Abstract

Scattering of a coherent ultrashort pulse of light by a disordered medium results in a complex spatiotemporal speckle pattern. The form of the pattern can be described by knowledge of a spectrally dependent transmission matrix, which can in turn be used to shape the propagation of the pulse through the medium. We introduce a method for rapid measurement of this matrix for the entire spectrum of the pulse based on a hyperspectral imaging system that is close to 2 orders of magnitude faster than any approach previously reported. We demonstrate narrowband as well as spatiotemporal refocusing of a femtosecond pulse temporally stretched to several picoseconds after propagation through a multiply scattering medium. This enables new routes for multiphoton imaging and manipulation through complex media.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Transmission matrix approaches for nonlinear fluorescence excitation through multiple scattering media

Mickael Mounaix, Duc Minh Ta, and Sylvain Gigan
Opt. Lett. 43(12) 2831-2834 (2018)

Optimization of wavelength selection for multispectral image acquisition: a case study of atrial ablation lesions

Huda Asfour, Shuyue Guan, Narine Muselimyan, Luther Swift, Murray Loew, and Narine Sarvazyan
Biomed. Opt. Express 9(5) 2189-2204 (2018)

Temporal recompression through a scattering medium via a broadband transmission matrix

Mickael Mounaix, Hilton B. de Aguiar, and Sylvain Gigan
Optica 4(10) 1289-1292 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Rotter and S. Gigan, “Light fields in complex media: mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89, 015005 (2017).
    [Crossref]
  2. J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
    [Crossref]
  3. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011).
    [Crossref]
  4. M. Mounaix, D. M. Ta, and S. Gigan, “Transmission matrix approaches for nonlinear fluorescence excitation through multiple scattering media,” Opt. Lett. 43, 2831–2834 (2018).
    [Crossref]
  5. Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
    [Crossref]
  6. D. Akbulut, T. Strudley, J. Bertolotti, E. P. Bakkers, A. Lagendijk, O. L. Muskens, W. L. Vos, and A. P. Mosk, “Optical transmission matrix as a probe of the photonic strength,” Phys. Rev. A 94, 043817 (2016).
    [Crossref]
  7. S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
    [Crossref]
  8. A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques,” Opt. Express 23, 11898–11911 (2015).
    [Crossref]
  9. D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5, 10347 (2015).
    [Crossref]
  10. J. Aulbach, A. Tourin, and A. Lagendijk, Spatiotemporal Control of Light in Turbid Media (Universiteit of Twente, 2013).
  11. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, 2007).
  12. M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix,” Phys. Rev. Lett. 116, 253901 (2016).
    [Crossref]
  13. M. Mounaix, H. Defienne, and S. Gigan, “Deterministic light focusing in space and time through multiple scattering media with a time-resolved transmission matrix approach,” Phys. Rev. A 94, 041802 (2016).
    [Crossref]
  14. M. Plöschner, B. Straka, K. Dholakia, and T. Čižmár, “GPU accelerated toolbox for real-time beam-shaping in multimode fibres,” Opt. Express 22, 2933–2947 (2014).
    [Crossref]
  15. N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
    [Crossref]
  16. R. Shogenji, Y. Kitamura, K. Yamada, S. Miyatake, and J. Tanida, “Multispectral imaging using compact compound optics,” Opt. Express 12, 1643–1655 (2004).
    [Crossref]
  17. L. Gao, N. Bedard, N. Hagen, R. T. Kester, and T. S. Tkaczyk, “Depth-resolved image mapping spectrometer (IMS) with structured illumination,” Opt. Express 19, 17439–17452 (2011).
    [Crossref]
  18. R. Content, S. Morris, and M. Dubbeldam, “Microslices and low cost spectrographs for million element integral field spectroscopy,” Proc. SPIE 4842, 174–182 (2003).
    [Crossref]
  19. S. K. Sahoo, D. Tang, and C. Dang, “Single-shot multispectral imaging with a monochromatic camera,” Optica 4, 1209–1213 (2017).
    [Crossref]
  20. G. Courtès, “An integral field spectrograph (IFS) for large telescopes,” in Instrumentation for Astronomy with Large Optical Telescopes, C. Humphries, ed. (D. Reidel, 1982), pp. 123–128.
  21. A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV, S. S. Shen and P. E. Lewis, eds. (2009), paper 73340H.
  22. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [Crossref]
  23. F. Van Beijnum, E. G. Van Putten, A. Lagendijk, and A. P. Mosk, “Frequency bandwidth of light focused through turbid media,” Opt. Lett. 36, 373–375 (2011).
    [Crossref]
  24. B. Shapiro, “Large intensity fluctuations for wave propagation in random media,” Phys. Rev. Lett. 57, 2168–2171 (1986).
    [Crossref]
  25. I. M. Vellekoop and A. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [Crossref]
  26. N. Curry, P. Bondareff, M. Leclercq, N. F. Van Hulst, R. Sapienza, S. Gigan, and S. Grésillon, “Direct determination of diffusion properties of random media from speckle contrast,” Opt. Lett. 36, 3332–3334 (2011).
    [Crossref]
  27. I. M. Vellekoop and A. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).
    [Crossref]
  28. H. Ylmaz, W. L. Vos, and A. P. Mosk, “Optimal control of light propagation through multiple-scattering media in the presence of noise,” Biomed. Opt. Express 4, 1759–1768 (2013).
    [Crossref]
  29. A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
    [Crossref]
  30. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
    [Crossref]
  31. S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light Sci. Appl. 7, 92 (2018).
    [Crossref]
  32. A. M. Caravaca-Aguirre and R. Piestun, “Single multimode fiber endoscope,” Opt. Express 25, 1656–1665 (2017).
    [Crossref]
  33. I. Gusachenko, J. Nylk, J. A. Tello, and K. Dholakia, “Multimode fibre based imaging for optically cleared samples,” Biomed. Opt. Express 8, 5179–5190 (2017).
    [Crossref]
  34. E. E. Morales-Delgado, D. Psaltis, and C. Moser, “Two-photon imaging through a multimode fiber,” Opt. Express 23, 32158–32170 (2015).
    [Crossref]
  35. I. Gusachenko, M. Chen, and K. Dholakia, “Raman imaging through a single multimode fibre,” Opt. Express 25, 13782–13798 (2017).
    [Crossref]
  36. R. Y. Gu, R. N. Mahalati, and J. M. Kahn, “Design of flexible multi-mode fiber endoscope,” Opt. Express 23, 26905–26918 (2015).
    [Crossref]

2018 (2)

M. Mounaix, D. M. Ta, and S. Gigan, “Transmission matrix approaches for nonlinear fluorescence excitation through multiple scattering media,” Opt. Lett. 43, 2831–2834 (2018).
[Crossref]

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light Sci. Appl. 7, 92 (2018).
[Crossref]

2017 (5)

2016 (3)

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix,” Phys. Rev. Lett. 116, 253901 (2016).
[Crossref]

M. Mounaix, H. Defienne, and S. Gigan, “Deterministic light focusing in space and time through multiple scattering media with a time-resolved transmission matrix approach,” Phys. Rev. A 94, 041802 (2016).
[Crossref]

D. Akbulut, T. Strudley, J. Bertolotti, E. P. Bakkers, A. Lagendijk, O. L. Muskens, W. L. Vos, and A. P. Mosk, “Optical transmission matrix as a probe of the photonic strength,” Phys. Rev. A 94, 043817 (2016).
[Crossref]

2015 (4)

2014 (1)

2013 (2)

2012 (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

2011 (6)

F. Van Beijnum, E. G. Van Putten, A. Lagendijk, and A. P. Mosk, “Frequency bandwidth of light focused through turbid media,” Opt. Lett. 36, 373–375 (2011).
[Crossref]

N. Curry, P. Bondareff, M. Leclercq, N. F. Van Hulst, R. Sapienza, S. Gigan, and S. Grésillon, “Direct determination of diffusion properties of random media from speckle contrast,” Opt. Lett. 36, 3332–3334 (2011).
[Crossref]

L. Gao, N. Bedard, N. Hagen, R. T. Kester, and T. S. Tkaczyk, “Depth-resolved image mapping spectrometer (IMS) with structured illumination,” Opt. Express 19, 17439–17452 (2011).
[Crossref]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
[Crossref]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011).
[Crossref]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

2010 (2)

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[Crossref]

2008 (1)

I. M. Vellekoop and A. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).
[Crossref]

2007 (1)

2004 (1)

2003 (1)

R. Content, S. Morris, and M. Dubbeldam, “Microslices and low cost spectrographs for million element integral field spectroscopy,” Proc. SPIE 4842, 174–182 (2003).
[Crossref]

1989 (1)

1986 (1)

B. Shapiro, “Large intensity fluctuations for wave propagation in random media,” Phys. Rev. Lett. 57, 2168–2171 (1986).
[Crossref]

Akbulut, D.

D. Akbulut, T. Strudley, J. Bertolotti, E. P. Bakkers, A. Lagendijk, O. L. Muskens, W. L. Vos, and A. P. Mosk, “Optical transmission matrix as a probe of the photonic strength,” Phys. Rev. A 94, 043817 (2016).
[Crossref]

Altwegg-Boussac, T.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light Sci. Appl. 7, 92 (2018).
[Crossref]

Andreoli, D.

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix,” Phys. Rev. Lett. 116, 253901 (2016).
[Crossref]

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5, 10347 (2015).
[Crossref]

Aulbach, J.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
[Crossref]

J. Aulbach, A. Tourin, and A. Lagendijk, Spatiotemporal Control of Light in Turbid Media (Universiteit of Twente, 2013).

Bakkers, E. P.

D. Akbulut, T. Strudley, J. Bertolotti, E. P. Bakkers, A. Lagendijk, O. L. Muskens, W. L. Vos, and A. P. Mosk, “Optical transmission matrix as a probe of the photonic strength,” Phys. Rev. A 94, 043817 (2016).
[Crossref]

Beaven, S.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV, S. S. Shen and P. E. Lewis, eds. (2009), paper 73340H.

Bedard, N.

Bertolotti, J.

D. Akbulut, T. Strudley, J. Bertolotti, E. P. Bakkers, A. Lagendijk, O. L. Muskens, W. L. Vos, and A. P. Mosk, “Optical transmission matrix as a probe of the photonic strength,” Phys. Rev. A 94, 043817 (2016).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Boccara, A.

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Bodkin, A.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV, S. S. Shen and P. E. Lewis, eds. (2009), paper 73340H.

Bondareff, P.

Bromberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011).
[Crossref]

Caravaca-Aguirre, A. M.

Carminati, R.

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Chance, B.

Chatel, B.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[Crossref]

Chen, M.

Choi, W.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Choi, Y.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Cižmár, T.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light Sci. Appl. 7, 92 (2018).
[Crossref]

M. Plöschner, B. Straka, K. Dholakia, and T. Čižmár, “GPU accelerated toolbox for real-time beam-shaping in multimode fibres,” Opt. Express 22, 2933–2947 (2014).
[Crossref]

Content, R.

R. Content, S. Morris, and M. Dubbeldam, “Microslices and low cost spectrographs for million element integral field spectroscopy,” Proc. SPIE 4842, 174–182 (2003).
[Crossref]

Courtès, G.

G. Courtès, “An integral field spectrograph (IFS) for large telescopes,” in Instrumentation for Astronomy with Large Optical Telescopes, C. Humphries, ed. (D. Reidel, 1982), pp. 123–128.

Curry, N.

Daly, J.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV, S. S. Shen and P. E. Lewis, eds. (2009), paper 73340H.

Dang, C.

Dasari, R. R.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Daudet, L.

Defienne, H.

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix,” Phys. Rev. Lett. 116, 253901 (2016).
[Crossref]

M. Mounaix, H. Defienne, and S. Gigan, “Deterministic light focusing in space and time through multiple scattering media with a time-resolved transmission matrix approach,” Phys. Rev. A 94, 041802 (2016).
[Crossref]

Dholakia, K.

Drémeau, A.

Dubbeldam, M.

R. Content, S. Morris, and M. Dubbeldam, “Microslices and low cost spectrographs for million element integral field spectroscopy,” Proc. SPIE 4842, 174–182 (2003).
[Crossref]

Fang-Yen, C.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Feld, M. S.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Fink, M.

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Gao, L.

Gigan, S.

M. Mounaix, D. M. Ta, and S. Gigan, “Transmission matrix approaches for nonlinear fluorescence excitation through multiple scattering media,” Opt. Lett. 43, 2831–2834 (2018).
[Crossref]

S. Rotter and S. Gigan, “Light fields in complex media: mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89, 015005 (2017).
[Crossref]

M. Mounaix, H. Defienne, and S. Gigan, “Deterministic light focusing in space and time through multiple scattering media with a time-resolved transmission matrix approach,” Phys. Rev. A 94, 041802 (2016).
[Crossref]

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix,” Phys. Rev. Lett. 116, 253901 (2016).
[Crossref]

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5, 10347 (2015).
[Crossref]

A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques,” Opt. Express 23, 11898–11911 (2015).
[Crossref]

N. Curry, P. Bondareff, M. Leclercq, N. F. Van Hulst, R. Sapienza, S. Gigan, and S. Grésillon, “Direct determination of diffusion properties of random media from speckle contrast,” Opt. Lett. 36, 3332–3334 (2011).
[Crossref]

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Gjonaj, B.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
[Crossref]

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, 2007).

Grésillon, S.

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix,” Phys. Rev. Lett. 116, 253901 (2016).
[Crossref]

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5, 10347 (2015).
[Crossref]

N. Curry, P. Bondareff, M. Leclercq, N. F. Van Hulst, R. Sapienza, S. Gigan, and S. Grésillon, “Direct determination of diffusion properties of random media from speckle contrast,” Opt. Lett. 36, 3332–3334 (2011).
[Crossref]

Gu, R. Y.

Gusachenko, I.

Hagen, N.

Johnson, P. M.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
[Crossref]

Kahn, J. M.

Kang, P.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Katz, O.

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix,” Phys. Rev. Lett. 116, 253901 (2016).
[Crossref]

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5, 10347 (2015).
[Crossref]

A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques,” Opt. Express 23, 11898–11911 (2015).
[Crossref]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011).
[Crossref]

Kester, R. T.

Kitamura, Y.

Krzakala, F.

Kudenov, M. W.

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
[Crossref]

Lagendijk, A.

D. Akbulut, T. Strudley, J. Bertolotti, E. P. Bakkers, A. Lagendijk, O. L. Muskens, W. L. Vos, and A. P. Mosk, “Optical transmission matrix as a probe of the photonic strength,” Phys. Rev. A 94, 043817 (2016).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

F. Van Beijnum, E. G. Van Putten, A. Lagendijk, and A. P. Mosk, “Frequency bandwidth of light focused through turbid media,” Opt. Lett. 36, 373–375 (2011).
[Crossref]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
[Crossref]

J. Aulbach, A. Tourin, and A. Lagendijk, Spatiotemporal Control of Light in Turbid Media (Universiteit of Twente, 2013).

Leclercq, M.

Lee, K. J.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Leite, I. T.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light Sci. Appl. 7, 92 (2018).
[Crossref]

Lerosey, G.

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Liutkus, A.

Mahalati, R. N.

Martina, D.

Miyatake, S.

Monmayrant, A.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[Crossref]

Morales-Delgado, E. E.

Morris, S.

R. Content, S. Morris, and M. Dubbeldam, “Microslices and low cost spectrographs for million element integral field spectroscopy,” Proc. SPIE 4842, 174–182 (2003).
[Crossref]

Moser, C.

Mosk, A.

I. M. Vellekoop and A. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).
[Crossref]

I. M. Vellekoop and A. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[Crossref]

Mosk, A. P.

D. Akbulut, T. Strudley, J. Bertolotti, E. P. Bakkers, A. Lagendijk, O. L. Muskens, W. L. Vos, and A. P. Mosk, “Optical transmission matrix as a probe of the photonic strength,” Phys. Rev. A 94, 043817 (2016).
[Crossref]

H. Ylmaz, W. L. Vos, and A. P. Mosk, “Optimal control of light propagation through multiple-scattering media in the presence of noise,” Biomed. Opt. Express 4, 1759–1768 (2013).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

F. Van Beijnum, E. G. Van Putten, A. Lagendijk, and A. P. Mosk, “Frequency bandwidth of light focused through turbid media,” Opt. Lett. 36, 373–375 (2011).
[Crossref]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
[Crossref]

Mounaix, M.

M. Mounaix, D. M. Ta, and S. Gigan, “Transmission matrix approaches for nonlinear fluorescence excitation through multiple scattering media,” Opt. Lett. 43, 2831–2834 (2018).
[Crossref]

M. Mounaix, H. Defienne, and S. Gigan, “Deterministic light focusing in space and time through multiple scattering media with a time-resolved transmission matrix approach,” Phys. Rev. A 94, 041802 (2016).
[Crossref]

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix,” Phys. Rev. Lett. 116, 253901 (2016).
[Crossref]

Muskens, O. L.

D. Akbulut, T. Strudley, J. Bertolotti, E. P. Bakkers, A. Lagendijk, O. L. Muskens, W. L. Vos, and A. P. Mosk, “Optical transmission matrix as a probe of the photonic strength,” Phys. Rev. A 94, 043817 (2016).
[Crossref]

Norton, A.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV, S. S. Shen and P. E. Lewis, eds. (2009), paper 73340H.

Nylk, J.

Pakan, J. M. P.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light Sci. Appl. 7, 92 (2018).
[Crossref]

Patterson, M. S.

Piestun, R.

Plöschner, M.

Popoff, S.

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5, 10347 (2015).
[Crossref]

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Psaltis, D.

Rochefort, N. L.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light Sci. Appl. 7, 92 (2018).
[Crossref]

Rotter, S.

S. Rotter and S. Gigan, “Light fields in complex media: mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89, 015005 (2017).
[Crossref]

Sahoo, S. K.

Sapienza, R.

Schülke, C.

Shapiro, B.

B. Shapiro, “Large intensity fluctuations for wave propagation in random media,” Phys. Rev. Lett. 57, 2168–2171 (1986).
[Crossref]

Sheinis, A.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV, S. S. Shen and P. E. Lewis, eds. (2009), paper 73340H.

Shogenji, R.

Silberberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011).
[Crossref]

Small, E.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011).
[Crossref]

Straka, B.

Strudley, T.

D. Akbulut, T. Strudley, J. Bertolotti, E. P. Bakkers, A. Lagendijk, O. L. Muskens, W. L. Vos, and A. P. Mosk, “Optical transmission matrix as a probe of the photonic strength,” Phys. Rev. A 94, 043817 (2016).
[Crossref]

Ta, D. M.

Tang, D.

Tanida, J.

Tello, J. A.

Tkaczyk, T. S.

Tourin, A.

J. Aulbach, A. Tourin, and A. Lagendijk, Spatiotemporal Control of Light in Turbid Media (Universiteit of Twente, 2013).

Turtaev, S.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light Sci. Appl. 7, 92 (2018).
[Crossref]

Van Beijnum, F.

Van Hulst, N. F.

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

F. Van Beijnum, E. G. Van Putten, A. Lagendijk, and A. P. Mosk, “Frequency bandwidth of light focused through turbid media,” Opt. Lett. 36, 373–375 (2011).
[Crossref]

Vellekoop, I. M.

I. M. Vellekoop and A. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).
[Crossref]

I. M. Vellekoop and A. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[Crossref]

Volpe, G.

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix,” Phys. Rev. Lett. 116, 253901 (2016).
[Crossref]

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5, 10347 (2015).
[Crossref]

Vos, W. L.

D. Akbulut, T. Strudley, J. Bertolotti, E. P. Bakkers, A. Lagendijk, O. L. Muskens, W. L. Vos, and A. P. Mosk, “Optical transmission matrix as a probe of the photonic strength,” Phys. Rev. A 94, 043817 (2016).
[Crossref]

H. Ylmaz, W. L. Vos, and A. P. Mosk, “Optimal control of light propagation through multiple-scattering media in the presence of noise,” Biomed. Opt. Express 4, 1759–1768 (2013).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Weber, S.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[Crossref]

Weinheimer, J.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV, S. S. Shen and P. E. Lewis, eds. (2009), paper 73340H.

Wilson, B. C.

Yamada, K.

Yang, T. D.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Ylmaz, H.

Appl. Opt. (1)

Biomed. Opt. Express (2)

J. Phys. B (1)

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[Crossref]

Light Sci. Appl. (1)

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light Sci. Appl. 7, 92 (2018).
[Crossref]

Nat. Photonics (1)

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011).
[Crossref]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Opt. Commun. (1)

I. M. Vellekoop and A. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).
[Crossref]

Opt. Eng. (1)

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
[Crossref]

Opt. Express (8)

Opt. Lett. (4)

Optica (1)

Phys. Rev. A (2)

D. Akbulut, T. Strudley, J. Bertolotti, E. P. Bakkers, A. Lagendijk, O. L. Muskens, W. L. Vos, and A. P. Mosk, “Optical transmission matrix as a probe of the photonic strength,” Phys. Rev. A 94, 043817 (2016).
[Crossref]

M. Mounaix, H. Defienne, and S. Gigan, “Deterministic light focusing in space and time through multiple scattering media with a time-resolved transmission matrix approach,” Phys. Rev. A 94, 041802 (2016).
[Crossref]

Phys. Rev. Lett. (5)

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix,” Phys. Rev. Lett. 116, 253901 (2016).
[Crossref]

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
[Crossref]

B. Shapiro, “Large intensity fluctuations for wave propagation in random media,” Phys. Rev. Lett. 57, 2168–2171 (1986).
[Crossref]

Proc. SPIE (1)

R. Content, S. Morris, and M. Dubbeldam, “Microslices and low cost spectrographs for million element integral field spectroscopy,” Proc. SPIE 4842, 174–182 (2003).
[Crossref]

Rev. Mod. Phys. (1)

S. Rotter and S. Gigan, “Light fields in complex media: mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89, 015005 (2017).
[Crossref]

Sci. Rep. (1)

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5, 10347 (2015).
[Crossref]

Other (4)

J. Aulbach, A. Tourin, and A. Lagendijk, Spatiotemporal Control of Light in Turbid Media (Universiteit of Twente, 2013).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, 2007).

G. Courtès, “An integral field spectrograph (IFS) for large telescopes,” in Instrumentation for Astronomy with Large Optical Telescopes, C. Humphries, ed. (D. Reidel, 1982), pp. 123–128.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV, S. S. Shen and P. E. Lewis, eds. (2009), paper 73340H.

Supplementary Material (1)

NameDescription
» Supplement 1       ID 346381–This supplemental document gives more details on two important points of our main article: 1- Hyperspectral imaging calibration and 2- Temporal focusing

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Design of the “snapshot” hyperspectral imaging approach. (A) Diagram of the optical setup. MLA, microlens array; OL, objective lens; DG, diffraction grating; TL, tube lens; CAM, camera. (B) Spectra packing for (left) square and (right) hexagonal array.
Fig. 2.
Fig. 2. Experimental setup. A femtosecond Ti:Sapphire laser is expanded onto a phase-only spatial light modulator (SLM). The scattering medium is a thick (100μm) sample of ZnO particles, placed in between two microscope objectives. A delay line (DL) adjusts delay between reference beam and scattered light. The two beams recombine on the beam splitter (BS) and are imaged on CCD2 or onto the microlens array (MLA). Lens (L), half-wave plate (HPW), polarizer (P), polarized beam splitter (PBS), microscope objective (Obj.), tube lens (TL).
Fig. 3.
Fig. 3. Simultaneous spatiospectral focusing. (A) Spatial foci at different wavelengths measured on CCD1. (B) Spectral profiles of the corresponding foci (measured on CCD2–Lorentzian fit) (Δλfocus=1.30±0.05nm). Pulse spectrum measured with a spectrometer (HR4000, OceanOptics) is superimposed (Δλlaser=13.8nm). (C) Speckle correlation of the medium with δλm0.53nm, corresponding to Nλ26.
Fig. 4.
Fig. 4. Temporal focusing of the beam. (A) Temporal profiles of the amplitude of the speckle background and temporally refocused pulses for the medium with Nλ=25. Profiles are averaged over 10 different spatial positions. Over the three temporal envelopes FWHM for the field amplitude is estimated to Δt=287±8fs. For the intensity, the corresponding pulse width is Δt/2203fs (Gaussian shape). Inset: different spectral phase ramps’ relations applied to the spectral components. Slope of the ramp determines the pulse arrival delay time with respect to the pulse with a flat spectral phase. (B) Images of corresponding spatial foci on CAM1. The SBR is intrinsically linked with the arrival time of the scattered pulse, in accordance with the arrival time intensity distribution.
Fig. 5.
Fig. 5. Spatiotemporal focusing behind very thick media. (A) Intensity correlation curve that yields δλm=0.17nm. This corresponds to Nλ=80 spectral degrees of freedom. (B) Spectral profile of simultaneous spatiospectral focusing (measured on CCD2–Lorentzian fit) (Δλfocus=0.62±0.02nm). The pulse spectrum measured with a spectrometer is superimposed (Δλlaser=13.8nm). (C) Nλ spectral components of the pulse are focused with a flat spectral phase to achieve temporal recompression of the pulse to Δt=270fs in amplitude (averaged over 10 different spatial positions). For the intensity, the corresponding pulse width is Δt/2191fs (consistent with the incident pulse duration). Inset: best spatial focus.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ejin=l=1NλalEjin(λl)eiθl,

Metrics