J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref]
B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol./Hemat. 43, 33–56 (2002).
[Crossref]
M. Alaeian and H. R. B. Orlande, “Inverse photoacoustic technique for parameter and temperature estimation in tissues,” Heat Transf. Eng. 38, 1573–1594 (2017).
[Crossref]
C. A. Barkman, L. O. Almquist, T. Kirkhorn, and N. Holmer, “Thermotherapy: feasibility study using a single focussed ultrasound transducer,” Int. J. Hyperther. 15, 63–76 (1999).
[Crossref]
H. Odeen, S. Almquist, J. de Bever, D. A. Christensen, and D. L. Parker, “MR thermometry for focused ultrasound monitoring utilizing model predictive filtering and ultrasound beam modeling,” J. Ther. Ultrasound 4, 23 (2016).
[Crossref]
F. Orsi, P. Arnone, W. Chen, and L. Zhang, “High intensity focused ultrasound ablation: a new therapeutic option for solid tumors,” J. Cancer Res. Ther. 6, 414–420 (2010).
[Crossref]
V. Auboiroux, E. Dumont, L. Petrusca, M. Viallon, and R. Salomir, “An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy,” Phys. Med. Biol. 56, 3563–3582 (2011).
[Crossref]
R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
[Crossref]
S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey, and L. A. Crum, “Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound Med. Biol. 27, 33–42(2001).
[Crossref]
J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]
J. H. Barker, F. Hammersen, I. Bondar, E. Uhl, T. J. Galla, M. D. Menger, and K. Messmer, “The hairless mouse ear for in vivo studies of skin microcirculation,” Plast. Reconstr. Surg. 83, 948–959 (1989).
[Crossref]
C. A. Barkman, L. O. Almquist, T. Kirkhorn, and N. Holmer, “Thermotherapy: feasibility study using a single focussed ultrasound transducer,” Int. J. Hyperther. 15, 63–76 (1999).
[Crossref]
R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
[Crossref]
R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
[Crossref]
J. H. Barker, F. Hammersen, I. Bondar, E. Uhl, T. J. Galla, M. D. Menger, and K. Messmer, “The hairless mouse ear for in vivo studies of skin microcirculation,” Plast. Reconstr. Surg. 83, 948–959 (1989).
[Crossref]
R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
[Crossref]
L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]
M. Chen, J. Zhang, C. Cai, Y. Gao, and J. Luo, “Fast direct reconstruction strategy of dynamic fluorescence molecular tomography using graphics processing units,” J. Biomed. Opt. 21, 66010 (2016).
[Crossref]
L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
[Crossref]
M. Chen, J. Zhang, C. Cai, Y. Gao, and J. Luo, “Fast direct reconstruction strategy of dynamic fluorescence molecular tomography using graphics processing units,” J. Biomed. Opt. 21, 66010 (2016).
[Crossref]
F. Orsi, P. Arnone, W. Chen, and L. Zhang, “High intensity focused ultrasound ablation: a new therapeutic option for solid tumors,” J. Cancer Res. Ther. 6, 414–420 (2010).
[Crossref]
L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]
S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey, and L. A. Crum, “Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound Med. Biol. 27, 33–42(2001).
[Crossref]
M. A. Lewis, R. M. Staruch, and R. Chopra, “Thermometry and ablation monitoring with ultrasound,” Int. J. Hyperthermia 31, 163–181 (2015).
[Crossref]
H. Odeen, S. Almquist, J. de Bever, D. A. Christensen, and D. L. Parker, “MR thermometry for focused ultrasound monitoring utilizing model predictive filtering and ultrasound beam modeling,” J. Ther. Ultrasound 4, 23 (2016).
[Crossref]
Z. Hu, X. Y. Yang, Y. Liu, G. N. Sankin, E. C. Pua, M. A. Morse, H. K. Lyerly, T. M. Clay, and P. Zhong, “Investigation of HIFU-induced anti-tumor immunity in a murine tumor model,” J. Transl. Med. 5, 34 (2007).
[Crossref]
J. W. Valvano, J. R. Cochran, and K. R. Diller, “Thermal-conductivity and diffusivity of biomaterials measured with self-heated thermistors,” Int. J. Thermophys. 6, 301–311 (1985).
[Crossref]
E. V. Petrova, S. A. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. A. Oraevsky, “Temperature dependence of Grüneisen parameter in optically absorbing solutions measured by 2D optoacoustic imaging,” Proc. SPIE 8943, 89430S (2014).
[Crossref]
E. Petrova, S. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. Oraevsky, “Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions,” Opt. Express 21, 25077–25090 (2013).
[Crossref]
S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey, and L. A. Crum, “Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound Med. Biol. 27, 33–42(2001).
[Crossref]
R. Maassmoreno and C. A. Damianou, “Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part I. Analytical model,” J. Acoust. Soc. Am. 100, 2514–2521 (1996).
[Crossref]
H. Odeen, S. Almquist, J. de Bever, D. A. Christensen, and D. L. Parker, “MR thermometry for focused ultrasound monitoring utilizing model predictive filtering and ultrasound beam modeling,” J. Ther. Ultrasound 4, 23 (2016).
[Crossref]
O. Seror, M. Lepetit-Coiffe, B. Le Bail, B. D. de Senneville, H. Trillaud, C. Moonen, and B. Quesson, “Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo,” Eur. Radiology 18, 408–416 (2008).
[Crossref]
B. Quesson, J. A. de Zwart, and C. T. Moonen, “Magnetic resonance temperature imaging for guidance of thermotherapy,” J. Mag. Res. Imag. 12, 525–533 (2000).
[Crossref]
B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol./Hemat. 43, 33–56 (2002).
[Crossref]
S. DiGiulio, “FDA clears focused ultrasound system for prostate cancer treatment,” Oncology Times 37, 37 (2015).
[Crossref]
J. W. Valvano, J. R. Cochran, and K. R. Diller, “Thermal-conductivity and diffusivity of biomaterials measured with self-heated thermistors,” Int. J. Thermophys. 6, 301–311 (1985).
[Crossref]
Y. Lyu, Y. Fang, Q. Q. Miao, X. Zhen, D. Ding, and K. Y. Pu, “Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy,” ACS Nano 10, 4472–4481 (2016).
[Crossref]
F. Gao, X. Feng, R. Zhang, S. Liu, R. Ding, R. Kishor, and Y. Zheng, “Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging,” Sci. Rep. 7, 626 (2017).
[Crossref]
J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]
V. Auboiroux, E. Dumont, L. Petrusca, M. Viallon, and R. Salomir, “An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy,” Phys. Med. Biol. 56, 3563–3582 (2011).
[Crossref]
D. Liu and E. S. Ebbini, “Real-time 2-D temperature imaging using ultrasound,” IEEE Trans. Biomed. Eng. 57, 12–16 (2010).
[Crossref]
X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Laser Med. Sci. 23, 217–228 (2008).
[Crossref]
I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239, 129–135 (2006).
[Crossref]
X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Laser Med. Sci. 23, 217–228 (2008).
[Crossref]
I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239, 129–135 (2006).
[Crossref]
B. Wang, J. Su, A. Karpiouk, D. Yeager, and S. Emelianov, Intravascular Photoacoustic and Ultrasound Imaging: From Tissue Characterization to Molecular Imaging to Image-Guided Therapy (Springer, 2011).
J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref]
E. Petrova, A. Liopo, V. Nadvoretskiy, and S. Ermilov, “Imaging technique for real-time temperature monitoring during cryotherapy of lesions,” J. Biomed. Opt. 21, 116007 (2016).
[Crossref]
E. Petrova, S. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. Oraevsky, “Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions,” Opt. Express 21, 25077–25090 (2013).
[Crossref]
E. V. Petrova, M. Motamedi, A. A. Oraevsky, and S. A. Ermilov, “In vivo cryoablation of prostate tissue with temperature monitoring by optoacoustic imaging,” Proc. SPIE 9708, 97080G (2016).
[Crossref]
E. V. Petrova, A. Liopo, A. A. Oraevsky, and S. A. Ermilov, “Universal temperature-dependent normalized optoacoustic response of blood,” Proc. SPIE 9323, 93231Y (2015).
[Crossref]
E. V. Petrova, S. A. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. A. Oraevsky, “Temperature dependence of Grüneisen parameter in optically absorbing solutions measured by 2D optoacoustic imaging,” Proc. SPIE 8943, 89430S (2014).
[Crossref]
E. V. Petrova, A. A. Oraevsky, and S. A. Ermilov, “Red blood cell as a universal optoacoustic sensor for non-invasive temperature monitoring,” Appl. Phys. Lett. 105, 094103 (2014).
[Crossref]
M. Pramanik, T. N. Erpelding, L. Jankovic, and L. V. Wang, “Tissue temperature monitoring using thermoacoustic and photoacoustic techniques,” Proc. SPIE 7564, 75641Y (2010).
[Crossref]
R. O. Esenaliev, A. A. Oraevsky, K. V. Larin, I. V. Larina, and M. Motamedi, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D 38, 2633–2639 (1999).
[Crossref]
M. Falk and R. Issels, “Hyperthermia in oncology,” Int. J. Hyperther. 17, 1–18 (2001).
[Crossref]
C. Li, W. Zhang, W. Fan, J. Huang, F. Zhang, and P. Wu, “Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound,” Cancer 116, 3934–3942 (2010).
[Crossref]
X. L. Liang, L. Fang, X. D. Li, X. Zhang, and F. Wang, “Activatable near infrared dye conjugated hyaluronic acid based nanoparticles as a targeted theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal therapy,” Biomaterials 132, 72–84(2017).
[Crossref]
Y. Lyu, Y. Fang, Q. Q. Miao, X. Zhen, D. Ding, and K. Y. Pu, “Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy,” ACS Nano 10, 4472–4481 (2016).
[Crossref]
B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol./Hemat. 43, 33–56 (2002).
[Crossref]
F. Gao, X. Feng, R. Zhang, S. Liu, R. Ding, R. Kishor, and Y. Zheng, “Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging,” Sci. Rep. 7, 626 (2017).
[Crossref]
M. Fink, “Time-reversal acoustics,” J. Phys. Conf. Ser. 118, 012001 (2008).
[Crossref]
M. Fink, “Time reversal of ultrasonic fields. I. Basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 555–566 (1992).
[Crossref]
J. H. Barker, F. Hammersen, I. Bondar, E. Uhl, T. J. Galla, M. D. Menger, and K. Messmer, “The hairless mouse ear for in vivo studies of skin microcirculation,” Plast. Reconstr. Surg. 83, 948–959 (1989).
[Crossref]
F. Gao, X. Feng, R. Zhang, S. Liu, R. Ding, R. Kishor, and Y. Zheng, “Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging,” Sci. Rep. 7, 626 (2017).
[Crossref]
L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt. 18, 26003 (2013).
[Crossref]
L. W. Zhang, S. Gao, F. Zhang, K. Yang, Q. J. Ma, and L. Zhu, “Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy,” ACS Nano 8, 12250–12258 (2014).
[Crossref]
M. Chen, J. Zhang, C. Cai, Y. Gao, and J. Luo, “Fast direct reconstruction strategy of dynamic fluorescence molecular tomography using graphics processing units,” J. Biomed. Opt. 21, 66010 (2016).
[Crossref]
K. Giering, I. Lamprecht, and O. Minet, “Specific heat capacities of human and animal tissues,” Proc. SPIE 2624, 188–197 (1996).
[Crossref]
L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]
L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]
J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]
L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
[Crossref]
J. H. Barker, F. Hammersen, I. Bondar, E. Uhl, T. J. Galla, M. D. Menger, and K. Messmer, “The hairless mouse ear for in vivo studies of skin microcirculation,” Plast. Reconstr. Surg. 83, 948–959 (1989).
[Crossref]
L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
[Crossref]
L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
[Crossref]
B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol./Hemat. 43, 33–56 (2002).
[Crossref]
C. A. Barkman, L. O. Almquist, T. Kirkhorn, and N. Holmer, “Thermotherapy: feasibility study using a single focussed ultrasound transducer,” Int. J. Hyperther. 15, 63–76 (1999).
[Crossref]
L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref]
Z. Hu, X. Y. Yang, Y. Liu, G. N. Sankin, E. C. Pua, M. A. Morse, H. K. Lyerly, T. M. Clay, and P. Zhong, “Investigation of HIFU-induced anti-tumor immunity in a murine tumor model,” J. Transl. Med. 5, 34 (2007).
[Crossref]
J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]
C. Li, W. Zhang, W. Fan, J. Huang, F. Zhang, and P. Wu, “Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound,” Cancer 116, 3934–3942 (2010).
[Crossref]
X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Laser Med. Sci. 23, 217–228 (2008).
[Crossref]
I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239, 129–135 (2006).
[Crossref]
E. E. Konofagou, J. Thierman, T. Karjalainen, and K. Hynynen, “The temperature dependence of ultrasound-stimulated acoustic emission,” Ultrasound Med. Biol. 28, 331–338 (2002).
[Crossref]
E. Konofagou, J. Thierman, and K. Hynynen, “Experimental temperature monitoring and coagulation detection using ultrasound-stimulated acoustic emission,” in Ultrasonics Symposium (IEEE, 2001), vol. 1292, pp. 1299–1302.
T. Uchida, H. Ohkusa, H. Yamashita, S. Shoji, Y. Nagata, T. Hyodo, and T. Satoh, “Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer,” Int. J. Urol. 13, 228–233 (2010).
[Crossref]
T. Uchida, H. Ohkusa, Y. Nagata, T. Hyodo, T. Satoh, and A. Irie, “Treatment of localized prostate cancer using high-intensity focused ultrasound,” BJU Int. 97, 56–61 (2006).
[Crossref]
T. Uchida, H. Ohkusa, Y. Nagata, T. Hyodo, T. Satoh, and A. Irie, “Treatment of localized prostate cancer using high-intensity focused ultrasound,” BJU Int. 97, 56–61 (2006).
[Crossref]
M. Falk and R. Issels, “Hyperthermia in oncology,” Int. J. Hyperther. 17, 1–18 (2001).
[Crossref]
X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Laser Med. Sci. 23, 217–228 (2008).
[Crossref]
M. Pramanik, T. N. Erpelding, L. Jankovic, and L. V. Wang, “Tissue temperature monitoring using thermoacoustic and photoacoustic techniques,” Proc. SPIE 7564, 75641Y (2010).
[Crossref]
J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref]
E. E. Konofagou, J. Thierman, T. Karjalainen, and K. Hynynen, “The temperature dependence of ultrasound-stimulated acoustic emission,” Ultrasound Med. Biol. 28, 331–338 (2002).
[Crossref]
B. Wang, J. Su, A. Karpiouk, D. Yeager, and S. Emelianov, Intravascular Photoacoustic and Ultrasound Imaging: From Tissue Characterization to Molecular Imaging to Image-Guided Therapy (Springer, 2011).
L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt. 18, 26003 (2013).
[Crossref]
J. Yao, H. Ke, S. Tai, Y. Zhou, and L. V. Wang, “Absolute photoacoustic thermometry in deep tissue,” Opt. Lett. 38, 5228–5231 (2013).
[Crossref]
B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol./Hemat. 43, 33–56 (2002).
[Crossref]
S. M. Nikitin, T. D. Khokhlova, and I. M. Pelivanov, “Temperature dependence of the optoacoustic transformation efficiency in ex vivo tissues for application in monitoring thermal therapies,” J. Biomed. Opt. 17, 061214 (2012).
[Crossref]
C. A. Barkman, L. O. Almquist, T. Kirkhorn, and N. Holmer, “Thermotherapy: feasibility study using a single focussed ultrasound transducer,” Int. J. Hyperther. 15, 63–76 (1999).
[Crossref]
F. Gao, X. Feng, R. Zhang, S. Liu, R. Ding, R. Kishor, and Y. Zheng, “Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging,” Sci. Rep. 7, 626 (2017).
[Crossref]
R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
[Crossref]
E. Konofagou, J. Thierman, and K. Hynynen, “Experimental temperature monitoring and coagulation detection using ultrasound-stimulated acoustic emission,” in Ultrasonics Symposium (IEEE, 2001), vol. 1292, pp. 1299–1302.
E. E. Konofagou, J. Thierman, T. Karjalainen, and K. Hynynen, “The temperature dependence of ultrasound-stimulated acoustic emission,” Ultrasound Med. Biol. 28, 331–338 (2002).
[Crossref]
K. Giering, I. Lamprecht, and O. Minet, “Specific heat capacities of human and animal tissues,” Proc. SPIE 2624, 188–197 (1996).
[Crossref]
M. Li, B. Lan, W. Liu, J. Xia, and J. Yao, “Internal-illumination photoacoustic computed tomography,” J. Biomed. Opt. 23, 030506 (2018).
[Crossref]
R. O. Esenaliev, A. A. Oraevsky, K. V. Larin, I. V. Larina, and M. Motamedi, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D 38, 2633–2639 (1999).
[Crossref]
R. O. Esenaliev, A. A. Oraevsky, K. V. Larin, I. V. Larina, and M. Motamedi, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D 38, 2633–2639 (1999).
[Crossref]
J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref]
O. Seror, M. Lepetit-Coiffe, B. Le Bail, B. D. de Senneville, H. Trillaud, C. Moonen, and B. Quesson, “Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo,” Eur. Radiology 18, 408–416 (2008).
[Crossref]
O. Seror, M. Lepetit-Coiffe, B. Le Bail, B. D. de Senneville, H. Trillaud, C. Moonen, and B. Quesson, “Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo,” Eur. Radiology 18, 408–416 (2008).
[Crossref]
M. A. Lewis, R. M. Staruch, and R. Chopra, “Thermometry and ablation monitoring with ultrasound,” Int. J. Hyperthermia 31, 163–181 (2015).
[Crossref]
L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt. 18, 26003 (2013).
[Crossref]
C. Li, W. Zhang, W. Fan, J. Huang, F. Zhang, and P. Wu, “Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound,” Cancer 116, 3934–3942 (2010).
[Crossref]
J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]
G.-L. Sun, Z.-H. Ren, and L.-F. Li, “Clinical study of thermotherapy of HIFU in combination with 3D-CRT treating advanced primary liver cancer,” Jilin Med. J. 29, 542–543 (2008).
M. Li, B. Lan, W. Liu, J. Xia, and J. Yao, “Internal-illumination photoacoustic computed tomography,” J. Biomed. Opt. 23, 030506 (2018).
[Crossref]
S. H. Wang and P. C. Li, “Photoacoustic temperature measurements for monitoring of thermal therapy,” Proc. SPIE 7177, 71771S (2009).
[Crossref]
X. L. Liang, L. Fang, X. D. Li, X. Zhang, and F. Wang, “Activatable near infrared dye conjugated hyaluronic acid based nanoparticles as a targeted theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal therapy,” Biomaterials 132, 72–84(2017).
[Crossref]
L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
[Crossref]
X. L. Liang, L. Fang, X. D. Li, X. Zhang, and F. Wang, “Activatable near infrared dye conjugated hyaluronic acid based nanoparticles as a targeted theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal therapy,” Biomaterials 132, 72–84(2017).
[Crossref]
E. Petrova, A. Liopo, V. Nadvoretskiy, and S. Ermilov, “Imaging technique for real-time temperature monitoring during cryotherapy of lesions,” J. Biomed. Opt. 21, 116007 (2016).
[Crossref]
E. V. Petrova, A. Liopo, A. A. Oraevsky, and S. A. Ermilov, “Universal temperature-dependent normalized optoacoustic response of blood,” Proc. SPIE 9323, 93231Y (2015).
[Crossref]
D. Liu and E. S. Ebbini, “Real-time 2-D temperature imaging using ultrasound,” IEEE Trans. Biomed. Eng. 57, 12–16 (2010).
[Crossref]
L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]
L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]
F. Gao, X. Feng, R. Zhang, S. Liu, R. Ding, R. Kishor, and Y. Zheng, “Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging,” Sci. Rep. 7, 626 (2017).
[Crossref]
L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]
M. Li, B. Lan, W. Liu, J. Xia, and J. Yao, “Internal-illumination photoacoustic computed tomography,” J. Biomed. Opt. 23, 030506 (2018).
[Crossref]
L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt. 18, 26003 (2013).
[Crossref]
Z. Hu, X. Y. Yang, Y. Liu, G. N. Sankin, E. C. Pua, M. A. Morse, H. K. Lyerly, T. M. Clay, and P. Zhong, “Investigation of HIFU-induced anti-tumor immunity in a murine tumor model,” J. Transl. Med. 5, 34 (2007).
[Crossref]
L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]
Y. Xing, X. Lu, E. C. Pua, and P. Zhong, “The effect of high intensity focused ultrasound treatment on metastases in a murine melanoma model,” Biochem. Biophys. Res. Commun. 375, 645–650 (2008).
[Crossref]
R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
[Crossref]
Y. Zhou, E. Tang, J. Luo, and J. Yao, “Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study,” J. Biomed. Opt. 23, 1–10 (2018).
[Crossref]
M. Chen, J. Zhang, C. Cai, Y. Gao, and J. Luo, “Fast direct reconstruction strategy of dynamic fluorescence molecular tomography using graphics processing units,” J. Biomed. Opt. 21, 66010 (2016).
[Crossref]
Z. Hu, X. Y. Yang, Y. Liu, G. N. Sankin, E. C. Pua, M. A. Morse, H. K. Lyerly, T. M. Clay, and P. Zhong, “Investigation of HIFU-induced anti-tumor immunity in a murine tumor model,” J. Transl. Med. 5, 34 (2007).
[Crossref]
Y. Lyu, Y. Fang, Q. Q. Miao, X. Zhen, D. Ding, and K. Y. Pu, “Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy,” ACS Nano 10, 4472–4481 (2016).
[Crossref]
J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref]
L. W. Zhang, S. Gao, F. Zhang, K. Yang, Q. J. Ma, and L. Zhu, “Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy,” ACS Nano 8, 12250–12258 (2014).
[Crossref]
J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]
R. Maassmoreno and C. A. Damianou, “Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part I. Analytical model,” J. Acoust. Soc. Am. 100, 2514–2521 (1996).
[Crossref]
S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey, and L. A. Crum, “Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound Med. Biol. 27, 33–42(2001).
[Crossref]
J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]
J. H. Barker, F. Hammersen, I. Bondar, E. Uhl, T. J. Galla, M. D. Menger, and K. Messmer, “The hairless mouse ear for in vivo studies of skin microcirculation,” Plast. Reconstr. Surg. 83, 948–959 (1989).
[Crossref]
J. H. Barker, F. Hammersen, I. Bondar, E. Uhl, T. J. Galla, M. D. Menger, and K. Messmer, “The hairless mouse ear for in vivo studies of skin microcirculation,” Plast. Reconstr. Surg. 83, 948–959 (1989).
[Crossref]
Y. Lyu, Y. Fang, Q. Q. Miao, X. Zhen, D. Ding, and K. Y. Pu, “Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy,” ACS Nano 10, 4472–4481 (2016).
[Crossref]
J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref]
K. Giering, I. Lamprecht, and O. Minet, “Specific heat capacities of human and animal tissues,” Proc. SPIE 2624, 188–197 (1996).
[Crossref]
R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
[Crossref]
O. Seror, M. Lepetit-Coiffe, B. Le Bail, B. D. de Senneville, H. Trillaud, C. Moonen, and B. Quesson, “Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo,” Eur. Radiology 18, 408–416 (2008).
[Crossref]
B. Quesson, J. A. de Zwart, and C. T. Moonen, “Magnetic resonance temperature imaging for guidance of thermotherapy,” J. Mag. Res. Imag. 12, 525–533 (2000).
[Crossref]
Z. Hu, X. Y. Yang, Y. Liu, G. N. Sankin, E. C. Pua, M. A. Morse, H. K. Lyerly, T. M. Clay, and P. Zhong, “Investigation of HIFU-induced anti-tumor immunity in a murine tumor model,” J. Transl. Med. 5, 34 (2007).
[Crossref]
E. V. Petrova, M. Motamedi, A. A. Oraevsky, and S. A. Ermilov, “In vivo cryoablation of prostate tissue with temperature monitoring by optoacoustic imaging,” Proc. SPIE 9708, 97080G (2016).
[Crossref]
R. O. Esenaliev, A. A. Oraevsky, K. V. Larin, I. V. Larina, and M. Motamedi, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D 38, 2633–2639 (1999).
[Crossref]
E. Petrova, A. Liopo, V. Nadvoretskiy, and S. Ermilov, “Imaging technique for real-time temperature monitoring during cryotherapy of lesions,” J. Biomed. Opt. 21, 116007 (2016).
[Crossref]
E. V. Petrova, S. A. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. A. Oraevsky, “Temperature dependence of Grüneisen parameter in optically absorbing solutions measured by 2D optoacoustic imaging,” Proc. SPIE 8943, 89430S (2014).
[Crossref]
E. Petrova, S. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. Oraevsky, “Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions,” Opt. Express 21, 25077–25090 (2013).
[Crossref]
T. Uchida, H. Ohkusa, H. Yamashita, S. Shoji, Y. Nagata, T. Hyodo, and T. Satoh, “Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer,” Int. J. Urol. 13, 228–233 (2010).
[Crossref]
T. Uchida, H. Ohkusa, Y. Nagata, T. Hyodo, T. Satoh, and A. Irie, “Treatment of localized prostate cancer using high-intensity focused ultrasound,” BJU Int. 97, 56–61 (2006).
[Crossref]
S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey, and L. A. Crum, “Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound Med. Biol. 27, 33–42(2001).
[Crossref]
S. M. Nikitin, T. D. Khokhlova, and I. M. Pelivanov, “Temperature dependence of the optoacoustic transformation efficiency in ex vivo tissues for application in monitoring thermal therapies,” J. Biomed. Opt. 17, 061214 (2012).
[Crossref]
H. Odeen, S. Almquist, J. de Bever, D. A. Christensen, and D. L. Parker, “MR thermometry for focused ultrasound monitoring utilizing model predictive filtering and ultrasound beam modeling,” J. Ther. Ultrasound 4, 23 (2016).
[Crossref]
T. Uchida, H. Ohkusa, H. Yamashita, S. Shoji, Y. Nagata, T. Hyodo, and T. Satoh, “Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer,” Int. J. Urol. 13, 228–233 (2010).
[Crossref]
T. Uchida, H. Ohkusa, Y. Nagata, T. Hyodo, T. Satoh, and A. Irie, “Treatment of localized prostate cancer using high-intensity focused ultrasound,” BJU Int. 97, 56–61 (2006).
[Crossref]
E. V. Petrova, M. Motamedi, A. A. Oraevsky, and S. A. Ermilov, “In vivo cryoablation of prostate tissue with temperature monitoring by optoacoustic imaging,” Proc. SPIE 9708, 97080G (2016).
[Crossref]
E. V. Petrova, A. Liopo, A. A. Oraevsky, and S. A. Ermilov, “Universal temperature-dependent normalized optoacoustic response of blood,” Proc. SPIE 9323, 93231Y (2015).
[Crossref]
E. V. Petrova, S. A. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. A. Oraevsky, “Temperature dependence of Grüneisen parameter in optically absorbing solutions measured by 2D optoacoustic imaging,” Proc. SPIE 8943, 89430S (2014).
[Crossref]
E. V. Petrova, A. A. Oraevsky, and S. A. Ermilov, “Red blood cell as a universal optoacoustic sensor for non-invasive temperature monitoring,” Appl. Phys. Lett. 105, 094103 (2014).
[Crossref]
R. O. Esenaliev, A. A. Oraevsky, K. V. Larin, I. V. Larina, and M. Motamedi, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D 38, 2633–2639 (1999).
[Crossref]
W. Xun, J. L. Sanders, D. N. Stephens, and Ö. Oralkan, “Photoacoustic-imaging-based temperature monitoring for high-intensity focused ultrasound therapy,” in 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2016), pp. 3235–3238.
M. Alaeian and H. R. B. Orlande, “Inverse photoacoustic technique for parameter and temperature estimation in tissues,” Heat Transf. Eng. 38, 1573–1594 (2017).
[Crossref]
F. Orsi, P. Arnone, W. Chen, and L. Zhang, “High intensity focused ultrasound ablation: a new therapeutic option for solid tumors,” J. Cancer Res. Ther. 6, 414–420 (2010).
[Crossref]
J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref]
H. Odeen, S. Almquist, J. de Bever, D. A. Christensen, and D. L. Parker, “MR thermometry for focused ultrasound monitoring utilizing model predictive filtering and ultrasound beam modeling,” J. Ther. Ultrasound 4, 23 (2016).
[Crossref]
S. M. Nikitin, T. D. Khokhlova, and I. M. Pelivanov, “Temperature dependence of the optoacoustic transformation efficiency in ex vivo tissues for application in monitoring thermal therapies,” J. Biomed. Opt. 17, 061214 (2012).
[Crossref]
E. Petrova, A. Liopo, V. Nadvoretskiy, and S. Ermilov, “Imaging technique for real-time temperature monitoring during cryotherapy of lesions,” J. Biomed. Opt. 21, 116007 (2016).
[Crossref]
E. Petrova, S. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. Oraevsky, “Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions,” Opt. Express 21, 25077–25090 (2013).
[Crossref]
E. V. Petrova, M. Motamedi, A. A. Oraevsky, and S. A. Ermilov, “In vivo cryoablation of prostate tissue with temperature monitoring by optoacoustic imaging,” Proc. SPIE 9708, 97080G (2016).
[Crossref]
E. V. Petrova, A. Liopo, A. A. Oraevsky, and S. A. Ermilov, “Universal temperature-dependent normalized optoacoustic response of blood,” Proc. SPIE 9323, 93231Y (2015).
[Crossref]
E. V. Petrova, S. A. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. A. Oraevsky, “Temperature dependence of Grüneisen parameter in optically absorbing solutions measured by 2D optoacoustic imaging,” Proc. SPIE 8943, 89430S (2014).
[Crossref]
E. V. Petrova, A. A. Oraevsky, and S. A. Ermilov, “Red blood cell as a universal optoacoustic sensor for non-invasive temperature monitoring,” Appl. Phys. Lett. 105, 094103 (2014).
[Crossref]
V. Auboiroux, E. Dumont, L. Petrusca, M. Viallon, and R. Salomir, “An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy,” Phys. Med. Biol. 56, 3563–3582 (2011).
[Crossref]
M. Pramanik, “Improving tangential resolution with a modified delay-and-sum reconstruction algorithm in photoacoustic and thermoacoustic tomography,” J. Opt. Soc. Am. A 31, 621–627 (2014).
[Crossref]
M. Pramanik, T. N. Erpelding, L. Jankovic, and L. V. Wang, “Tissue temperature monitoring using thermoacoustic and photoacoustic techniques,” Proc. SPIE 7564, 75641Y (2010).
[Crossref]
M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt. 14, 054024 (2009).
[Crossref]
R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
[Crossref]
Y. Lyu, Y. Fang, Q. Q. Miao, X. Zhen, D. Ding, and K. Y. Pu, “Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy,” ACS Nano 10, 4472–4481 (2016).
[Crossref]
Y. Xing, X. Lu, E. C. Pua, and P. Zhong, “The effect of high intensity focused ultrasound treatment on metastases in a murine melanoma model,” Biochem. Biophys. Res. Commun. 375, 645–650 (2008).
[Crossref]
Z. Hu, X. Y. Yang, Y. Liu, G. N. Sankin, E. C. Pua, M. A. Morse, H. K. Lyerly, T. M. Clay, and P. Zhong, “Investigation of HIFU-induced anti-tumor immunity in a murine tumor model,” J. Transl. Med. 5, 34 (2007).
[Crossref]
O. Seror, M. Lepetit-Coiffe, B. Le Bail, B. D. de Senneville, H. Trillaud, C. Moonen, and B. Quesson, “Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo,” Eur. Radiology 18, 408–416 (2008).
[Crossref]
B. Quesson, J. A. de Zwart, and C. T. Moonen, “Magnetic resonance temperature imaging for guidance of thermotherapy,” J. Mag. Res. Imag. 12, 525–533 (2000).
[Crossref]
G.-L. Sun, Z.-H. Ren, and L.-F. Li, “Clinical study of thermotherapy of HIFU in combination with 3D-CRT treating advanced primary liver cancer,” Jilin Med. J. 29, 542–543 (2008).
B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol./Hemat. 43, 33–56 (2002).
[Crossref]
R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
[Crossref]
V. Auboiroux, E. Dumont, L. Petrusca, M. Viallon, and R. Salomir, “An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy,” Phys. Med. Biol. 56, 3563–3582 (2011).
[Crossref]
W. Xun, J. L. Sanders, D. N. Stephens, and Ö. Oralkan, “Photoacoustic-imaging-based temperature monitoring for high-intensity focused ultrasound therapy,” in 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2016), pp. 3235–3238.
Z. Hu, X. Y. Yang, Y. Liu, G. N. Sankin, E. C. Pua, M. A. Morse, H. K. Lyerly, T. M. Clay, and P. Zhong, “Investigation of HIFU-induced anti-tumor immunity in a murine tumor model,” J. Transl. Med. 5, 34 (2007).
[Crossref]
T. Uchida, H. Ohkusa, H. Yamashita, S. Shoji, Y. Nagata, T. Hyodo, and T. Satoh, “Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer,” Int. J. Urol. 13, 228–233 (2010).
[Crossref]
T. Uchida, H. Ohkusa, Y. Nagata, T. Hyodo, T. Satoh, and A. Irie, “Treatment of localized prostate cancer using high-intensity focused ultrasound,” BJU Int. 97, 56–61 (2006).
[Crossref]
R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
[Crossref]
O. Seror, M. Lepetit-Coiffe, B. Le Bail, B. D. de Senneville, H. Trillaud, C. Moonen, and B. Quesson, “Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo,” Eur. Radiology 18, 408–416 (2008).
[Crossref]
J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref]
S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey, and L. A. Crum, “Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound Med. Biol. 27, 33–42(2001).
[Crossref]
L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]
T. Uchida, H. Ohkusa, H. Yamashita, S. Shoji, Y. Nagata, T. Hyodo, and T. Satoh, “Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer,” Int. J. Urol. 13, 228–233 (2010).
[Crossref]
Y. Zhou, L. Zhai, R. Simmons, and P. Zhong, “Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone,” J. Acoust. Soc. Am. 120, 676–685 (2006).
[Crossref]
J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref]
B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol./Hemat. 43, 33–56 (2002).
[Crossref]
M. A. Lewis, R. M. Staruch, and R. Chopra, “Thermometry and ablation monitoring with ultrasound,” Int. J. Hyperthermia 31, 163–181 (2015).
[Crossref]
W. Xun, J. L. Sanders, D. N. Stephens, and Ö. Oralkan, “Photoacoustic-imaging-based temperature monitoring for high-intensity focused ultrasound therapy,” in 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2016), pp. 3235–3238.
B. Wang, J. Su, A. Karpiouk, D. Yeager, and S. Emelianov, Intravascular Photoacoustic and Ultrasound Imaging: From Tissue Characterization to Molecular Imaging to Image-Guided Therapy (Springer, 2011).
E. V. Petrova, S. A. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. A. Oraevsky, “Temperature dependence of Grüneisen parameter in optically absorbing solutions measured by 2D optoacoustic imaging,” Proc. SPIE 8943, 89430S (2014).
[Crossref]
E. Petrova, S. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. Oraevsky, “Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions,” Opt. Express 21, 25077–25090 (2013).
[Crossref]
L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]
G.-L. Sun, Z.-H. Ren, and L.-F. Li, “Clinical study of thermotherapy of HIFU in combination with 3D-CRT treating advanced primary liver cancer,” Jilin Med. J. 29, 542–543 (2008).
L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
[Crossref]
Y. Zhou, E. Tang, J. Luo, and J. Yao, “Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study,” J. Biomed. Opt. 23, 1–10 (2018).
[Crossref]
E. E. Konofagou, J. Thierman, T. Karjalainen, and K. Hynynen, “The temperature dependence of ultrasound-stimulated acoustic emission,” Ultrasound Med. Biol. 28, 331–338 (2002).
[Crossref]
E. Konofagou, J. Thierman, and K. Hynynen, “Experimental temperature monitoring and coagulation detection using ultrasound-stimulated acoustic emission,” in Ultrasonics Symposium (IEEE, 2001), vol. 1292, pp. 1299–1302.
J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]
O. Seror, M. Lepetit-Coiffe, B. Le Bail, B. D. de Senneville, H. Trillaud, C. Moonen, and B. Quesson, “Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo,” Eur. Radiology 18, 408–416 (2008).
[Crossref]
T. Uchida, H. Ohkusa, H. Yamashita, S. Shoji, Y. Nagata, T. Hyodo, and T. Satoh, “Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer,” Int. J. Urol. 13, 228–233 (2010).
[Crossref]
T. Uchida, H. Ohkusa, Y. Nagata, T. Hyodo, T. Satoh, and A. Irie, “Treatment of localized prostate cancer using high-intensity focused ultrasound,” BJU Int. 97, 56–61 (2006).
[Crossref]
J. H. Barker, F. Hammersen, I. Bondar, E. Uhl, T. J. Galla, M. D. Menger, and K. Messmer, “The hairless mouse ear for in vivo studies of skin microcirculation,” Plast. Reconstr. Surg. 83, 948–959 (1989).
[Crossref]
S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey, and L. A. Crum, “Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound Med. Biol. 27, 33–42(2001).
[Crossref]
J. W. Valvano, J. R. Cochran, and K. R. Diller, “Thermal-conductivity and diffusivity of biomaterials measured with self-heated thermistors,” Int. J. Thermophys. 6, 301–311 (1985).
[Crossref]
V. Auboiroux, E. Dumont, L. Petrusca, M. Viallon, and R. Salomir, “An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy,” Phys. Med. Biol. 56, 3563–3582 (2011).
[Crossref]
B. Wang, J. Su, A. Karpiouk, D. Yeager, and S. Emelianov, Intravascular Photoacoustic and Ultrasound Imaging: From Tissue Characterization to Molecular Imaging to Image-Guided Therapy (Springer, 2011).
L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]
X. L. Liang, L. Fang, X. D. Li, X. Zhang, and F. Wang, “Activatable near infrared dye conjugated hyaluronic acid based nanoparticles as a targeted theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal therapy,” Biomaterials 132, 72–84(2017).
[Crossref]
L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
[Crossref]
J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]
L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt. 18, 26003 (2013).
[Crossref]
J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]
J. Yao, H. Ke, S. Tai, Y. Zhou, and L. V. Wang, “Absolute photoacoustic thermometry in deep tissue,” Opt. Lett. 38, 5228–5231 (2013).
[Crossref]
L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt. 18, 26003 (2013).
[Crossref]
L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref]
M. Pramanik, T. N. Erpelding, L. Jankovic, and L. V. Wang, “Tissue temperature monitoring using thermoacoustic and photoacoustic techniques,” Proc. SPIE 7564, 75641Y (2010).
[Crossref]
M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt. 14, 054024 (2009).
[Crossref]
M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).
S. H. Wang and P. C. Li, “Photoacoustic temperature measurements for monitoring of thermal therapy,” Proc. SPIE 7177, 71771S (2009).
[Crossref]
L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]
J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]
J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]
C. Li, W. Zhang, W. Fan, J. Huang, F. Zhang, and P. Wu, “Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound,” Cancer 116, 3934–3942 (2010).
[Crossref]
B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol./Hemat. 43, 33–56 (2002).
[Crossref]
M. Li, B. Lan, W. Liu, J. Xia, and J. Yao, “Internal-illumination photoacoustic computed tomography,” J. Biomed. Opt. 23, 030506 (2018).
[Crossref]
L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]
Y. Xing, X. Lu, E. C. Pua, and P. Zhong, “The effect of high intensity focused ultrasound treatment on metastases in a murine melanoma model,” Biochem. Biophys. Res. Commun. 375, 645–650 (2008).
[Crossref]
M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).
W. Xun, J. L. Sanders, D. N. Stephens, and Ö. Oralkan, “Photoacoustic-imaging-based temperature monitoring for high-intensity focused ultrasound therapy,” in 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2016), pp. 3235–3238.
T. Uchida, H. Ohkusa, H. Yamashita, S. Shoji, Y. Nagata, T. Hyodo, and T. Satoh, “Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer,” Int. J. Urol. 13, 228–233 (2010).
[Crossref]
J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]
L. W. Zhang, S. Gao, F. Zhang, K. Yang, Q. J. Ma, and L. Zhu, “Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy,” ACS Nano 8, 12250–12258 (2014).
[Crossref]
Z. Hu, X. Y. Yang, Y. Liu, G. N. Sankin, E. C. Pua, M. A. Morse, H. K. Lyerly, T. M. Clay, and P. Zhong, “Investigation of HIFU-induced anti-tumor immunity in a murine tumor model,” J. Transl. Med. 5, 34 (2007).
[Crossref]
M. Li, B. Lan, W. Liu, J. Xia, and J. Yao, “Internal-illumination photoacoustic computed tomography,” J. Biomed. Opt. 23, 030506 (2018).
[Crossref]
Y. Zhou, E. Tang, J. Luo, and J. Yao, “Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study,” J. Biomed. Opt. 23, 1–10 (2018).
[Crossref]
J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]
J. Yao, H. Ke, S. Tai, Y. Zhou, and L. V. Wang, “Absolute photoacoustic thermometry in deep tissue,” Opt. Lett. 38, 5228–5231 (2013).
[Crossref]
B. Wang, J. Su, A. Karpiouk, D. Yeager, and S. Emelianov, Intravascular Photoacoustic and Ultrasound Imaging: From Tissue Characterization to Molecular Imaging to Image-Guided Therapy (Springer, 2011).
J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]
J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]
L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
[Crossref]
Y. Zhou, L. Zhai, R. Simmons, and P. Zhong, “Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone,” J. Acoust. Soc. Am. 120, 676–685 (2006).
[Crossref]
L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt. 18, 26003 (2013).
[Crossref]
L. W. Zhang, S. Gao, F. Zhang, K. Yang, Q. J. Ma, and L. Zhu, “Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy,” ACS Nano 8, 12250–12258 (2014).
[Crossref]
C. Li, W. Zhang, W. Fan, J. Huang, F. Zhang, and P. Wu, “Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound,” Cancer 116, 3934–3942 (2010).
[Crossref]
M. Chen, J. Zhang, C. Cai, Y. Gao, and J. Luo, “Fast direct reconstruction strategy of dynamic fluorescence molecular tomography using graphics processing units,” J. Biomed. Opt. 21, 66010 (2016).
[Crossref]
F. Orsi, P. Arnone, W. Chen, and L. Zhang, “High intensity focused ultrasound ablation: a new therapeutic option for solid tumors,” J. Cancer Res. Ther. 6, 414–420 (2010).
[Crossref]
L. W. Zhang, S. Gao, F. Zhang, K. Yang, Q. J. Ma, and L. Zhu, “Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy,” ACS Nano 8, 12250–12258 (2014).
[Crossref]
F. Gao, X. Feng, R. Zhang, S. Liu, R. Ding, R. Kishor, and Y. Zheng, “Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging,” Sci. Rep. 7, 626 (2017).
[Crossref]
C. Li, W. Zhang, W. Fan, J. Huang, F. Zhang, and P. Wu, “Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound,” Cancer 116, 3934–3942 (2010).
[Crossref]
X. L. Liang, L. Fang, X. D. Li, X. Zhang, and F. Wang, “Activatable near infrared dye conjugated hyaluronic acid based nanoparticles as a targeted theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal therapy,” Biomaterials 132, 72–84(2017).
[Crossref]
J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]
L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
[Crossref]
J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]
Y. Lyu, Y. Fang, Q. Q. Miao, X. Zhen, D. Ding, and K. Y. Pu, “Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy,” ACS Nano 10, 4472–4481 (2016).
[Crossref]
J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]
F. Gao, X. Feng, R. Zhang, S. Liu, R. Ding, R. Kishor, and Y. Zheng, “Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging,” Sci. Rep. 7, 626 (2017).
[Crossref]
Y. Xing, X. Lu, E. C. Pua, and P. Zhong, “The effect of high intensity focused ultrasound treatment on metastases in a murine melanoma model,” Biochem. Biophys. Res. Commun. 375, 645–650 (2008).
[Crossref]
Z. Hu, X. Y. Yang, Y. Liu, G. N. Sankin, E. C. Pua, M. A. Morse, H. K. Lyerly, T. M. Clay, and P. Zhong, “Investigation of HIFU-induced anti-tumor immunity in a murine tumor model,” J. Transl. Med. 5, 34 (2007).
[Crossref]
Y. Zhou, L. Zhai, R. Simmons, and P. Zhong, “Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone,” J. Acoust. Soc. Am. 120, 676–685 (2006).
[Crossref]
Y. Zhou, E. Tang, J. Luo, and J. Yao, “Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study,” J. Biomed. Opt. 23, 1–10 (2018).
[Crossref]
J. Yao, H. Ke, S. Tai, Y. Zhou, and L. V. Wang, “Absolute photoacoustic thermometry in deep tissue,” Opt. Lett. 38, 5228–5231 (2013).
[Crossref]
Y. Zhou, L. Zhai, R. Simmons, and P. Zhong, “Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone,” J. Acoust. Soc. Am. 120, 676–685 (2006).
[Crossref]
L. W. Zhang, S. Gao, F. Zhang, K. Yang, Q. J. Ma, and L. Zhu, “Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy,” ACS Nano 8, 12250–12258 (2014).
[Crossref]
J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]
L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
[Crossref]