Abstract

Coherent frequency conversion in compact integrated formats via guided-wave nonlinear optics has not been shown to be power scalable to date, because single-mode waveguides need dispersion control, achieved by shrinking mode size and hence reducing power-handling capacity, whereas power-tolerant multimode waveguides yield spatially incoherent, hence uncontrollable, nonlinear coupling. Here we report the discovery of a new manifestation of Raman scattering of ultrashort pulses that is power scalable while yielding pure spatially coherent beams. The phenomenon of soliton self-mode conversion (SSMC) described in this paper exploits the group-velocity diversity of multimode waveguides, enabling noise-initiated Raman scattering of an ultrashort pulse to occur exclusively between two distinct spatial eigenmodes and only those two modes. This exclusivity helps in naturally maintaining spatial coherence, which is usually the bane of multimode waveguide nonlinear optics. And, the fact that this phenomenon occurs in mode-size-scalable multimode waveguides yields the power scalability. SSMC is wavelength agnostic, since it can occur at virtually any wavelength in which a multimode fiber is transparent, and we demonstrate its versatility by frequency-converting a conventional 1-μm fiber laser into MW-peak power, 75-fs pulses at the biologically crucial 1300-nm spectral range. This represents an enhancement, by roughly two orders of magnitude, of nonlinear frequency-converted power levels of ultrashort pulses at 1300 nm directly out of any flexible fiber, to date.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Unified description of ultrafast stimulated Raman scattering in optical fibers

Clifford Headley and Govind P. Agrawal
J. Opt. Soc. Am. B 13(10) 2170-2177 (1996)

Cascaded Raman shifting of high-peak-power nanosecond pulses in As2S3 and As2Se3 optical fibers

Richard T. White and Tanya M. Monro
Opt. Lett. 36(12) 2351-2353 (2011)

References

  • View by:
  • |
  • |
  • |

  1. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
    [Crossref]
  2. R. H. Stolen, E. P. Ippen, and A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62–64 (1972).
    [Crossref]
  3. K. S. Chiang, “Stimulated Raman scattering in a multimode optical fiber: evolution of modes in Stokes waves,” Opt. Lett. 17, 352–354 (1992).
    [Crossref]
  4. H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102, 201107 (2013).
    [Crossref]
  5. M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. St. J. Russell, “Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” J. Opt. Soc. Am. B 29, 1563–1568 (2012).
    [Crossref]
  6. A. Hasegawa, “Self-confinement of multimode optical pulse in a glass fiber,” Opt. Lett. 5, 416–417 (1980).
    [Crossref]
  7. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [Crossref]
  8. W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4, 1719 (2013).
    [Crossref]
  9. L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Opt. Express 23, 3492–3506 (2015).
    [Crossref]
  10. L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9, 306–310 (2015).
    [Crossref]
  11. K. Krupa, C. Louot, V. Couderc, M. Fabert, R. Guenard, B. M. Shalaby, A. Tonello, D. Pagnoux, P. Leproux, A. Bendahmane, R. Dupiol, G. Millot, and S. Wabnitz, “Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber,” Opt. Lett. 41, 5785–5788 (2016).
    [Crossref]
  12. S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153–1158 (2007).
    [Crossref]
  13. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
    [Crossref]
  14. A. Antikainen, L. Rishøj, B. Tai, S. Ramachandran, and G. P. Agrawal, “Fate of a soliton in a high order spatial mode of a multimode fiber,” Phys. Rev. Lett. 122, 023901 (2019).
    [Crossref]
  15. L. Rishoj, B. Tai, P. Kristensen, and S. Ramachandran, “High power spatially coherent pulse formation via intermodal soliton interactions in fiber,” in Advanced solid-state lasers (ASSL) (2016), paper ATh1A.6.
  16. C. R. Menyuk, “Stability of solitons in birefringent optical fibers. I: Equal propagation amplitudes,” Opt. Lett. 12, 614–616 (1987).
    [Crossref]
  17. N. Nishizawa and G. Toshio, “Trapped pulse generation by femtosecond soliton pulse in birefringent optical fibers,” Opt. Express 10, 256–261 (2002).
    [Crossref]
  18. Q. F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Phys. 13, 53–57 (2016).
    [Crossref]
  19. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31, 1797–1799 (2006).
    [Crossref]
  20. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2, 429–448 (2008).
    [Crossref]
  21. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
    [Crossref]
  22. L. Rishoj, G. Prabhakar, J. Demas, and S. Ramachandran, “30  nJ, ∼50  fs all-fiber source at 1300 nm using soliton shifting in LMA HOM fiber,” in Conference on Lasers and Electro-Optics (CLEO) (2016), paper STh3O.3.
  23. B. Tai, L. Rishøj, and S. Ramachandran, “Ultrafast, high energy, wideband wavelength conversion via continuous intra-pulse and discrete intermodal Raman scattering,” in Conference on Lasers and Electro-Optics (CLEO) (2018), paper SM1K.1.
  24. L. Rishoj, B. Tai, P. Kristensen, and S. Ramachandran, “Characterization of intermodal group index matched soliton interactions leading to MW peak powers at 1300  nm,” in Conference on Lasers and Electro-Optics (CLEO) (2017), paper STh3K.2.
  25. A. Antikainen, B. Tai, L. Rishøj, S. Ramachandran, and G. P. Agrawal, “Intermodal Raman scattering of ultrashort pulses in multimode fibers,” in Conference on Lasers and Electro-Optics (CLEO) (2018), paper FTh4E.3.
  26. J. Demas, L. Rishøj, and S. Ramachandran, “Free-space beam shaping for precise control and conversion of modes in optical fiber,” Opt. Express 23, 28531–28545 (2015).
    [Crossref]
  27. P. Steinvurzel, K. Tantiwanichapan, M. Goto, and S. Ramachandran, “Fiber-based Bessel beams with controllable diffraction-resistant distance,” Opt. Lett. 36, 4671–4673 (2011).
    [Crossref]
  28. F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
    [Crossref]
  29. S. A. Akhmanov, A. I. Kovrigin, A. S. Piskarskas, V. V. Fadeev, and R. V. Khokhlov, “Observation of parametric amplification in the optical range,” J. Exp. Theor. Phys. 2, 191–193 (1965).
  30. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
    [Crossref]
  31. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
    [Crossref]
  32. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
    [Crossref]
  33. A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176 (1966).
    [Crossref]
  34. J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. Lett. 14, 973–976 (1965).
    [Crossref]
  35. J. W. Nicholson, J. M. Fini, A. M. DeSantolo, X. Liu, K. Feder, P. S. Westbrook, V. R. Supradeepa, E. Monberg, F. DiMarcello, R. Ortiz, C. Headley, and D. J. DiGiovanni, “Scaling the effective area of higher-order-mode erbium-doped fiber amplifiers,” Opt. Express 20, 24575–24584 (2012).
    [Crossref]
  36. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
    [Crossref]

2019 (1)

A. Antikainen, L. Rishøj, B. Tai, S. Ramachandran, and G. P. Agrawal, “Fate of a soliton in a high order spatial mode of a multimode fiber,” Phys. Rev. Lett. 122, 023901 (2019).
[Crossref]

2016 (2)

2015 (3)

2013 (4)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102, 201107 (2013).
[Crossref]

W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4, 1719 (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

2012 (2)

2011 (1)

2010 (1)

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[Crossref]

2008 (1)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2, 429–448 (2008).
[Crossref]

2007 (1)

S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153–1158 (2007).
[Crossref]

2006 (2)

2002 (1)

2001 (1)

2000 (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref]

1992 (1)

1987 (1)

1986 (2)

1980 (1)

1972 (1)

R. H. Stolen, E. P. Ippen, and A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62–64 (1972).
[Crossref]

1966 (1)

A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176 (1966).
[Crossref]

1965 (2)

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. Lett. 14, 973–976 (1965).
[Crossref]

S. A. Akhmanov, A. I. Kovrigin, A. S. Piskarskas, V. V. Fadeev, and R. V. Khokhlov, “Observation of parametric amplification in the optical range,” J. Exp. Theor. Phys. 2, 191–193 (1965).

1964 (1)

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

Abdolvand, A.

Agrawal, G. P.

A. Antikainen, L. Rishøj, B. Tai, S. Ramachandran, and G. P. Agrawal, “Fate of a soliton in a high order spatial mode of a multimode fiber,” Phys. Rev. Lett. 122, 023901 (2019).
[Crossref]

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102, 201107 (2013).
[Crossref]

A. Antikainen, B. Tai, L. Rishøj, S. Ramachandran, and G. P. Agrawal, “Intermodal Raman scattering of ultrashort pulses in multimode fibers,” in Conference on Lasers and Electro-Optics (CLEO) (2018), paper FTh4E.3.

Akhmanov, S. A.

S. A. Akhmanov, A. I. Kovrigin, A. S. Piskarskas, V. V. Fadeev, and R. V. Khokhlov, “Observation of parametric amplification in the optical range,” J. Exp. Theor. Phys. 2, 191–193 (1965).

Antikainen, A.

A. Antikainen, L. Rishøj, B. Tai, S. Ramachandran, and G. P. Agrawal, “Fate of a soliton in a high order spatial mode of a multimode fiber,” Phys. Rev. Lett. 122, 023901 (2019).
[Crossref]

A. Antikainen, B. Tai, L. Rishøj, S. Ramachandran, and G. P. Agrawal, “Intermodal Raman scattering of ultrashort pulses in multimode fibers,” in Conference on Lasers and Electro-Optics (CLEO) (2018), paper FTh4E.3.

Bendahmane, A.

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Buckley, J.

Chandalia, J. K.

Chiang, K. S.

Chiao, R. Y.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

Chong, A.

Christodoulides, D. N.

L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Opt. Express 23, 3492–3506 (2015).
[Crossref]

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9, 306–310 (2015).
[Crossref]

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Couderc, V.

DeMaria, A. J.

A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176 (1966).
[Crossref]

Demas, J.

J. Demas, L. Rishøj, and S. Ramachandran, “Free-space beam shaping for precise control and conversion of modes in optical fiber,” Opt. Express 23, 28531–28545 (2015).
[Crossref]

L. Rishoj, G. Prabhakar, J. Demas, and S. Ramachandran, “30  nJ, ∼50  fs all-fiber source at 1300 nm using soliton shifting in LMA HOM fiber,” in Conference on Lasers and Electro-Optics (CLEO) (2016), paper STh3O.3.

DeSantolo, A. M.

DiGiovanni, D. J.

DiMarcello, F.

Dimarcello, F. V.

Dudley, J. M.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref]

Dupiol, R.

Eggleton, B. J.

Fabert, M.

Fadeev, V. V.

S. A. Akhmanov, A. I. Kovrigin, A. S. Piskarskas, V. V. Fadeev, and R. V. Khokhlov, “Observation of parametric amplification in the optical range,” J. Exp. Theor. Phys. 2, 191–193 (1965).

Fahrbach, F. O.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[Crossref]

Feder, K.

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref]

Fini, J. M.

J. W. Nicholson, J. M. Fini, A. M. DeSantolo, X. Liu, K. Feder, P. S. Westbrook, V. R. Supradeepa, E. Monberg, F. DiMarcello, R. Ortiz, C. Headley, and D. J. DiGiovanni, “Scaling the effective area of higher-order-mode erbium-doped fiber amplifiers,” Opt. Express 20, 24575–24584 (2012).
[Crossref]

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2, 429–448 (2008).
[Crossref]

Garmire, E.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

Ghalmi, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2, 429–448 (2008).
[Crossref]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31, 1797–1799 (2006).
[Crossref]

Giordmaine, J. A.

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. Lett. 14, 973–976 (1965).
[Crossref]

Gordon, J. P.

Goto, M.

Guenard, R.

Harvey, J. D.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref]

Hasegawa, A.

Headley, C.

Hell, S. W.

S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153–1158 (2007).
[Crossref]

Heynau, H.

A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176 (1966).
[Crossref]

Horton, N. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Ippen, E. P.

R. H. Stolen, E. P. Ippen, and A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62–64 (1972).
[Crossref]

Khokhlov, R. V.

S. A. Akhmanov, A. I. Kovrigin, A. S. Piskarskas, V. V. Fadeev, and R. V. Khokhlov, “Observation of parametric amplification in the optical range,” J. Exp. Theor. Phys. 2, 191–193 (1965).

Knox, W. H.

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Kosinski, S. G.

Kovrigin, A. I.

S. A. Akhmanov, A. I. Kovrigin, A. S. Piskarskas, V. V. Fadeev, and R. V. Khokhlov, “Observation of parametric amplification in the optical range,” J. Exp. Theor. Phys. 2, 191–193 (1965).

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

L. Rishoj, B. Tai, P. Kristensen, and S. Ramachandran, “High power spatially coherent pulse formation via intermodal soliton interactions in fiber,” in Advanced solid-state lasers (ASSL) (2016), paper ATh1A.6.

L. Rishoj, B. Tai, P. Kristensen, and S. Ramachandran, “Characterization of intermodal group index matched soliton interactions leading to MW peak powers at 1300  nm,” in Conference on Lasers and Electro-Optics (CLEO) (2017), paper STh3K.2.

Kruglov, V. I.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref]

Krupa, K.

Leproux, P.

Liu, X.

Louot, C.

Mafi, A.

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102, 201107 (2013).
[Crossref]

Menyuk, C. R.

Mermelstein, M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2, 429–448 (2008).
[Crossref]

Miller, R. C.

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. Lett. 14, 973–976 (1965).
[Crossref]

Millot, G.

Mitschke, F. M.

Mollenauer, L. F.

Monberg, E.

Nicholson, J. W.

Nishizawa, N.

Ortiz, R.

Pagnoux, D.

Piskarskas, A. S.

S. A. Akhmanov, A. I. Kovrigin, A. S. Piskarskas, V. V. Fadeev, and R. V. Khokhlov, “Observation of parametric amplification in the optical range,” J. Exp. Theor. Phys. 2, 191–193 (1965).

Pourbeyram, H.

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102, 201107 (2013).
[Crossref]

Prabhakar, G.

L. Rishoj, G. Prabhakar, J. Demas, and S. Ramachandran, “30  nJ, ∼50  fs all-fiber source at 1300 nm using soliton shifting in LMA HOM fiber,” in Conference on Lasers and Electro-Optics (CLEO) (2016), paper STh3O.3.

Ramachandran, S.

A. Antikainen, L. Rishøj, B. Tai, S. Ramachandran, and G. P. Agrawal, “Fate of a soliton in a high order spatial mode of a multimode fiber,” Phys. Rev. Lett. 122, 023901 (2019).
[Crossref]

J. Demas, L. Rishøj, and S. Ramachandran, “Free-space beam shaping for precise control and conversion of modes in optical fiber,” Opt. Express 23, 28531–28545 (2015).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

P. Steinvurzel, K. Tantiwanichapan, M. Goto, and S. Ramachandran, “Fiber-based Bessel beams with controllable diffraction-resistant distance,” Opt. Lett. 36, 4671–4673 (2011).
[Crossref]

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2, 429–448 (2008).
[Crossref]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31, 1797–1799 (2006).
[Crossref]

L. Rishoj, G. Prabhakar, J. Demas, and S. Ramachandran, “30  nJ, ∼50  fs all-fiber source at 1300 nm using soliton shifting in LMA HOM fiber,” in Conference on Lasers and Electro-Optics (CLEO) (2016), paper STh3O.3.

L. Rishoj, B. Tai, P. Kristensen, and S. Ramachandran, “Characterization of intermodal group index matched soliton interactions leading to MW peak powers at 1300  nm,” in Conference on Lasers and Electro-Optics (CLEO) (2017), paper STh3K.2.

B. Tai, L. Rishøj, and S. Ramachandran, “Ultrafast, high energy, wideband wavelength conversion via continuous intra-pulse and discrete intermodal Raman scattering,” in Conference on Lasers and Electro-Optics (CLEO) (2018), paper SM1K.1.

A. Antikainen, B. Tai, L. Rishøj, S. Ramachandran, and G. P. Agrawal, “Intermodal Raman scattering of ultrashort pulses in multimode fibers,” in Conference on Lasers and Electro-Optics (CLEO) (2018), paper FTh4E.3.

L. Rishoj, B. Tai, P. Kristensen, and S. Ramachandran, “High power spatially coherent pulse formation via intermodal soliton interactions in fiber,” in Advanced solid-state lasers (ASSL) (2016), paper ATh1A.6.

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Renninger, W.

Renninger, W. H.

Rishoj, L.

L. Rishoj, B. Tai, P. Kristensen, and S. Ramachandran, “High power spatially coherent pulse formation via intermodal soliton interactions in fiber,” in Advanced solid-state lasers (ASSL) (2016), paper ATh1A.6.

L. Rishoj, B. Tai, P. Kristensen, and S. Ramachandran, “Characterization of intermodal group index matched soliton interactions leading to MW peak powers at 1300  nm,” in Conference on Lasers and Electro-Optics (CLEO) (2017), paper STh3K.2.

L. Rishoj, G. Prabhakar, J. Demas, and S. Ramachandran, “30  nJ, ∼50  fs all-fiber source at 1300 nm using soliton shifting in LMA HOM fiber,” in Conference on Lasers and Electro-Optics (CLEO) (2016), paper STh3O.3.

Rishøj, L.

A. Antikainen, L. Rishøj, B. Tai, S. Ramachandran, and G. P. Agrawal, “Fate of a soliton in a high order spatial mode of a multimode fiber,” Phys. Rev. Lett. 122, 023901 (2019).
[Crossref]

J. Demas, L. Rishøj, and S. Ramachandran, “Free-space beam shaping for precise control and conversion of modes in optical fiber,” Opt. Express 23, 28531–28545 (2015).
[Crossref]

B. Tai, L. Rishøj, and S. Ramachandran, “Ultrafast, high energy, wideband wavelength conversion via continuous intra-pulse and discrete intermodal Raman scattering,” in Conference on Lasers and Electro-Optics (CLEO) (2018), paper SM1K.1.

A. Antikainen, B. Tai, L. Rishøj, S. Ramachandran, and G. P. Agrawal, “Intermodal Raman scattering of ultrashort pulses in multimode fibers,” in Conference on Lasers and Electro-Optics (CLEO) (2018), paper FTh4E.3.

Rohrbach, A.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[Crossref]

Russell, P. St. J.

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Shalaby, B. M.

Simon, P.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[Crossref]

Steinvurzel, P.

Stetser, D. A.

A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176 (1966).
[Crossref]

Stolen, R. H.

R. H. Stolen, E. P. Ippen, and A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62–64 (1972).
[Crossref]

Supradeepa, V. R.

Tai, B.

A. Antikainen, L. Rishøj, B. Tai, S. Ramachandran, and G. P. Agrawal, “Fate of a soliton in a high order spatial mode of a multimode fiber,” Phys. Rev. Lett. 122, 023901 (2019).
[Crossref]

L. Rishoj, B. Tai, P. Kristensen, and S. Ramachandran, “High power spatially coherent pulse formation via intermodal soliton interactions in fiber,” in Advanced solid-state lasers (ASSL) (2016), paper ATh1A.6.

A. Antikainen, B. Tai, L. Rishøj, S. Ramachandran, and G. P. Agrawal, “Intermodal Raman scattering of ultrashort pulses in multimode fibers,” in Conference on Lasers and Electro-Optics (CLEO) (2018), paper FTh4E.3.

L. Rishoj, B. Tai, P. Kristensen, and S. Ramachandran, “Characterization of intermodal group index matched soliton interactions leading to MW peak powers at 1300  nm,” in Conference on Lasers and Electro-Optics (CLEO) (2017), paper STh3K.2.

B. Tai, L. Rishøj, and S. Ramachandran, “Ultrafast, high energy, wideband wavelength conversion via continuous intra-pulse and discrete intermodal Raman scattering,” in Conference on Lasers and Electro-Optics (CLEO) (2018), paper SM1K.1.

Tantiwanichapan, K.

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref]

Tonello, A.

Toshio, G.

Townes, C. H.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Tynes, A. R.

R. H. Stolen, E. P. Ippen, and A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62–64 (1972).
[Crossref]

Vahala, K.

Q. F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Phys. 13, 53–57 (2016).
[Crossref]

Wabnitz, S.

Walser, A. M.

Wang, K.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Westbrook, P. S.

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Windeler, R. S.

Wise, F.

Wise, F. W.

L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Opt. Express 23, 3492–3506 (2015).
[Crossref]

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9, 306–310 (2015).
[Crossref]

W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4, 1719 (2013).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Wisk, P.

Wright, L. G.

L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Opt. Express 23, 3492–3506 (2015).
[Crossref]

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9, 306–310 (2015).
[Crossref]

Xu, C.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
[Crossref]

Yan, M. F.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2, 429–448 (2008).
[Crossref]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31, 1797–1799 (2006).
[Crossref]

Yang, K. Y.

Q. F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Phys. 13, 53–57 (2016).
[Crossref]

Yang, Q. F.

Q. F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Phys. 13, 53–57 (2016).
[Crossref]

Yi, X.

Q. F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Phys. 13, 53–57 (2016).
[Crossref]

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Ziemienczuk, M.

Appl. Phys. Lett. (3)

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102, 201107 (2013).
[Crossref]

R. H. Stolen, E. P. Ippen, and A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62–64 (1972).
[Crossref]

A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176 (1966).
[Crossref]

J. Exp. Theor. Phys. (1)

S. A. Akhmanov, A. I. Kovrigin, A. S. Piskarskas, V. V. Fadeev, and R. V. Khokhlov, “Observation of parametric amplification in the optical range,” J. Exp. Theor. Phys. 2, 191–193 (1965).

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2, 429–448 (2008).
[Crossref]

Nat. Commun. (1)

W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4, 1719 (2013).
[Crossref]

Nat. Photonics (3)

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9, 306–310 (2015).
[Crossref]

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Nat. Phys. (1)

Q. F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Phys. 13, 53–57 (2016).
[Crossref]

Opt. Express (5)

Opt. Lett. (9)

K. S. Chiang, “Stimulated Raman scattering in a multimode optical fiber: evolution of modes in Stokes waves,” Opt. Lett. 17, 352–354 (1992).
[Crossref]

A. Hasegawa, “Self-confinement of multimode optical pulse in a glass fiber,” Opt. Lett. 5, 416–417 (1980).
[Crossref]

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
[Crossref]

K. Krupa, C. Louot, V. Couderc, M. Fabert, R. Guenard, B. M. Shalaby, A. Tonello, D. Pagnoux, P. Leproux, A. Bendahmane, R. Dupiol, G. Millot, and S. Wabnitz, “Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber,” Opt. Lett. 41, 5785–5788 (2016).
[Crossref]

F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
[Crossref]

C. R. Menyuk, “Stability of solitons in birefringent optical fibers. I: Equal propagation amplitudes,” Opt. Lett. 12, 614–616 (1987).
[Crossref]

P. Steinvurzel, K. Tantiwanichapan, M. Goto, and S. Ramachandran, “Fiber-based Bessel beams with controllable diffraction-resistant distance,” Opt. Lett. 36, 4671–4673 (2011).
[Crossref]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31, 1797–1799 (2006).
[Crossref]

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
[Crossref]

Phys. Rev. Lett. (4)

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. Lett. 14, 973–976 (1965).
[Crossref]

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref]

A. Antikainen, L. Rishøj, B. Tai, S. Ramachandran, and G. P. Agrawal, “Fate of a soliton in a high order spatial mode of a multimode fiber,” Phys. Rev. Lett. 122, 023901 (2019).
[Crossref]

Science (2)

S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153–1158 (2007).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Other (5)

L. Rishoj, B. Tai, P. Kristensen, and S. Ramachandran, “High power spatially coherent pulse formation via intermodal soliton interactions in fiber,” in Advanced solid-state lasers (ASSL) (2016), paper ATh1A.6.

L. Rishoj, G. Prabhakar, J. Demas, and S. Ramachandran, “30  nJ, ∼50  fs all-fiber source at 1300 nm using soliton shifting in LMA HOM fiber,” in Conference on Lasers and Electro-Optics (CLEO) (2016), paper STh3O.3.

B. Tai, L. Rishøj, and S. Ramachandran, “Ultrafast, high energy, wideband wavelength conversion via continuous intra-pulse and discrete intermodal Raman scattering,” in Conference on Lasers and Electro-Optics (CLEO) (2018), paper SM1K.1.

L. Rishoj, B. Tai, P. Kristensen, and S. Ramachandran, “Characterization of intermodal group index matched soliton interactions leading to MW peak powers at 1300  nm,” in Conference on Lasers and Electro-Optics (CLEO) (2017), paper STh3K.2.

A. Antikainen, B. Tai, L. Rishøj, S. Ramachandran, and G. P. Agrawal, “Intermodal Raman scattering of ultrashort pulses in multimode fibers,” in Conference on Lasers and Electro-Optics (CLEO) (2018), paper FTh4E.3.

Supplementary Material (1)

NameDescription
» Supplement 1       Supplementary material

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic illustration of pulse evolution along a fiber via soliton self-mode conversion (SSMC). The red and green colored pulses denote different spatial modes, and the dashed black line marks the center wavelength of the input pulse. As the input soliton pulse (red) propagates along the fiber, it generates a new pulse (green) via Raman scattering in a different spatial mode that is group-index matched to the original pulse. Further propagation completely depletes the original pulse, resulting in transfer of power from one mode to another via this self-organized nonlinearity. (b) Schematic of the experimental setup. (c) Experimental image of the LP0,21 mode and (d) LP0,20 mode. (e) Experiment demonstrating the SSMC process. Energy transfer occurs between two group-index-matched modes, the spectral components in the red and green shaded boxes are in the LP0,21 and LP0,20 modes, respectively. (f) Group index as a function of wavelength for the two modes; black dashed line indicates the Raman gain coefficient. This illustrates that SSMC is the preferred nonlinear phenomenon when group-index-matched spectral separation matches with the Stokes shift of Raman scattering.
Fig. 2.
Fig. 2. (a) Spectra as a function of fiber length; the launched pulse at 1045 nm is in the LP0,19 mode. (b)–(f) Representative mode images taken using 10-nm bandpass filters of various spectral features.
Fig. 3.
Fig. 3. (a) Pulse energies for the pulse in the LP0,21 mode (red crosses) and the SSMC pulse in the LP0,20 mode (green circles) as a function of relative pump power. Linear fits to the various slopes are provided on the plot. The insets are autocorrelation data for four selected pulses. (b) Soliton number normalized with respect to the pulse at the lowest pump power.
Fig. 4.
Fig. 4. (a) Experimental setup for mode re-conversion. (b) Image of the LP0,20 output mode. (c) Gaussian-like beam re-converted using axicon after spatial filtering. (d) Linecut of re-converted beam and corresponding Gaussian fit indicating the high spatial coherence of modes obtained via SSMC.