    [Crossref]
  10. J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W. Ebbesen, “Modifying chemical landscapes by coupling to vacuum fields,” Angew. Chem. 51, 1592–1596 (2012).
    [Crossref]
  11. D. G. Lidzey, D. D. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
    [Crossref]
  12. G. Khitrova, H. M. Gibbs, M. Kira, S. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
    [Crossref]
  13. P. Törmä and W. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
    [Crossref]
  14. K. Zhang, W.-B. Shi, D. Wang, Y. Xu, R.-W. Peng, R.-H. Fan, Q.-J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108, 193111 (2016).
    [Crossref]
  15. J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
    [Crossref]
  16. S. Kéna-Cohen, S. A. Maier, and D. D. C. Bradley, “Ultrastrongly coupled exciton-polaritons in metal-clad organic semiconductor microcavities,” Adv. Opt. Mater. 1, 827–833 (2013).
    [Crossref]
  17. S. Gambino, M. Mazzeo, A. Genco, O. Di Stefano, S. Savasta, S. Patanè, D. Ballarini, F. Mangione, G. Lerario, D. Sanvitto, and G. Gigli, “Exploring light-matter interaction phenomena under ultrastrong coupling regime,” ACS Photon. 1, 1042–1048 (2014).
    [Crossref]
  18. J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25, 2481–2485 (2013).
    [Crossref]
  19. E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14, 1123–1129 (2015).
    [Crossref]
  20. C. Gonzalez-Ballestero, J. Feist, E. Moreno, and F. J. Garcia-Vidal, “Harvesting excitons through plasmonic strong coupling,” Phys. Rev. B 92, 121402 (2015).
    [Crossref]
  21. J. Schachenmayer, C. Genes, E. Tignone, and G. Pupillo, “Cavity enhanced transport of excitons,” Phys. Rev. Lett. 114, 196403 (2015).
    [Crossref]
  22. F. J. Garcia-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
    [Crossref]
  23. J. del Pino, J. Feist, and F. J. Garcia-Vidal, “Signatures of vibrational strong coupling in Raman scattering,” J. Phys. Chem. C 119, 29132–29137 (2015).
    [Crossref]
  24. A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, and T. W. Ebbesen, “Enhanced Raman scattering from vibro-polariton hybrid states,” Angew. Chem. 54, 7971–7975 (2015).
    [Crossref]
  25. X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Energy transfer between spatially separated entangled molecules,” Angew. Chem. 56, 9034–9038 (2017).
    [Crossref]
  26. TDBC: 5, 5′, 6, 6′-tetrachloro- di-(4-sulfobutyl) benzimidazolocarbocyanine.
  27. B. Munkhbat, M. Wersäll, D. G. Baranov, T. J. Antosiewicz, and T. Shegai, “Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas,” Sci. Adv. 4, eaas9552 (2018).
    [Crossref]
  28. J. Galego, F. J. Garcia-Vidal, and J. Feist, “Suppressing photochemical reactions with quantized light fields,” Nat. Commun. 7, 13841 (2016).
    [Crossref]
  29. M. Kowalewski, K. Bennett, and S. Mukamel, “Cavity femtochemistry: manipulating nonadiabatic dynamics at avoided crossings,” J. Phys. Chem. Lett. 7, 2050–2054 (2016).
    [Crossref]
  30. J. Galego, F. J. Garcia-Vidal, and J. Feist, “Many-molecule reaction triggered by a single photon in polaritonic chemistry,” Phys. Rev. Lett. 119, 136001 (2017).
    [Crossref]
  31. F. Herrera and F. C. Spano, “Cavity-controlled chemistry in molecular ensembles,” Phys. Rev. Lett. 116, 238301 (2016).
    [Crossref]
  32. A. D. Dunkelberger, B. T. Spann, K. P. Fears, B. S. Simpkins, and J. C. Owrutsky, “Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons,” Nat. Commun. 7, 13504 (2016).
    [Crossref]
  33. B. S. Simpkins, K. P. Fears, W. J. Dressick, B. T. Spann, A. D. Dunkelberger, and J. C. Owrutsky, “Spanning strong to weak normal mode coupling between vibrational and Fabry–Perot cavity modes through tuning of vibrational absorption strength,” ACS Photon. 2, 1460–1467 (2015).
    [Crossref]
  34. A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. 55, 11462–11466 (2016).
    [Crossref]
  35. R. F. Ribeiro, L. A. Martínez-Martínez, M. Du, J. Campos-Gonzalez-Anguloa, and J. Yuen-Zhou, “Polariton chemistry: controlling molecular dynamics with optical cavities,” Chem. Sci. 9, 6325–6339 (2018).
    [Crossref]
  36. H. Hintz, C. Sessler, H. Peisert, H.-J. Egelhaaf, and T. Chassé, “Wavelength-dependent pathways of poly-3-hexylthiophene photo-oxidation,” Chem. Mater. 24, 2739–2743 (2012).
    [Crossref]
  37. M. Manceau, A. Rivaton, J. Gardette, S. Guillerez, and N. Lemaître, “The mechanism of photo- and thermooxidation of poly (3-hexylthiophene) (P3HT) reconsidered,” Polym. Degrad. Stab. 94, 898–907 (2009).
    [Crossref]
  38. M. S. A. Abdou and S. Holdcraft, “Solid-state photochemistry of π-conjugated poly (3-alkylthiophenes),” Can. J. Chem. 73, 1893–1901 (1995).
    [Crossref]
  39. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  40. S. Ishii, U. K. Chettiar, X. Ni, and A. V. Kildishev, “PhotonicsRT: wave propagation in multilayer structures,” simulation tool, https://nanohub.org/tools/photonicsrt (2014).
  41. T. W. Ebbesen, “Hybrid light-matter states in a molecular and material science perspective,” Acc. Chem. Res. 49, 2403–2412 (2016).
    [Crossref]
  42. H. Hintz, H.-J. Egelhaaf, L. Lüer, J. Hauch, H. Peisert, and T. Chassé, “Photodegradation of P3HT—a systematic study of environmental factors,” Chem. Mater. 23, 145–154 (2011).
    [Crossref]
  43. W. J. Tian, H. Y. Zhang, and J. C. Shen, “Some properties of interfaces between metals and polymers,” Surf. Rev. Lett. 4, 703–708 (1997).
    [Crossref]
  44. G. C. Bond, “Homogeneous and heterogeneous catalysis by noble metals,” in Homogeneous Catalysis, Advances in Chemistry Series (American Chemical Society, 1968), Vol. 70, pp. 25–34.
  45. K. Stranius, M. Hertzog, and K. Börjesson, “Selective manipulation of electronically excited states through strong light-matter interactions,” Nat. Commun. 9, 2273 (2018).
    [Crossref]

2018 (3)

B. Munkhbat, M. Wersäll, D. G. Baranov, T. J. Antosiewicz, and T. Shegai, “Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas,” Sci. Adv. 4, eaas9552 (2018).
[Crossref]

R. F. Ribeiro, L. A. Martínez-Martínez, M. Du, J. Campos-Gonzalez-Anguloa, and J. Yuen-Zhou, “Polariton chemistry: controlling molecular dynamics with optical cavities,” Chem. Sci. 9, 6325–6339 (2018).
[Crossref]

K. Stranius, M. Hertzog, and K. Börjesson, “Selective manipulation of electronically excited states through strong light-matter interactions,” Nat. Commun. 9, 2273 (2018).
[Crossref]

2017 (2)

X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Energy transfer between spatially separated entangled molecules,” Angew. Chem. 56, 9034–9038 (2017).
[Crossref]

J. Galego, F. J. Garcia-Vidal, and J. Feist, “Many-molecule reaction triggered by a single photon in polaritonic chemistry,” Phys. Rev. Lett. 119, 136001 (2017).
[Crossref]

2016 (8)

F. Herrera and F. C. Spano, “Cavity-controlled chemistry in molecular ensembles,” Phys. Rev. Lett. 116, 238301 (2016).
[Crossref]

A. D. Dunkelberger, B. T. Spann, K. P. Fears, B. S. Simpkins, and J. C. Owrutsky, “Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons,” Nat. Commun. 7, 13504 (2016).
[Crossref]

J. Galego, F. J. Garcia-Vidal, and J. Feist, “Suppressing photochemical reactions with quantized light fields,” Nat. Commun. 7, 13841 (2016).
[Crossref]

M. Kowalewski, K. Bennett, and S. Mukamel, “Cavity femtochemistry: manipulating nonadiabatic dynamics at avoided crossings,” J. Phys. Chem. Lett. 7, 2050–2054 (2016).
[Crossref]

M. A. Noginov, Y. A. Barnakov, V. Liberman, S. Prayakarao, C. E. Bonner, and E. E. Narimanov, “Long-range wetting transparency on top of layered metal-dielectric substrates,” Sci. Rep. 6, 27834 (2016).
[Crossref]

K. Zhang, W.-B. Shi, D. Wang, Y. Xu, R.-W. Peng, R.-H. Fan, Q.-J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108, 193111 (2016).
[Crossref]

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. 55, 11462–11466 (2016).
[Crossref]

T. W. Ebbesen, “Hybrid light-matter states in a molecular and material science perspective,” Acc. Chem. Res. 49, 2403–2412 (2016).
[Crossref]

2015 (10)

T. Tumkur, J. Kitur, C. E. Bonner, A. Poddubny, E. E. Narimanov, and M. A. Noginov, “Control of Förster energy transfer in vicinity of metallic surfaces and hyperbolic metamaterials,” Faraday Discuss. 178, 395–412 (2015).
[Crossref]

P. Törmä and W. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

V. N. Peters, T. U. Tumkur, G. Zhu, and M. A. Noginov, “Control of a chemical reaction (photodegradation of the P3HT polymer) with nonlocal dielectric environments,” Sci. Rep. 5, 14620 (2015).
[Crossref]

J. K. Kitur, L. Gu, T. Tumkur, C. E. Bonner, and M. A. Noginov, “Stimulated emission of surface plasmons on top of metamaterials with hyperbolic dispersion,” ACS Photon. 2, 1019–1024 (2015).
[Crossref]

J. del Pino, J. Feist, and F. J. Garcia-Vidal, “Signatures of vibrational strong coupling in Raman scattering,” J. Phys. Chem. C 119, 29132–29137 (2015).
[Crossref]

A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, and T. W. Ebbesen, “Enhanced Raman scattering from vibro-polariton hybrid states,” Angew. Chem. 54, 7971–7975 (2015).
[Crossref]

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14, 1123–1129 (2015).
[Crossref]

C. Gonzalez-Ballestero, J. Feist, E. Moreno, and F. J. Garcia-Vidal, “Harvesting excitons through plasmonic strong coupling,” Phys. Rev. B 92, 121402 (2015).
[Crossref]

J. Schachenmayer, C. Genes, E. Tignone, and G. Pupillo, “Cavity enhanced transport of excitons,” Phys. Rev. Lett. 114, 196403 (2015).
[Crossref]

B. S. Simpkins, K. P. Fears, W. J. Dressick, B. T. Spann, A. D. Dunkelberger, and J. C. Owrutsky, “Spanning strong to weak normal mode coupling between vibrational and Fabry–Perot cavity modes through tuning of vibrational absorption strength,” ACS Photon. 2, 1460–1467 (2015).
[Crossref]

2014 (1)

S. Gambino, M. Mazzeo, A. Genco, O. Di Stefano, S. Savasta, S. Patanè, D. Ballarini, F. Mangione, G. Lerario, D. Sanvitto, and G. Gigli, “Exploring light-matter interaction phenomena under ultrastrong coupling regime,” ACS Photon. 1, 1042–1048 (2014).
[Crossref]

2013 (2)

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25, 2481–2485 (2013).
[Crossref]

S. Kéna-Cohen, S. A. Maier, and D. D. C. Bradley, “Ultrastrongly coupled exciton-polaritons in metal-clad organic semiconductor microcavities,” Adv. Opt. Mater. 1, 827–833 (2013).
[Crossref]

2012 (3)

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. Mosk, V. Subramania, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109, 203601 (2012).
[Crossref]

J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W. Ebbesen, “Modifying chemical landscapes by coupling to vacuum fields,” Angew. Chem. 51, 1592–1596 (2012).
[Crossref]

H. Hintz, C. Sessler, H. Peisert, H.-J. Egelhaaf, and T. Chassé, “Wavelength-dependent pathways of poly-3-hexylthiophene photo-oxidation,” Chem. Mater. 24, 2739–2743 (2012).
[Crossref]

2011 (2)

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref]

H. Hintz, H.-J. Egelhaaf, L. Lüer, J. Hauch, H. Peisert, and T. Chassé, “Photodegradation of P3HT—a systematic study of environmental factors,” Chem. Mater. 23, 145–154 (2011).
[Crossref]

2010 (2)

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35, 1863–1865 (2010).
[Crossref]

Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[Crossref]

2009 (1)

M. Manceau, A. Rivaton, J. Gardette, S. Guillerez, and N. Lemaître, “The mechanism of photo- and thermooxidation of poly (3-hexylthiophene) (P3HT) reconsidered,” Polym. Degrad. Stab. 94, 898–907 (2009).
[Crossref]

2006 (1)

G. Khitrova, H. M. Gibbs, M. Kira, S. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[Crossref]

2004 (1)

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref]

2000 (1)

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290, 785–788 (2000).
[Crossref]

1998 (1)

D. G. Lidzey, D. D. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

1997 (1)

W. J. Tian, H. Y. Zhang, and J. C. Shen, “Some properties of interfaces between metals and polymers,” Surf. Rev. Lett. 4, 703–708 (1997).
[Crossref]

1996 (1)

F. J. Garcia-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
[Crossref]

1995 (1)

M. S. A. Abdou and S. Holdcraft, “Solid-state photochemistry of π-conjugated poly (3-alkylthiophenes),” Can. J. Chem. 73, 1893–1901 (1995).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Abdou, M. S. A.

M. S. A. Abdou and S. Holdcraft, “Solid-state photochemistry of π-conjugated poly (3-alkylthiophenes),” Can. J. Chem. 73, 1893–1901 (1995).
[Crossref]

Andrew, P.

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290, 785–788 (2000).
[Crossref]

Antosiewicz, T. J.

B. Munkhbat, M. Wersäll, D. G. Baranov, T. J. Antosiewicz, and T. Shegai, “Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas,” Sci. Adv. 4, eaas9552 (2018).
[Crossref]

Ballarini, D.

S. Gambino, M. Mazzeo, A. Genco, O. Di Stefano, S. Savasta, S. Patanè, D. Ballarini, F. Mangione, G. Lerario, D. Sanvitto, and G. Gigli, “Exploring light-matter interaction phenomena under ultrastrong coupling regime,” ACS Photon. 1, 1042–1048 (2014).
[Crossref]

Baranov, D. G.

B. Munkhbat, M. Wersäll, D. G. Baranov, T. J. Antosiewicz, and T. Shegai, “Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas,” Sci. Adv. 4, eaas9552 (2018).
[Crossref]

Barnakov, Y. A.

M. A. Noginov, Y. A. Barnakov, V. Liberman, S. Prayakarao, C. E. Bonner, and E. E. Narimanov, “Long-range wetting transparency on top of layered metal-dielectric substrates,” Sci. Rep. 6, 27834 (2016).
[Crossref]

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35, 1863–1865 (2010).
[Crossref]

Barnes, W.

P. Törmä and W. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

Barnes, W. L.

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290, 785–788 (2000).
[Crossref]

Bellessa, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref]

Bennett, K.

M. Kowalewski, K. Bennett, and S. Mukamel, “Cavity femtochemistry: manipulating nonadiabatic dynamics at avoided crossings,” J. Phys. Chem. Lett. 7, 2050–2054 (2016).
[Crossref]

Blum, C.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. Mosk, V. Subramania, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109, 203601 (2012).
[Crossref]

Boltasseva, A.

Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[Crossref]

Bond, G. C.

G. C. Bond, “Homogeneous and heterogeneous catalysis by noble metals,” in Homogeneous Catalysis, Advances in Chemistry Series (American Chemical Society, 1968), Vol. 70, pp. 25–34.

Bonnand, C.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref]

Bonner, C. E.

M. A. Noginov, Y. A. Barnakov, V. Liberman, S. Prayakarao, C. E. Bonner, and E. E. Narimanov, “Long-range wetting transparency on top of layered metal-dielectric substrates,” Sci. Rep. 6, 27834 (2016).
[Crossref]

T. Tumkur, J. Kitur, C. E. Bonner, A. Poddubny, E. E. Narimanov, and M. A. Noginov, “Control of Förster energy transfer in vicinity of metallic surfaces and hyperbolic metamaterials,” Faraday Discuss. 178, 395–412 (2015).
[Crossref]

J. K. Kitur, L. Gu, T. Tumkur, C. E. Bonner, and M. A. Noginov, “Stimulated emission of surface plasmons on top of metamaterials with hyperbolic dispersion,” ACS Photon. 2, 1019–1024 (2015).
[Crossref]

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35, 1863–1865 (2010).
[Crossref]

Börjesson, K.

K. Stranius, M. Hertzog, and K. Börjesson, “Selective manipulation of electronically excited states through strong light-matter interactions,” Nat. Commun. 9, 2273 (2018).
[Crossref]

Bradley, D. D.

D. G. Lidzey, D. D. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

Bradley, D. D. C.

S. Kéna-Cohen, S. A. Maier, and D. D. C. Bradley, “Ultrastrongly coupled exciton-polaritons in metal-clad organic semiconductor microcavities,” Adv. Opt. Mater. 1, 827–833 (2013).
[Crossref]

Campos-Gonzalez-Anguloa, J.

R. F. Ribeiro, L. A. Martínez-Martínez, M. Du, J. Campos-Gonzalez-Anguloa, and J. Yuen-Zhou, “Polariton chemistry: controlling molecular dynamics with optical cavities,” Chem. Sci. 9, 6325–6339 (2018).
[Crossref]

Canaguier-Durand, A.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25, 2481–2485 (2013).
[Crossref]

Chassé, T.

H. Hintz, C. Sessler, H. Peisert, H.-J. Egelhaaf, and T. Chassé, “Wavelength-dependent pathways of poly-3-hexylthiophene photo-oxidation,” Chem. Mater. 24, 2739–2743 (2012).
[Crossref]

H. Hintz, H.-J. Egelhaaf, L. Lüer, J. Hauch, H. Peisert, and T. Chassé, “Photodegradation of P3HT—a systematic study of environmental factors,” Chem. Mater. 23, 145–154 (2011).
[Crossref]

Chervy, T.

X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Energy transfer between spatially separated entangled molecules,” Angew. Chem. 56, 9034–9038 (2017).
[Crossref]

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. 55, 11462–11466 (2016).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Dayen, J. F.

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14, 1123–1129 (2015).
[Crossref]

del Pino, J.

J. del Pino, J. Feist, and F. J. Garcia-Vidal, “Signatures of vibrational strong coupling in Raman scattering,” J. Phys. Chem. C 119, 29132–29137 (2015).
[Crossref]

Devaux, E.

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. 55, 11462–11466 (2016).
[Crossref]

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14, 1123–1129 (2015).
[Crossref]

J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W. Ebbesen, “Modifying chemical landscapes by coupling to vacuum fields,” Angew. Chem. 51, 1592–1596 (2012).
[Crossref]

Di Stefano, O.

S. Gambino, M. Mazzeo, A. Genco, O. Di Stefano, S. Savasta, S. Patanè, D. Ballarini, F. Mangione, G. Lerario, D. Sanvitto, and G. Gigli, “Exploring light-matter interaction phenomena under ultrastrong coupling regime,” ACS Photon. 1, 1042–1048 (2014).
[Crossref]

Doudin, B.

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14, 1123–1129 (2015).
[Crossref]

Dressick, W. J.

B. S. Simpkins, K. P. Fears, W. J. Dressick, B. T. Spann, A. D. Dunkelberger, and J. C. Owrutsky, “Spanning strong to weak normal mode coupling between vibrational and Fabry–Perot cavity modes through tuning of vibrational absorption strength,” ACS Photon. 2, 1460–1467 (2015).
[Crossref]

Dryden, D.

Dryzhakov, M.

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. 55, 11462–11466 (2016).
[Crossref]

Du, M.

R. F. Ribeiro, L. A. Martínez-Martínez, M. Du, J. Campos-Gonzalez-Anguloa, and J. Yuen-Zhou, “Polariton chemistry: controlling molecular dynamics with optical cavities,” Chem. Sci. 9, 6325–6339 (2018).
[Crossref]

Dunkelberger, A. D.

A. D. Dunkelberger, B. T. Spann, K. P. Fears, B. S. Simpkins, and J. C. Owrutsky, “Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons,” Nat. Commun. 7, 13504 (2016).
[Crossref]

B. S. Simpkins, K. P. Fears, W. J. Dressick, B. T. Spann, A. D. Dunkelberger, and J. C. Owrutsky, “Spanning strong to weak normal mode coupling between vibrational and Fabry–Perot cavity modes through tuning of vibrational absorption strength,” ACS Photon. 2, 1460–1467 (2015).
[Crossref]

Ebbesen, T. W.

X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Energy transfer between spatially separated entangled molecules,” Angew. Chem. 56, 9034–9038 (2017).
[Crossref]

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. 55, 11462–11466 (2016).
[Crossref]

T. W. Ebbesen, “Hybrid light-matter states in a molecular and material science perspective,” Acc. Chem. Res. 49, 2403–2412 (2016).
[Crossref]

A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, and T. W. Ebbesen, “Enhanced Raman scattering from vibro-polariton hybrid states,” Angew. Chem. 54, 7971–7975 (2015).
[Crossref]

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14, 1123–1129 (2015).
[Crossref]

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25, 2481–2485 (2013).
[Crossref]

J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W. Ebbesen, “Modifying chemical landscapes by coupling to vacuum fields,” Angew. Chem. 51, 1592–1596 (2012).
[Crossref]

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref]

Egelhaaf, H.-J.

H. Hintz, C. Sessler, H. Peisert, H.-J. Egelhaaf, and T. Chassé, “Wavelength-dependent pathways of poly-3-hexylthiophene photo-oxidation,” Chem. Mater. 24, 2739–2743 (2012).
[Crossref]

H. Hintz, H.-J. Egelhaaf, L. Lüer, J. Hauch, H. Peisert, and T. Chassé, “Photodegradation of P3HT—a systematic study of environmental factors,” Chem. Mater. 23, 145–154 (2011).
[Crossref]

Fan, R.-H.

K. Zhang, W.-B. Shi, D. Wang, Y. Xu, R.-W. Peng, R.-H. Fan, Q.-J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108, 193111 (2016).
[Crossref]

Fears, K. P.

A. D. Dunkelberger, B. T. Spann, K. P. Fears, B. S. Simpkins, and J. C. Owrutsky, “Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons,” Nat. Commun. 7, 13504 (2016).
[Crossref]

B. S. Simpkins, K. P. Fears, W. J. Dressick, B. T. Spann, A. D. Dunkelberger, and J. C. Owrutsky, “Spanning strong to weak normal mode coupling between vibrational and Fabry–Perot cavity modes through tuning of vibrational absorption strength,” ACS Photon. 2, 1460–1467 (2015).
[Crossref]

Feist, J.

J. Galego, F. J. Garcia-Vidal, and J. Feist, “Many-molecule reaction triggered by a single photon in polaritonic chemistry,” Phys. Rev. Lett. 119, 136001 (2017).
[Crossref]

J. Galego, F. J. Garcia-Vidal, and J. Feist, “Suppressing photochemical reactions with quantized light fields,” Nat. Commun. 7, 13841 (2016).
[Crossref]

J. del Pino, J. Feist, and F. J. Garcia-Vidal, “Signatures of vibrational strong coupling in Raman scattering,” J. Phys. Chem. C 119, 29132–29137 (2015).
[Crossref]

C. Gonzalez-Ballestero, J. Feist, E. Moreno, and F. J. Garcia-Vidal, “Harvesting excitons through plasmonic strong coupling,” Phys. Rev. B 92, 121402 (2015).
[Crossref]

Galego, J.

J. Galego, F. J. Garcia-Vidal, and J. Feist, “Many-molecule reaction triggered by a single photon in polaritonic chemistry,” Phys. Rev. Lett. 119, 136001 (2017).
[Crossref]

J. Galego, F. J. Garcia-Vidal, and J. Feist, “Suppressing photochemical reactions with quantized light fields,” Nat. Commun. 7, 13841 (2016).
[Crossref]

Gambino, S.

S. Gambino, M. Mazzeo, A. Genco, O. Di Stefano, S. Savasta, S. Patanè, D. Ballarini, F. Mangione, G. Lerario, D. Sanvitto, and G. Gigli, “Exploring light-matter interaction phenomena under ultrastrong coupling regime,” ACS Photon. 1, 1042–1048 (2014).
[Crossref]

Garcia-Vidal, F. J.

J. Galego, F. J. Garcia-Vidal, and J. Feist, “Many-molecule reaction triggered by a single photon in polaritonic chemistry,” Phys. Rev. Lett. 119, 136001 (2017).
[Crossref]

J. Galego, F. J. Garcia-Vidal, and J. Feist, “Suppressing photochemical reactions with quantized light fields,” Nat. Commun. 7, 13841 (2016).
[Crossref]

J. del Pino, J. Feist, and F. J. Garcia-Vidal, “Signatures of vibrational strong coupling in Raman scattering,” J. Phys. Chem. C 119, 29132–29137 (2015).
[Crossref]

C. Gonzalez-Ballestero, J. Feist, E. Moreno, and F. J. Garcia-Vidal, “Harvesting excitons through plasmonic strong coupling,” Phys. Rev. B 92, 121402 (2015).
[Crossref]

F. J. Garcia-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
[Crossref]

Gardette, J.

M. Manceau, A. Rivaton, J. Gardette, S. Guillerez, and N. Lemaître, “The mechanism of photo- and thermooxidation of poly (3-hexylthiophene) (P3HT) reconsidered,” Polym. Degrad. Stab. 94, 898–907 (2009).
[Crossref]

Genco, A.

S. Gambino, M. Mazzeo, A. Genco, O. Di Stefano, S. Savasta, S. Patanè, D. Ballarini, F. Mangione, G. Lerario, D. Sanvitto, and G. Gigli, “Exploring light-matter interaction phenomena under ultrastrong coupling regime,” ACS Photon. 1, 1042–1048 (2014).
[Crossref]

Genes, C.

J. Schachenmayer, C. Genes, E. Tignone, and G. Pupillo, “Cavity enhanced transport of excitons,” Phys. Rev. Lett. 114, 196403 (2015).
[Crossref]

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14, 1123–1129 (2015).
[Crossref]

Genet, C.

X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Energy transfer between spatially separated entangled molecules,” Angew. Chem. 56, 9034–9038 (2017).
[Crossref]

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. 55, 11462–11466 (2016).
[Crossref]

A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, and T. W. Ebbesen, “Enhanced Raman scattering from vibro-polariton hybrid states,” Angew. Chem. 54, 7971–7975 (2015).
[Crossref]

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14, 1123–1129 (2015).
[Crossref]

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25, 2481–2485 (2013).
[Crossref]

J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W. Ebbesen, “Modifying chemical landscapes by coupling to vacuum fields,” Angew. Chem. 51, 1592–1596 (2012).
[Crossref]

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref]

George, J.

X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Energy transfer between spatially separated entangled molecules,” Angew. Chem. 56, 9034–9038 (2017).
[Crossref]

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. 55, 11462–11466 (2016).
[Crossref]

A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, and T. W. Ebbesen, “Enhanced Raman scattering from vibro-polariton hybrid states,” Angew. Chem. 54, 7971–7975 (2015).
[Crossref]

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14, 1123–1129 (2015).
[Crossref]

Gibbs, H. M.

G. Khitrova, H. M. Gibbs, M. Kira, S. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[Crossref]

Gigli, G.

S. Gambino, M. Mazzeo, A. Genco, O. Di Stefano, S. Savasta, S. Patanè, D. Ballarini, F. Mangione, G. Lerario, D. Sanvitto, and G. Gigli, “Exploring light-matter interaction phenomena under ultrastrong coupling regime,” ACS Photon. 1, 1042–1048 (2014).
[Crossref]

Gonzalez-Ballestero, C.

C. Gonzalez-Ballestero, J. Feist, E. Moreno, and F. J. Garcia-Vidal, “Harvesting excitons through plasmonic strong coupling,” Phys. Rev. B 92, 121402 (2015).
[Crossref]

Gu, L.

J. K. Kitur, L. Gu, T. Tumkur, C. E. Bonner, and M. A. Noginov, “Stimulated emission of surface plasmons on top of metamaterials with hyperbolic dispersion,” ACS Photon. 2, 1019–1024 (2015).
[Crossref]

Guillerez, S.

M. Manceau, A. Rivaton, J. Gardette, S. Guillerez, and N. Lemaître, “The mechanism of photo- and thermooxidation of poly (3-hexylthiophene) (P3HT) reconsidered,” Polym. Degrad. Stab. 94, 898–907 (2009).
[Crossref]

Hauch, J.

H. Hintz, H.-J. Egelhaaf, L. Lüer, J. Hauch, H. Peisert, and T. Chassé, “Photodegradation of P3HT—a systematic study of environmental factors,” Chem. Mater. 23, 145–154 (2011).
[Crossref]

Hellwig, P.

A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, and T. W. Ebbesen, “Enhanced Raman scattering from vibro-polariton hybrid states,” Angew. Chem. 54, 7971–7975 (2015).
[Crossref]

Herrera, F.

F. Herrera and F. C. Spano, “Cavity-controlled chemistry in molecular ensembles,” Phys. Rev. Lett. 116, 238301 (2016).
[Crossref]

Hertzog, M.

K. Stranius, M. Hertzog, and K. Börjesson, “Selective manipulation of electronically excited states through strong light-matter interactions,” Nat. Commun. 9, 2273 (2018).
[Crossref]

Hintz, H.

H. Hintz, C. Sessler, H. Peisert, H.-J. Egelhaaf, and T. Chassé, “Wavelength-dependent pathways of poly-3-hexylthiophene photo-oxidation,” Chem. Mater. 24, 2739–2743 (2012).
[Crossref]

H. Hintz, H.-J. Egelhaaf, L. Lüer, J. Hauch, H. Peisert, and T. Chassé, “Photodegradation of P3HT—a systematic study of environmental factors,” Chem. Mater. 23, 145–154 (2011).
[Crossref]

Hiura, H.

A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, and T. W. Ebbesen, “Enhanced Raman scattering from vibro-polariton hybrid states,” Angew. Chem. 54, 7971–7975 (2015).
[Crossref]

Holdcraft, S.

M. S. A. Abdou and S. Holdcraft, “Solid-state photochemistry of π-conjugated poly (3-alkylthiophenes),” Can. J. Chem. 73, 1893–1901 (1995).
[Crossref]

Hutchison, J.

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. 55, 11462–11466 (2016).
[Crossref]

Hutchison, J. A.

X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Energy transfer between spatially separated entangled molecules,” Angew. Chem. 56, 9034–9038 (2017).
[Crossref]

A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, and T. W. Ebbesen, “Enhanced Raman scattering from vibro-polariton hybrid states,” Angew. Chem. 54, 7971–7975 (2015).
[Crossref]

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14, 1123–1129 (2015).
[Crossref]

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25, 2481–2485 (2013).
[Crossref]

J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W. Ebbesen, “Modifying chemical landscapes by coupling to vacuum fields,” Angew. Chem. 51, 1592–1596 (2012).
[Crossref]

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref]

Jacob, Z.

Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[Crossref]

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35, 1863–1865 (2010).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kéna-Cohen, S.

S. Kéna-Cohen, S. A. Maier, and D. D. C. Bradley, “Ultrastrongly coupled exciton-polaritons in metal-clad organic semiconductor microcavities,” Adv. Opt. Mater. 1, 827–833 (2013).
[Crossref]

Khitrova, G.

G. Khitrova, H. M. Gibbs, M. Kira, S. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[Crossref]

Kim, J.-Y.

Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[Crossref]

Kira, M.

G. Khitrova, H. M. Gibbs, M. Kira, S. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[Crossref]

Kitur, J.

T. Tumkur, J. Kitur, C. E. Bonner, A. Poddubny, E. E. Narimanov, and M. A. Noginov, “Control of Förster energy transfer in vicinity of metallic surfaces and hyperbolic metamaterials,” Faraday Discuss. 178, 395–412 (2015).
[Crossref]

Kitur, J. K.

J. K. Kitur, L. Gu, T. Tumkur, C. E. Bonner, and M. A. Noginov, “Stimulated emission of surface plasmons on top of metamaterials with hyperbolic dispersion,” ACS Photon. 2, 1019–1024 (2015).
[Crossref]

Koch, S.

G. Khitrova, H. M. Gibbs, M. Kira, S. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[Crossref]

Kowalewski, M.

M. Kowalewski, K. Bennett, and S. Mukamel, “Cavity femtochemistry: manipulating nonadiabatic dynamics at avoided crossings,” J. Phys. Chem. Lett. 7, 2050–2054 (2016).
[Crossref]

Lagendijk, A.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. Mosk, V. Subramania, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109, 203601 (2012).
[Crossref]

Lemaître, N.

M. Manceau, A. Rivaton, J. Gardette, S. Guillerez, and N. Lemaître, “The mechanism of photo- and thermooxidation of poly (3-hexylthiophene) (P3HT) reconsidered,” Polym. Degrad. Stab. 94, 898–907 (2009).
[Crossref]

Lerario, G.

S. Gambino, M. Mazzeo, A. Genco, O. Di Stefano, S. Savasta, S. Patanè, D. Ballarini, F. Mangione, G. Lerario, D. Sanvitto, and G. Gigli, “Exploring light-matter interaction phenomena under ultrastrong coupling regime,” ACS Photon. 1, 1042–1048 (2014).
[Crossref]

Li, H.

Liberman, V.

M. A. Noginov, Y. A. Barnakov, V. Liberman, S. Prayakarao, C. E. Bonner, and E. E. Narimanov, “Long-range wetting transparency on top of layered metal-dielectric substrates,” Sci. Rep. 6, 27834 (2016).
[Crossref]

Lidzey, D. G.

D. G. Lidzey, D. D. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

Liscio, A.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25, 2481–2485 (2013).
[Crossref]

Lüer, L.

H. Hintz, H.-J. Egelhaaf, L. Lüer, J. Hauch, H. Peisert, and T. Chassé, “Photodegradation of P3HT—a systematic study of environmental factors,” Chem. Mater. 23, 145–154 (2011).
[Crossref]

Maier, S. A.

S. Kéna-Cohen, S. A. Maier, and D. D. C. Bradley, “Ultrastrongly coupled exciton-polaritons in metal-clad organic semiconductor microcavities,” Adv. Opt. Mater. 1, 827–833 (2013).
[Crossref]

Manceau, M.

M. Manceau, A. Rivaton, J. Gardette, S. Guillerez, and N. Lemaître, “The mechanism of photo- and thermooxidation of poly (3-hexylthiophene) (P3HT) reconsidered,” Polym. Degrad. Stab. 94, 898–907 (2009).
[Crossref]

Mangione, F.

S. Gambino, M. Mazzeo, A. Genco, O. Di Stefano, S. Savasta, S. Patanè, D. Ballarini, F. Mangione, G. Lerario, D. Sanvitto, and G. Gigli, “Exploring light-matter interaction phenomena under ultrastrong coupling regime,” ACS Photon. 1, 1042–1048 (2014).
[Crossref]

Martínez-Martínez, L. A.

R. F. Ribeiro, L. A. Martínez-Martínez, M. Du, J. Campos-Gonzalez-Anguloa, and J. Yuen-Zhou, “Polariton chemistry: controlling molecular dynamics with optical cavities,” Chem. Sci. 9, 6325–6339 (2018).
[Crossref]

Mayy, M.

Mazzeo, M.

S. Gambino, M. Mazzeo, A. Genco, O. Di Stefano, S. Savasta, S. Patanè, D. Ballarini, F. Mangione, G. Lerario, D. Sanvitto, and G. Gigli, “Exploring light-matter interaction phenomena under ultrastrong coupling regime,” ACS Photon. 1, 1042–1048 (2014).
[Crossref]

Moran, J.

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. 55, 11462–11466 (2016).
[Crossref]

Moreno, E.

C. Gonzalez-Ballestero, J. Feist, E. Moreno, and F. J. Garcia-Vidal, “Harvesting excitons through plasmonic strong coupling,” Phys. Rev. B 92, 121402 (2015).
[Crossref]

Mosk, A.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. Mosk, V. Subramania, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109, 203601 (2012).
[Crossref]

Mugnier, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref]

Mukamel, S.

M. Kowalewski, K. Bennett, and S. Mukamel, “Cavity femtochemistry: manipulating nonadiabatic dynamics at avoided crossings,” J. Phys. Chem. Lett. 7, 2050–2054 (2016).
[Crossref]

Munkhbat, B.

B. Munkhbat, M. Wersäll, D. G. Baranov, T. J. Antosiewicz, and T. Shegai, “Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas,” Sci. Adv. 4, eaas9552 (2018).
[Crossref]

Naik, G. V.

Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[Crossref]

Narimanov, E. E.

M. A. Noginov, Y. A. Barnakov, V. Liberman, S. Prayakarao, C. E. Bonner, and E. E. Narimanov, “Long-range wetting transparency on top of layered metal-dielectric substrates,” Sci. Rep. 6, 27834 (2016).
[Crossref]

T. Tumkur, J. Kitur, C. E. Bonner, A. Poddubny, E. E. Narimanov, and M. A. Noginov, “Control of Förster energy transfer in vicinity of metallic surfaces and hyperbolic metamaterials,” Faraday Discuss. 178, 395–412 (2015).
[Crossref]

Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[Crossref]

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35, 1863–1865 (2010).
[Crossref]

Nataraj, G.

Noginov, M. A.

M. A. Noginov, Y. A. Barnakov, V. Liberman, S. Prayakarao, C. E. Bonner, and E. E. Narimanov, “Long-range wetting transparency on top of layered metal-dielectric substrates,” Sci. Rep. 6, 27834 (2016).
[Crossref]

T. Tumkur, J. Kitur, C. E. Bonner, A. Poddubny, E. E. Narimanov, and M. A. Noginov, “Control of Förster energy transfer in vicinity of metallic surfaces and hyperbolic metamaterials,” Faraday Discuss. 178, 395–412 (2015).
[Crossref]

V. N. Peters, T. U. Tumkur, G. Zhu, and M. A. Noginov, “Control of a chemical reaction (photodegradation of the P3HT polymer) with nonlocal dielectric environments,” Sci. Rep. 5, 14620 (2015).
[Crossref]

J. K. Kitur, L. Gu, T. Tumkur, C. E. Bonner, and M. A. Noginov, “Stimulated emission of surface plasmons on top of metamaterials with hyperbolic dispersion,” ACS Photon. 2, 1019–1024 (2015).
[Crossref]

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35, 1863–1865 (2010).
[Crossref]

Orgiu, E.

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14, 1123–1129 (2015).
[Crossref]

Owrutsky, J. C.

A. D. Dunkelberger, B. T. Spann, K. P. Fears, B. S. Simpkins, and J. C. Owrutsky, “Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons,” Nat. Commun. 7, 13504 (2016).
[Crossref]

B. S. Simpkins, K. P. Fears, W. J. Dressick, B. T. Spann, A. D. Dunkelberger, and J. C. Owrutsky, “Spanning strong to weak normal mode coupling between vibrational and Fabry–Perot cavity modes through tuning of vibrational absorption strength,” ACS Photon. 2, 1460–1467 (2015).
[Crossref]

Palermo, V.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25, 2481–2485 (2013).
[Crossref]

Patanè, S.

S. Gambino, M. Mazzeo, A. Genco, O. Di Stefano, S. Savasta, S. Patanè, D. Ballarini, F. Mangione, G. Lerario, D. Sanvitto, and G. Gigli, “Exploring light-matter interaction phenomena under ultrastrong coupling regime,” ACS Photon. 1, 1042–1048 (2014).
[Crossref]

Peisert, H.

H. Hintz, C. Sessler, H. Peisert, H.-J. Egelhaaf, and T. Chassé, “Wavelength-dependent pathways of poly-3-hexylthiophene photo-oxidation,” Chem. Mater. 24, 2739–2743 (2012).
[Crossref]

H. Hintz, H.-J. Egelhaaf, L. Lüer, J. Hauch, H. Peisert, and T. Chassé, “Photodegradation of P3HT—a systematic study of environmental factors,” Chem. Mater. 23, 145–154 (2011).
[Crossref]

Pendry, J. B.

F. J. Garcia-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
[Crossref]

Peng, R.-W.

K. Zhang, W.-B. Shi, D. Wang, Y. Xu, R.-W. Peng, R.-H. Fan, Q.-J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108, 193111 (2016).
[Crossref]

Peters, V. N.

V. N. Peters, T. U. Tumkur, G. Zhu, and M. A. Noginov, “Control of a chemical reaction (photodegradation of the P3HT polymer) with nonlocal dielectric environments,” Sci. Rep. 5, 14620 (2015).
[Crossref]

Plenet, J. C.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref]

Poddubny, A.

T. Tumkur, J. Kitur, C. E. Bonner, A. Poddubny, E. E. Narimanov, and M. A. Noginov, “Control of Förster energy transfer in vicinity of metallic surfaces and hyperbolic metamaterials,” Faraday Discuss. 178, 395–412 (2015).
[Crossref]

Prayakarao, S.

M. A. Noginov, Y. A. Barnakov, V. Liberman, S. Prayakarao, C. E. Bonner, and E. E. Narimanov, “Long-range wetting transparency on top of layered metal-dielectric substrates,” Sci. Rep. 6, 27834 (2016).
[Crossref]

Pupillo, G.

J. Schachenmayer, C. Genes, E. Tignone, and G. Pupillo, “Cavity enhanced transport of excitons,” Phys. Rev. Lett. 114, 196403 (2015).
[Crossref]

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14, 1123–1129 (2015).
[Crossref]

Ribeiro, R. F.

R. F. Ribeiro, L. A. Martínez-Martínez, M. Du, J. Campos-Gonzalez-Anguloa, and J. Yuen-Zhou, “Polariton chemistry: controlling molecular dynamics with optical cavities,” Chem. Sci. 9, 6325–6339 (2018).
[Crossref]

Rivaton, A.

M. Manceau, A. Rivaton, J. Gardette, S. Guillerez, and N. Lemaître, “The mechanism of photo- and thermooxidation of poly (3-hexylthiophene) (P3HT) reconsidered,” Polym. Degrad. Stab. 94, 898–907 (2009).
[Crossref]

Samorì, P.

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14, 1123–1129 (2015).
[Crossref]

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25, 2481–2485 (2013).
[Crossref]

Sanvitto, D.

S. Gambino, M. Mazzeo, A. Genco, O. Di Stefano, S. Savasta, S. Patanè, D. Ballarini, F. Mangione, G. Lerario, D. Sanvitto, and G. Gigli, “Exploring light-matter interaction phenomena under ultrastrong coupling regime,” ACS Photon. 1, 1042–1048 (2014).
[Crossref]

Savasta, S.

S. Gambino, M. Mazzeo, A. Genco, O. Di Stefano, S. Savasta, S. Patanè, D. Ballarini, F. Mangione, G. Lerario, D. Sanvitto, and G. Gigli, “Exploring light-matter interaction phenomena under ultrastrong coupling regime,” ACS Photon. 1, 1042–1048 (2014).
[Crossref]

Schachenmayer, J.

J. Schachenmayer, C. Genes, E. Tignone, and G. Pupillo, “Cavity enhanced transport of excitons,” Phys. Rev. Lett. 114, 196403 (2015).
[Crossref]

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14, 1123–1129 (2015).
[Crossref]

Scherer, A.

G. Khitrova, H. M. Gibbs, M. Kira, S. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[Crossref]

Schwartz, T.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25, 2481–2485 (2013).
[Crossref]

J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W. Ebbesen, “Modifying chemical landscapes by coupling to vacuum fields,” Angew. Chem. 51, 1592–1596 (2012).
[Crossref]

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref]

Sessler, C.

H. Hintz, C. Sessler, H. Peisert, H.-J. Egelhaaf, and T. Chassé, “Wavelength-dependent pathways of poly-3-hexylthiophene photo-oxidation,” Chem. Mater. 24, 2739–2743 (2012).
[Crossref]

Shalabney, A.

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. 55, 11462–11466 (2016).
[Crossref]

A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, and T. W. Ebbesen, “Enhanced Raman scattering from vibro-polariton hybrid states,” Angew. Chem. 54, 7971–7975 (2015).
[Crossref]

Shalaev, V. M.

Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[Crossref]

Shegai, T.

B. Munkhbat, M. Wersäll, D. G. Baranov, T. J. Antosiewicz, and T. Shegai, “Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas,” Sci. Adv. 4, eaas9552 (2018).
[Crossref]

Shen, J. C.

W. J. Tian, H. Y. Zhang, and J. C. Shen, “Some properties of interfaces between metals and polymers,” Surf. Rev. Lett. 4, 703–708 (1997).
[Crossref]

Shi, W.-B.

K. Zhang, W.-B. Shi, D. Wang, Y. Xu, R.-W. Peng, R.-H. Fan, Q.-J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108, 193111 (2016).
[Crossref]

Simpkins, B. S.

A. D. Dunkelberger, B. T. Spann, K. P. Fears, B. S. Simpkins, and J. C. Owrutsky, “Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons,” Nat. Commun. 7, 13504 (2016).
[Crossref]

B. S. Simpkins, K. P. Fears, W. J. Dressick, B. T. Spann, A. D. Dunkelberger, and J. C. Owrutsky, “Spanning strong to weak normal mode coupling between vibrational and Fabry–Perot cavity modes through tuning of vibrational absorption strength,” ACS Photon. 2, 1460–1467 (2015).
[Crossref]

Skolnick, M. S.

D. G. Lidzey, D. D. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

Spann, B. T.

A. D. Dunkelberger, B. T. Spann, K. P. Fears, B. S. Simpkins, and J. C. Owrutsky, “Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons,” Nat. Commun. 7, 13504 (2016).
[Crossref]

B. S. Simpkins, K. P. Fears, W. J. Dressick, B. T. Spann, A. D. Dunkelberger, and J. C. Owrutsky, “Spanning strong to weak normal mode coupling between vibrational and Fabry–Perot cavity modes through tuning of vibrational absorption strength,” ACS Photon. 2, 1460–1467 (2015).
[Crossref]

Spano, F. C.

F. Herrera and F. C. Spano, “Cavity-controlled chemistry in molecular ensembles,” Phys. Rev. Lett. 116, 238301 (2016).
[Crossref]

Stellacci, F.

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14, 1123–1129 (2015).
[Crossref]

Stranius, K.

K. Stranius, M. Hertzog, and K. Börjesson, “Selective manipulation of electronically excited states through strong light-matter interactions,” Nat. Commun. 9, 2273 (2018).
[Crossref]

Subramania, V.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. Mosk, V. Subramania, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109, 203601 (2012).
[Crossref]

Thomas, A.

X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Energy transfer between spatially separated entangled molecules,” Angew. Chem. 56, 9034–9038 (2017).
[Crossref]

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. 55, 11462–11466 (2016).
[Crossref]

Tian, W. J.

W. J. Tian, H. Y. Zhang, and J. C. Shen, “Some properties of interfaces between metals and polymers,” Surf. Rev. Lett. 4, 703–708 (1997).
[Crossref]

Tignone, E.

J. Schachenmayer, C. Genes, E. Tignone, and G. Pupillo, “Cavity enhanced transport of excitons,” Phys. Rev. Lett. 114, 196403 (2015).
[Crossref]

Törmä, P.

P. Törmä and W. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

Tumkur, T.

J. K. Kitur, L. Gu, T. Tumkur, C. E. Bonner, and M. A. Noginov, “Stimulated emission of surface plasmons on top of metamaterials with hyperbolic dispersion,” ACS Photon. 2, 1019–1024 (2015).
[Crossref]

T. Tumkur, J. Kitur, C. E. Bonner, A. Poddubny, E. E. Narimanov, and M. A. Noginov, “Control of Förster energy transfer in vicinity of metallic surfaces and hyperbolic metamaterials,” Faraday Discuss. 178, 395–412 (2015).
[Crossref]

Tumkur, T. U.

V. N. Peters, T. U. Tumkur, G. Zhu, and M. A. Noginov, “Control of a chemical reaction (photodegradation of the P3HT polymer) with nonlocal dielectric environments,” Sci. Rep. 5, 14620 (2015).
[Crossref]

Varma, S.

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. 55, 11462–11466 (2016).
[Crossref]

Virgili, T.

D. G. Lidzey, D. D. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

Vos, W. L.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. Mosk, V. Subramania, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109, 203601 (2012).
[Crossref]

Walker, S.

D. G. Lidzey, D. D. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

Wang, D.

K. Zhang, W.-B. Shi, D. Wang, Y. Xu, R.-W. Peng, R.-H. Fan, Q.-J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108, 193111 (2016).
[Crossref]

Wang, M.

K. Zhang, W.-B. Shi, D. Wang, Y. Xu, R.-W. Peng, R.-H. Fan, Q.-J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108, 193111 (2016).
[Crossref]

Wang, Q.-J.

K. Zhang, W.-B. Shi, D. Wang, Y. Xu, R.-W. Peng, R.-H. Fan, Q.-J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108, 193111 (2016).
[Crossref]

Wersäll, M.

B. Munkhbat, M. Wersäll, D. G. Baranov, T. J. Antosiewicz, and T. Shegai, “Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas,” Sci. Adv. 4, eaas9552 (2018).
[Crossref]

Whittaker, D. M.

D. G. Lidzey, D. D. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

Wubs, M.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. Mosk, V. Subramania, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109, 203601 (2012).
[Crossref]

Xu, Y.

K. Zhang, W.-B. Shi, D. Wang, Y. Xu, R.-W. Peng, R.-H. Fan, Q.-J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108, 193111 (2016).
[Crossref]

Yuen-Zhou, J.

R. F. Ribeiro, L. A. Martínez-Martínez, M. Du, J. Campos-Gonzalez-Anguloa, and J. Yuen-Zhou, “Polariton chemistry: controlling molecular dynamics with optical cavities,” Chem. Sci. 9, 6325–6339 (2018).
[Crossref]

Zhang, H. Y.

W. J. Tian, H. Y. Zhang, and J. C. Shen, “Some properties of interfaces between metals and polymers,” Surf. Rev. Lett. 4, 703–708 (1997).
[Crossref]

Zhang, K.

K. Zhang, W.-B. Shi, D. Wang, Y. Xu, R.-W. Peng, R.-H. Fan, Q.-J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108, 193111 (2016).
[Crossref]

Zhang, L.

X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Energy transfer between spatially separated entangled molecules,” Angew. Chem. 56, 9034–9038 (2017).
[Crossref]

Zhong, X.

X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Energy transfer between spatially separated entangled molecules,” Angew. Chem. 56, 9034–9038 (2017).
[Crossref]

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. 55, 11462–11466 (2016).
[Crossref]

Zhu, G.

V. N. Peters, T. U. Tumkur, G. Zhu, and M. A. Noginov, “Control of a chemical reaction (photodegradation of the P3HT polymer) with nonlocal dielectric environments,” Sci. Rep. 5, 14620 (2015).
[Crossref]

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35, 1863–1865 (2010).
[Crossref]

Zijlstra, N.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. Mosk, V. Subramania, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109, 203601 (2012).
[Crossref]

Acc. Chem. Res. (1)

T. W. Ebbesen, “Hybrid light-matter states in a molecular and material science perspective,” Acc. Chem. Res. 49, 2403–2412 (2016).
[Crossref]

ACS Photon. (3)

J. K. Kitur, L. Gu, T. Tumkur, C. E. Bonner, and M. A. Noginov, “Stimulated emission of surface plasmons on top of metamaterials with hyperbolic dispersion,” ACS Photon. 2, 1019–1024 (2015).
[Crossref]

S. Gambino, M. Mazzeo, A. Genco, O. Di Stefano, S. Savasta, S. Patanè, D. Ballarini, F. Mangione, G. Lerario, D. Sanvitto, and G. Gigli, “Exploring light-matter interaction phenomena under ultrastrong coupling regime,” ACS Photon. 1, 1042–1048 (2014).
[Crossref]

B. S. Simpkins, K. P. Fears, W. J. Dressick, B. T. Spann, A. D. Dunkelberger, and J. C. Owrutsky, “Spanning strong to weak normal mode coupling between vibrational and Fabry–Perot cavity modes through tuning of vibrational absorption strength,” ACS Photon. 2, 1460–1467 (2015).
[Crossref]

Adv. Mater. (1)

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25, 2481–2485 (2013).
[Crossref]

Adv. Opt. Mater. (1)

S. Kéna-Cohen, S. A. Maier, and D. D. C. Bradley, “Ultrastrongly coupled exciton-polaritons in metal-clad organic semiconductor microcavities,” Adv. Opt. Mater. 1, 827–833 (2013).
[Crossref]

Angew. Chem. (4)

A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, and T. W. Ebbesen, “Enhanced Raman scattering from vibro-polariton hybrid states,” Angew. Chem. 54, 7971–7975 (2015).
[Crossref]

X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Energy transfer between spatially separated entangled molecules,” Angew. Chem. 56, 9034–9038 (2017).
[Crossref]

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. 55, 11462–11466 (2016).
[Crossref]

J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W. Ebbesen, “Modifying chemical landscapes by coupling to vacuum fields,” Angew. Chem. 51, 1592–1596 (2012).
[Crossref]

Appl. Phys. B (1)

Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010).
[Crossref]

Appl. Phys. Lett. (1)

K. Zhang, W.-B. Shi, D. Wang, Y. Xu, R.-W. Peng, R.-H. Fan, Q.-J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108, 193111 (2016).
[Crossref]

Can. J. Chem. (1)

M. S. A. Abdou and S. Holdcraft, “Solid-state photochemistry of π-conjugated poly (3-alkylthiophenes),” Can. J. Chem. 73, 1893–1901 (1995).
[Crossref]

Chem. Mater. (2)

H. Hintz, C. Sessler, H. Peisert, H.-J. Egelhaaf, and T. Chassé, “Wavelength-dependent pathways of poly-3-hexylthiophene photo-oxidation,” Chem. Mater. 24, 2739–2743 (2012).
[Crossref]

H. Hintz, H.-J. Egelhaaf, L. Lüer, J. Hauch, H. Peisert, and T. Chassé, “Photodegradation of P3HT—a systematic study of environmental factors,” Chem. Mater. 23, 145–154 (2011).
[Crossref]

Chem. Sci. (1)

R. F. Ribeiro, L. A. Martínez-Martínez, M. Du, J. Campos-Gonzalez-Anguloa, and J. Yuen-Zhou, “Polariton chemistry: controlling molecular dynamics with optical cavities,” Chem. Sci. 9, 6325–6339 (2018).
[Crossref]

Faraday Discuss. (1)

T. Tumkur, J. Kitur, C. E. Bonner, A. Poddubny, E. E. Narimanov, and M. A. Noginov, “Control of Förster energy transfer in vicinity of metallic surfaces and hyperbolic metamaterials,” Faraday Discuss. 178, 395–412 (2015).
[Crossref]

J. Phys. Chem. C (1)

J. del Pino, J. Feist, and F. J. Garcia-Vidal, “Signatures of vibrational strong coupling in Raman scattering,” J. Phys. Chem. C 119, 29132–29137 (2015).
[Crossref]

J. Phys. Chem. Lett. (1)

M. Kowalewski, K. Bennett, and S. Mukamel, “Cavity femtochemistry: manipulating nonadiabatic dynamics at avoided crossings,” J. Phys. Chem. Lett. 7, 2050–2054 (2016).
[Crossref]

Nat. Commun. (3)

J. Galego, F. J. Garcia-Vidal, and J. Feist, “Suppressing photochemical reactions with quantized light fields,” Nat. Commun. 7, 13841 (2016).
[Crossref]

A. D. Dunkelberger, B. T. Spann, K. P. Fears, B. S. Simpkins, and J. C. Owrutsky, “Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons,” Nat. Commun. 7, 13504 (2016).
[Crossref]

K. Stranius, M. Hertzog, and K. Börjesson, “Selective manipulation of electronically excited states through strong light-matter interactions,” Nat. Commun. 9, 2273 (2018).
[Crossref]

Nat. Mater. (1)

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14, 1123–1129 (2015).
[Crossref]

Nat. Phys. (1)

G. Khitrova, H. M. Gibbs, M. Kira, S. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[Crossref]

Nature (1)

D. G. Lidzey, D. D. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (2)

C. Gonzalez-Ballestero, J. Feist, E. Moreno, and F. J. Garcia-Vidal, “Harvesting excitons through plasmonic strong coupling,” Phys. Rev. B 92, 121402 (2015).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (7)

J. Galego, F. J. Garcia-Vidal, and J. Feist, “Many-molecule reaction triggered by a single photon in polaritonic chemistry,” Phys. Rev. Lett. 119, 136001 (2017).
[Crossref]

F. Herrera and F. C. Spano, “Cavity-controlled chemistry in molecular ensembles,” Phys. Rev. Lett. 116, 238301 (2016).
[Crossref]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref]

J. Schachenmayer, C. Genes, E. Tignone, and G. Pupillo, “Cavity enhanced transport of excitons,” Phys. Rev. Lett. 114, 196403 (2015).
[Crossref]

F. J. Garcia-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
[Crossref]

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. Mosk, V. Subramania, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109, 203601 (2012).
[Crossref]

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref]

Polym. Degrad. Stab. (1)

M. Manceau, A. Rivaton, J. Gardette, S. Guillerez, and N. Lemaître, “The mechanism of photo- and thermooxidation of poly (3-hexylthiophene) (P3HT) reconsidered,” Polym. Degrad. Stab. 94, 898–907 (2009).
[Crossref]

Rep. Prog. Phys. (1)

P. Törmä and W. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

Sci. Adv. (1)

B. Munkhbat, M. Wersäll, D. G. Baranov, T. J. Antosiewicz, and T. Shegai, “Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas,” Sci. Adv. 4, eaas9552 (2018).
[Crossref]

Sci. Rep. (2)

M. A. Noginov, Y. A. Barnakov, V. Liberman, S. Prayakarao, C. E. Bonner, and E. E. Narimanov, “Long-range wetting transparency on top of layered metal-dielectric substrates,” Sci. Rep. 6, 27834 (2016).
[Crossref]

V. N. Peters, T. U. Tumkur, G. Zhu, and M. A. Noginov, “Control of a chemical reaction (photodegradation of the P3HT polymer) with nonlocal dielectric environments,” Sci. Rep. 5, 14620 (2015).
[Crossref]

Science (1)

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290, 785–788 (2000).
[Crossref]

Surf. Rev. Lett. (1)

W. J. Tian, H. Y. Zhang, and J. C. Shen, “Some properties of interfaces between metals and polymers,” Surf. Rev. Lett. 4, 703–708 (1997).
[Crossref]

Other (3)

G. C. Bond, “Homogeneous and heterogeneous catalysis by noble metals,” in Homogeneous Catalysis, Advances in Chemistry Series (American Chemical Society, 1968), Vol. 70, pp. 25–34.

TDBC: 5, 5′, 6, 6′-tetrachloro- di-(4-sulfobutyl) benzimidazolocarbocyanine.

S. Ishii, U. K. Chettiar, X. Ni, and A. V. Kildishev, “PhotonicsRT: wave propagation in multilayer structures,” simulation tool, https://nanohub.org/tools/photonicsrt (2014).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Transformation of the absorption spectrum of P3HT deposited on glass under tungsten lamp illumination in the presence of ambient oxygen. (b) Same for the reflectance spectrum of the P3HT filled cavity. Inset in Fig. 1(a): chemical formula of P3HT. Inset in Fig. 1(b): schematic of the experimental samples: P3HT in the cavity, P3HT on glass, P3HT on glass covered by a thin semitransparent Ag film.
Fig. 2.
Fig. 2. (a) Reflectance spectra calculated for several cavities of different sizes. Two dips in the spectra are characteristic of strong coupling of P3HT and the cavity. (b) Dependence of the spectral positions of the dips on the cavity size d. Red circles, calculations; black squares, experiment. (c) Light intensity (|E|2) distribution in the 100 nm cavity calculated at λ=632  nm, position of the dip in the reflectance spectrum (left, plot; right, color map). (d) Experimental reflectance spectra of the cavities.
Fig. 3.
Fig. 3. Spectra of (a) tungsten lamp emissivity, (b) sensitivity of P3HT to photoexposure, and (c) value |E|2 integrated over thickness of the P3HT layer in the cavity (trace 1) on top of a glass substrate (trace 2), and in the P3HT film covered by a thin semitransparent silver film (trace 3). (d) Product of the three spectra depicted in Figs. 3(a)–3(c) was used to calculate the “action” integrals c (trace 1), g (trace 2), and Ag (trace 3).
Fig. 4.
Fig. 4. (a) Fitting the experimental spectra of real ε and imaginary ε parts of the dielectric permittivity of P3HT (dashed lines) with the sum of three Lorentzian oscillators (solid lines). (b) Calculated correspondence between the concentration of remaining P3HT rings and the spectral distance between the dips in the reflectance spectra of the cavities.
Fig. 5.
Fig. 5. Photodegradation kinetics of P3HT on glass (circles), on glass with Ag on top (triangles), and in cavity (squares) under illumination with tungsten lamp (a and b) and UV-enhanced xenon lamp (c).
Fig. 6.
Fig. 6. Scheme of polymer photodegradation by single oxygen. (a) P, ground state of the polymer; P1*, excited singlet polymer state; P3*, excited singlet polymer state; O23, ground state oxygen; O21, singlet oxygen; kP1*, kP3* and kO12, deactivation constants; kq, quenching constant; kr, reaction constant; kISC, intersystem crossing constant. Horizontal thick black lines represent energy levels. (b) Same as Figure a, but with the excited state P1* split into two polariton branches, (+) and (), due to interaction with the cavity. Ω, Rabi splitting; kRISC, reverse intersystem crossing constant; ΔEST, energy difference between excited triplet state of the polymer P3* and the lower polariton branch () of the excited single state of the polymer P1*.