Abstract

Temperature mapping is essential in many biomedical studies and interventions to precisely control the tissue’s thermal conditions for optimal treatment efficiency and minimal side effects. Based on the Grüneisen parameter’s temperature dependence, photoacoustic (PA) imaging can provide relative temperature measurement, but it has been traditionally challenging to measure absolute temperatures without knowing the baseline temperature, particularly in deep tissues with unknown optical and acoustic properties. Here, we report a new thermal-energy-memory-based photoacoustic thermometry (TEMPT). By illuminating the tissue with a burst of nanosecond laser pulses, TEMPT exploits the temperature dependence of the thermal energy lingering, which is probed by the corresponding PA signals acquired within the thermal confinement. A self-normalized ratiometric measurement cancels out temperature-irrelevant quantities and estimates the Grüneisen parameter. The temperature can then be evaluated, given the tissue’s temperature-dependent Grüneisen parameter, mass density, and specific heat capacity. Unlike conventional PA thermometry, TEMPT does not require knowledge of the tissue’s baseline temperature, nor the optical properties. We have developed a mathematical model to describe the temperature dependence in TEMPT. We have demonstrated the feasibility of the temperature evaluation on tissue phantoms at 1.5 cm depth within a clinically relevant temperature range. Finally, as proof-of-concept, we applied TEMPT for temperature mapping during focused ultrasound treatment in mice in vivo at 2 mm depth. As a generic temperature mapping method, TEMPT is expected to find applications in thermotherapy of cancers on small animal models.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Absolute photoacoustic thermometry in deep tissue

Junjie Yao, Haixin Ke, Stephen Tai, Yong Zhou, and Lihong V. Wang
Opt. Lett. 38(24) 5228-5231 (2013)

Finite-element-based photoacoustic imaging of absolute temperature in tissue

Lei Yao, Hua Huang, and Huabei Jiang
Opt. Lett. 39(18) 5355-5358 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol./Hemat. 43, 33–56 (2002).
    [Crossref]
  2. M. Falk and R. Issels, “Hyperthermia in oncology,” Int. J. Hyperther. 17, 1–18 (2001).
    [Crossref]
  3. S. DiGiulio, “FDA clears focused ultrasound system for prostate cancer treatment,” Oncology Times 37, 37 (2015).
    [Crossref]
  4. T. Uchida, H. Ohkusa, Y. Nagata, T. Hyodo, T. Satoh, and A. Irie, “Treatment of localized prostate cancer using high-intensity focused ultrasound,” BJU Int. 97, 56–61 (2006).
    [Crossref]
  5. T. Uchida, H. Ohkusa, H. Yamashita, S. Shoji, Y. Nagata, T. Hyodo, and T. Satoh, “Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer,” Int. J. Urol. 13, 228–233 (2010).
    [Crossref]
  6. L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
    [Crossref]
  7. F. Orsi, P. Arnone, W. Chen, and L. Zhang, “High intensity focused ultrasound ablation: a new therapeutic option for solid tumors,” J. Cancer Res. Ther. 6, 414–420 (2010).
    [Crossref]
  8. Y. Xing, X. Lu, E. C. Pua, and P. Zhong, “The effect of high intensity focused ultrasound treatment on metastases in a murine melanoma model,” Biochem. Biophys. Res. Commun. 375, 645–650 (2008).
    [Crossref]
  9. G.-L. Sun, Z.-H. Ren, and L.-F. Li, “Clinical study of thermotherapy of HIFU in combination with 3D-CRT treating advanced primary liver cancer,” Jilin Med. J. 29, 542–543 (2008).
  10. C. A. Barkman, L. O. Almquist, T. Kirkhorn, and N. Holmer, “Thermotherapy: feasibility study using a single focussed ultrasound transducer,” Int. J. Hyperther. 15, 63–76 (1999).
    [Crossref]
  11. B. Quesson, J. A. de Zwart, and C. T. Moonen, “Magnetic resonance temperature imaging for guidance of thermotherapy,” J. Mag. Res. Imag. 12, 525–533 (2000).
    [Crossref]
  12. V. Auboiroux, E. Dumont, L. Petrusca, M. Viallon, and R. Salomir, “An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy,” Phys. Med. Biol. 56, 3563–3582 (2011).
    [Crossref]
  13. O. Seror, M. Lepetit-Coiffe, B. Le Bail, B. D. de Senneville, H. Trillaud, C. Moonen, and B. Quesson, “Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo,” Eur. Radiology 18, 408–416 (2008).
    [Crossref]
  14. J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
    [Crossref]
  15. R. Maassmoreno and C. A. Damianou, “Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part I. Analytical model,” J. Acoust. Soc. Am. 100, 2514–2521 (1996).
    [Crossref]
  16. D. Liu and E. S. Ebbini, “Real-time 2-D temperature imaging using ultrasound,” IEEE Trans. Biomed. Eng. 57, 12–16 (2010).
    [Crossref]
  17. E. E. Konofagou, J. Thierman, T. Karjalainen, and K. Hynynen, “The temperature dependence of ultrasound-stimulated acoustic emission,” Ultrasound Med. Biol. 28, 331–338 (2002).
    [Crossref]
  18. E. Konofagou, J. Thierman, and K. Hynynen, “Experimental temperature monitoring and coagulation detection using ultrasound-stimulated acoustic emission,” in Ultrasonics Symposium (IEEE, 2001), vol. 1292, pp. 1299–1302.
  19. R. O. Esenaliev, A. A. Oraevsky, K. V. Larin, I. V. Larina, and M. Motamedi, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D 38, 2633–2639 (1999).
    [Crossref]
  20. M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt. 14, 054024 (2009).
    [Crossref]
  21. S. H. Wang and P. C. Li, “Photoacoustic temperature measurements for monitoring of thermal therapy,” Proc. SPIE 7177, 71771S (2009).
    [Crossref]
  22. M. Pramanik, T. N. Erpelding, L. Jankovic, and L. V. Wang, “Tissue temperature monitoring using thermoacoustic and photoacoustic techniques,” Proc. SPIE 7564, 75641Y (2010).
    [Crossref]
  23. W. Xun, J. L. Sanders, D. N. Stephens, and Ö. Oralkan, “Photoacoustic-imaging-based temperature monitoring for high-intensity focused ultrasound therapy,” in 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2016), pp. 3235–3238.
  24. J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
    [Crossref]
  25. E. V. Petrova, M. Motamedi, A. A. Oraevsky, and S. A. Ermilov, “In vivo cryoablation of prostate tissue with temperature monitoring by optoacoustic imaging,” Proc. SPIE 9708, 97080G (2016).
    [Crossref]
  26. E. V. Petrova, S. A. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. A. Oraevsky, “Temperature dependence of Grüneisen parameter in optically absorbing solutions measured by 2D optoacoustic imaging,” Proc. SPIE 8943, 89430S (2014).
    [Crossref]
  27. E. V. Petrova, A. Liopo, A. A. Oraevsky, and S. A. Ermilov, “Universal temperature-dependent normalized optoacoustic response of blood,” Proc. SPIE 9323, 93231Y (2015).
    [Crossref]
  28. E. Petrova, S. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. Oraevsky, “Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions,” Opt. Express 21, 25077–25090 (2013).
    [Crossref]
  29. L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt. 18, 26003 (2013).
    [Crossref]
  30. J. Yao, H. Ke, S. Tai, Y. Zhou, and L. V. Wang, “Absolute photoacoustic thermometry in deep tissue,” Opt. Lett. 38, 5228–5231 (2013).
    [Crossref]
  31. Y. Zhou, E. Tang, J. Luo, and J. Yao, “Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study,” J. Biomed. Opt. 23, 1–10 (2018).
    [Crossref]
  32. F. Gao, X. Feng, R. Zhang, S. Liu, R. Ding, R. Kishor, and Y. Zheng, “Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging,” Sci. Rep. 7, 626 (2017).
    [Crossref]
  33. M. Alaeian and H. R. B. Orlande, “Inverse photoacoustic technique for parameter and temperature estimation in tissues,” Heat Transf. Eng. 38, 1573–1594 (2017).
    [Crossref]
  34. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
    [Crossref]
  35. M. Pramanik, “Improving tangential resolution with a modified delay-and-sum reconstruction algorithm in photoacoustic and thermoacoustic tomography,” J. Opt. Soc. Am. A 31, 621–627 (2014).
    [Crossref]
  36. M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).
  37. M. Fink, “Time-reversal acoustics,” J. Phys. Conf. Ser. 118, 012001 (2008).
    [Crossref]
  38. M. Fink, “Time reversal of ultrasonic fields. I. Basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 555–566 (1992).
    [Crossref]
  39. Y. Zhou, L. Zhai, R. Simmons, and P. Zhong, “Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone,” J. Acoust. Soc. Am. 120, 676–685 (2006).
    [Crossref]
  40. M. Li, B. Lan, W. Liu, J. Xia, and J. Yao, “Internal-illumination photoacoustic computed tomography,” J. Biomed. Opt. 23, 030506 (2018).
    [Crossref]
  41. J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
    [Crossref]
  42. E. V. Petrova, A. A. Oraevsky, and S. A. Ermilov, “Red blood cell as a universal optoacoustic sensor for non-invasive temperature monitoring,” Appl. Phys. Lett. 105, 094103 (2014).
    [Crossref]
  43. Z. Hu, X. Y. Yang, Y. Liu, G. N. Sankin, E. C. Pua, M. A. Morse, H. K. Lyerly, T. M. Clay, and P. Zhong, “Investigation of HIFU-induced anti-tumor immunity in a murine tumor model,” J. Transl. Med. 5, 34 (2007).
    [Crossref]
  44. H. Odeen, S. Almquist, J. de Bever, D. A. Christensen, and D. L. Parker, “MR thermometry for focused ultrasound monitoring utilizing model predictive filtering and ultrasound beam modeling,” J. Ther. Ultrasound 4, 23 (2016).
    [Crossref]
  45. M. A. Lewis, R. M. Staruch, and R. Chopra, “Thermometry and ablation monitoring with ultrasound,” Int. J. Hyperthermia 31, 163–181 (2015).
    [Crossref]
  46. C. Li, W. Zhang, W. Fan, J. Huang, F. Zhang, and P. Wu, “Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound,” Cancer 116, 3934–3942 (2010).
    [Crossref]
  47. S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey, and L. A. Crum, “Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound Med. Biol. 27, 33–42(2001).
    [Crossref]
  48. M. Chen, J. Zhang, C. Cai, Y. Gao, and J. Luo, “Fast direct reconstruction strategy of dynamic fluorescence molecular tomography using graphics processing units,” J. Biomed. Opt. 21, 66010 (2016).
    [Crossref]
  49. S. M. Nikitin, T. D. Khokhlova, and I. M. Pelivanov, “Temperature dependence of the optoacoustic transformation efficiency in ex vivo tissues for application in monitoring thermal therapies,” J. Biomed. Opt. 17, 061214 (2012).
    [Crossref]
  50. E. Petrova, A. Liopo, V. Nadvoretskiy, and S. Ermilov, “Imaging technique for real-time temperature monitoring during cryotherapy of lesions,” J. Biomed. Opt. 21, 116007 (2016).
    [Crossref]
  51. R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
    [Crossref]
  52. J. W. Valvano, J. R. Cochran, and K. R. Diller, “Thermal-conductivity and diffusivity of biomaterials measured with self-heated thermistors,” Int. J. Thermophys. 6, 301–311 (1985).
    [Crossref]
  53. K. Giering, I. Lamprecht, and O. Minet, “Specific heat capacities of human and animal tissues,” Proc. SPIE 2624, 188–197 (1996).
    [Crossref]
  54. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Laser Med. Sci. 23, 217–228 (2008).
    [Crossref]
  55. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239, 129–135 (2006).
    [Crossref]
  56. L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
    [Crossref]
  57. X. L. Liang, L. Fang, X. D. Li, X. Zhang, and F. Wang, “Activatable near infrared dye conjugated hyaluronic acid based nanoparticles as a targeted theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal therapy,” Biomaterials 132, 72–84(2017).
    [Crossref]
  58. Y. Lyu, Y. Fang, Q. Q. Miao, X. Zhen, D. Ding, and K. Y. Pu, “Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy,” ACS Nano 10, 4472–4481 (2016).
    [Crossref]
  59. B. Wang, J. Su, A. Karpiouk, D. Yeager, and S. Emelianov, Intravascular Photoacoustic and Ultrasound Imaging: From Tissue Characterization to Molecular Imaging to Image-Guided Therapy (Springer, 2011).
  60. L. W. Zhang, S. Gao, F. Zhang, K. Yang, Q. J. Ma, and L. Zhu, “Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy,” ACS Nano 8, 12250–12258 (2014).
    [Crossref]
  61. J. H. Barker, F. Hammersen, I. Bondar, E. Uhl, T. J. Galla, M. D. Menger, and K. Messmer, “The hairless mouse ear for in vivo studies of skin microcirculation,” Plast. Reconstr. Surg. 83, 948–959 (1989).
    [Crossref]

2018 (2)

Y. Zhou, E. Tang, J. Luo, and J. Yao, “Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study,” J. Biomed. Opt. 23, 1–10 (2018).
[Crossref]

M. Li, B. Lan, W. Liu, J. Xia, and J. Yao, “Internal-illumination photoacoustic computed tomography,” J. Biomed. Opt. 23, 030506 (2018).
[Crossref]

2017 (3)

X. L. Liang, L. Fang, X. D. Li, X. Zhang, and F. Wang, “Activatable near infrared dye conjugated hyaluronic acid based nanoparticles as a targeted theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal therapy,” Biomaterials 132, 72–84(2017).
[Crossref]

F. Gao, X. Feng, R. Zhang, S. Liu, R. Ding, R. Kishor, and Y. Zheng, “Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging,” Sci. Rep. 7, 626 (2017).
[Crossref]

M. Alaeian and H. R. B. Orlande, “Inverse photoacoustic technique for parameter and temperature estimation in tissues,” Heat Transf. Eng. 38, 1573–1594 (2017).
[Crossref]

2016 (6)

E. V. Petrova, M. Motamedi, A. A. Oraevsky, and S. A. Ermilov, “In vivo cryoablation of prostate tissue with temperature monitoring by optoacoustic imaging,” Proc. SPIE 9708, 97080G (2016).
[Crossref]

L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
[Crossref]

Y. Lyu, Y. Fang, Q. Q. Miao, X. Zhen, D. Ding, and K. Y. Pu, “Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy,” ACS Nano 10, 4472–4481 (2016).
[Crossref]

H. Odeen, S. Almquist, J. de Bever, D. A. Christensen, and D. L. Parker, “MR thermometry for focused ultrasound monitoring utilizing model predictive filtering and ultrasound beam modeling,” J. Ther. Ultrasound 4, 23 (2016).
[Crossref]

M. Chen, J. Zhang, C. Cai, Y. Gao, and J. Luo, “Fast direct reconstruction strategy of dynamic fluorescence molecular tomography using graphics processing units,” J. Biomed. Opt. 21, 66010 (2016).
[Crossref]

E. Petrova, A. Liopo, V. Nadvoretskiy, and S. Ermilov, “Imaging technique for real-time temperature monitoring during cryotherapy of lesions,” J. Biomed. Opt. 21, 116007 (2016).
[Crossref]

2015 (5)

M. A. Lewis, R. M. Staruch, and R. Chopra, “Thermometry and ablation monitoring with ultrasound,” Int. J. Hyperthermia 31, 163–181 (2015).
[Crossref]

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

S. DiGiulio, “FDA clears focused ultrasound system for prostate cancer treatment,” Oncology Times 37, 37 (2015).
[Crossref]

J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]

E. V. Petrova, A. Liopo, A. A. Oraevsky, and S. A. Ermilov, “Universal temperature-dependent normalized optoacoustic response of blood,” Proc. SPIE 9323, 93231Y (2015).
[Crossref]

2014 (5)

E. V. Petrova, S. A. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. A. Oraevsky, “Temperature dependence of Grüneisen parameter in optically absorbing solutions measured by 2D optoacoustic imaging,” Proc. SPIE 8943, 89430S (2014).
[Crossref]

M. Pramanik, “Improving tangential resolution with a modified delay-and-sum reconstruction algorithm in photoacoustic and thermoacoustic tomography,” J. Opt. Soc. Am. A 31, 621–627 (2014).
[Crossref]

E. V. Petrova, A. A. Oraevsky, and S. A. Ermilov, “Red blood cell as a universal optoacoustic sensor for non-invasive temperature monitoring,” Appl. Phys. Lett. 105, 094103 (2014).
[Crossref]

L. W. Zhang, S. Gao, F. Zhang, K. Yang, Q. J. Ma, and L. Zhu, “Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy,” ACS Nano 8, 12250–12258 (2014).
[Crossref]

L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]

2013 (3)

2012 (3)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref]

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
[Crossref]

S. M. Nikitin, T. D. Khokhlova, and I. M. Pelivanov, “Temperature dependence of the optoacoustic transformation efficiency in ex vivo tissues for application in monitoring thermal therapies,” J. Biomed. Opt. 17, 061214 (2012).
[Crossref]

2011 (1)

V. Auboiroux, E. Dumont, L. Petrusca, M. Viallon, and R. Salomir, “An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy,” Phys. Med. Biol. 56, 3563–3582 (2011).
[Crossref]

2010 (5)

T. Uchida, H. Ohkusa, H. Yamashita, S. Shoji, Y. Nagata, T. Hyodo, and T. Satoh, “Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer,” Int. J. Urol. 13, 228–233 (2010).
[Crossref]

D. Liu and E. S. Ebbini, “Real-time 2-D temperature imaging using ultrasound,” IEEE Trans. Biomed. Eng. 57, 12–16 (2010).
[Crossref]

F. Orsi, P. Arnone, W. Chen, and L. Zhang, “High intensity focused ultrasound ablation: a new therapeutic option for solid tumors,” J. Cancer Res. Ther. 6, 414–420 (2010).
[Crossref]

M. Pramanik, T. N. Erpelding, L. Jankovic, and L. V. Wang, “Tissue temperature monitoring using thermoacoustic and photoacoustic techniques,” Proc. SPIE 7564, 75641Y (2010).
[Crossref]

C. Li, W. Zhang, W. Fan, J. Huang, F. Zhang, and P. Wu, “Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound,” Cancer 116, 3934–3942 (2010).
[Crossref]

2009 (2)

M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt. 14, 054024 (2009).
[Crossref]

S. H. Wang and P. C. Li, “Photoacoustic temperature measurements for monitoring of thermal therapy,” Proc. SPIE 7177, 71771S (2009).
[Crossref]

2008 (6)

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref]

Y. Xing, X. Lu, E. C. Pua, and P. Zhong, “The effect of high intensity focused ultrasound treatment on metastases in a murine melanoma model,” Biochem. Biophys. Res. Commun. 375, 645–650 (2008).
[Crossref]

G.-L. Sun, Z.-H. Ren, and L.-F. Li, “Clinical study of thermotherapy of HIFU in combination with 3D-CRT treating advanced primary liver cancer,” Jilin Med. J. 29, 542–543 (2008).

O. Seror, M. Lepetit-Coiffe, B. Le Bail, B. D. de Senneville, H. Trillaud, C. Moonen, and B. Quesson, “Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo,” Eur. Radiology 18, 408–416 (2008).
[Crossref]

M. Fink, “Time-reversal acoustics,” J. Phys. Conf. Ser. 118, 012001 (2008).
[Crossref]

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Laser Med. Sci. 23, 217–228 (2008).
[Crossref]

2007 (1)

Z. Hu, X. Y. Yang, Y. Liu, G. N. Sankin, E. C. Pua, M. A. Morse, H. K. Lyerly, T. M. Clay, and P. Zhong, “Investigation of HIFU-induced anti-tumor immunity in a murine tumor model,” J. Transl. Med. 5, 34 (2007).
[Crossref]

2006 (3)

Y. Zhou, L. Zhai, R. Simmons, and P. Zhong, “Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone,” J. Acoust. Soc. Am. 120, 676–685 (2006).
[Crossref]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239, 129–135 (2006).
[Crossref]

T. Uchida, H. Ohkusa, Y. Nagata, T. Hyodo, T. Satoh, and A. Irie, “Treatment of localized prostate cancer using high-intensity focused ultrasound,” BJU Int. 97, 56–61 (2006).
[Crossref]

2005 (1)

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).

2002 (2)

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol./Hemat. 43, 33–56 (2002).
[Crossref]

E. E. Konofagou, J. Thierman, T. Karjalainen, and K. Hynynen, “The temperature dependence of ultrasound-stimulated acoustic emission,” Ultrasound Med. Biol. 28, 331–338 (2002).
[Crossref]

2001 (2)

M. Falk and R. Issels, “Hyperthermia in oncology,” Int. J. Hyperther. 17, 1–18 (2001).
[Crossref]

S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey, and L. A. Crum, “Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound Med. Biol. 27, 33–42(2001).
[Crossref]

2000 (1)

B. Quesson, J. A. de Zwart, and C. T. Moonen, “Magnetic resonance temperature imaging for guidance of thermotherapy,” J. Mag. Res. Imag. 12, 525–533 (2000).
[Crossref]

1999 (2)

R. O. Esenaliev, A. A. Oraevsky, K. V. Larin, I. V. Larina, and M. Motamedi, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D 38, 2633–2639 (1999).
[Crossref]

C. A. Barkman, L. O. Almquist, T. Kirkhorn, and N. Holmer, “Thermotherapy: feasibility study using a single focussed ultrasound transducer,” Int. J. Hyperther. 15, 63–76 (1999).
[Crossref]

1996 (2)

R. Maassmoreno and C. A. Damianou, “Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part I. Analytical model,” J. Acoust. Soc. Am. 100, 2514–2521 (1996).
[Crossref]

K. Giering, I. Lamprecht, and O. Minet, “Specific heat capacities of human and animal tissues,” Proc. SPIE 2624, 188–197 (1996).
[Crossref]

1992 (1)

M. Fink, “Time reversal of ultrasonic fields. I. Basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 555–566 (1992).
[Crossref]

1989 (1)

J. H. Barker, F. Hammersen, I. Bondar, E. Uhl, T. J. Galla, M. D. Menger, and K. Messmer, “The hairless mouse ear for in vivo studies of skin microcirculation,” Plast. Reconstr. Surg. 83, 948–959 (1989).
[Crossref]

1985 (1)

J. W. Valvano, J. R. Cochran, and K. R. Diller, “Thermal-conductivity and diffusivity of biomaterials measured with self-heated thermistors,” Int. J. Thermophys. 6, 301–311 (1985).
[Crossref]

Aglyamov, S.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref]

Ahlers, O.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol./Hemat. 43, 33–56 (2002).
[Crossref]

Alaeian, M.

M. Alaeian and H. R. B. Orlande, “Inverse photoacoustic technique for parameter and temperature estimation in tissues,” Heat Transf. Eng. 38, 1573–1594 (2017).
[Crossref]

Almquist, L. O.

C. A. Barkman, L. O. Almquist, T. Kirkhorn, and N. Holmer, “Thermotherapy: feasibility study using a single focussed ultrasound transducer,” Int. J. Hyperther. 15, 63–76 (1999).
[Crossref]

Almquist, S.

H. Odeen, S. Almquist, J. de Bever, D. A. Christensen, and D. L. Parker, “MR thermometry for focused ultrasound monitoring utilizing model predictive filtering and ultrasound beam modeling,” J. Ther. Ultrasound 4, 23 (2016).
[Crossref]

Arnone, P.

F. Orsi, P. Arnone, W. Chen, and L. Zhang, “High intensity focused ultrasound ablation: a new therapeutic option for solid tumors,” J. Cancer Res. Ther. 6, 414–420 (2010).
[Crossref]

Auboiroux, V.

V. Auboiroux, E. Dumont, L. Petrusca, M. Viallon, and R. Salomir, “An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy,” Phys. Med. Biol. 56, 3563–3582 (2011).
[Crossref]

Baade, A.

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
[Crossref]

Bailey, M. R.

S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey, and L. A. Crum, “Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound Med. Biol. 27, 33–42(2001).
[Crossref]

Bao, T.

J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]

Barker, J. H.

J. H. Barker, F. Hammersen, I. Bondar, E. Uhl, T. J. Galla, M. D. Menger, and K. Messmer, “The hairless mouse ear for in vivo studies of skin microcirculation,” Plast. Reconstr. Surg. 83, 948–959 (1989).
[Crossref]

Barkman, C. A.

C. A. Barkman, L. O. Almquist, T. Kirkhorn, and N. Holmer, “Thermotherapy: feasibility study using a single focussed ultrasound transducer,” Int. J. Hyperther. 15, 63–76 (1999).
[Crossref]

Bever, M.

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
[Crossref]

Birngruber, R.

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
[Crossref]

Bondar, I.

J. H. Barker, F. Hammersen, I. Bondar, E. Uhl, T. J. Galla, M. D. Menger, and K. Messmer, “The hairless mouse ear for in vivo studies of skin microcirculation,” Plast. Reconstr. Surg. 83, 948–959 (1989).
[Crossref]

Brinkmann, R.

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
[Crossref]

Bu, W. B.

L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]

Cai, C.

M. Chen, J. Zhang, C. Cai, Y. Gao, and J. Luo, “Fast direct reconstruction strategy of dynamic fluorescence molecular tomography using graphics processing units,” J. Biomed. Opt. 21, 66010 (2016).
[Crossref]

Cao, H. Q.

L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
[Crossref]

Chen, M.

M. Chen, J. Zhang, C. Cai, Y. Gao, and J. Luo, “Fast direct reconstruction strategy of dynamic fluorescence molecular tomography using graphics processing units,” J. Biomed. Opt. 21, 66010 (2016).
[Crossref]

Chen, W.

F. Orsi, P. Arnone, W. Chen, and L. Zhang, “High intensity focused ultrasound ablation: a new therapeutic option for solid tumors,” J. Cancer Res. Ther. 6, 414–420 (2010).
[Crossref]

Cheng, L.

L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]

Chi, E.

S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey, and L. A. Crum, “Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound Med. Biol. 27, 33–42(2001).
[Crossref]

Chopra, R.

M. A. Lewis, R. M. Staruch, and R. Chopra, “Thermometry and ablation monitoring with ultrasound,” Int. J. Hyperthermia 31, 163–181 (2015).
[Crossref]

Christensen, D. A.

H. Odeen, S. Almquist, J. de Bever, D. A. Christensen, and D. L. Parker, “MR thermometry for focused ultrasound monitoring utilizing model predictive filtering and ultrasound beam modeling,” J. Ther. Ultrasound 4, 23 (2016).
[Crossref]

Clay, T. M.

Z. Hu, X. Y. Yang, Y. Liu, G. N. Sankin, E. C. Pua, M. A. Morse, H. K. Lyerly, T. M. Clay, and P. Zhong, “Investigation of HIFU-induced anti-tumor immunity in a murine tumor model,” J. Transl. Med. 5, 34 (2007).
[Crossref]

Cochran, J. R.

J. W. Valvano, J. R. Cochran, and K. R. Diller, “Thermal-conductivity and diffusivity of biomaterials measured with self-heated thermistors,” Int. J. Thermophys. 6, 301–311 (1985).
[Crossref]

Conjusteau, A.

E. V. Petrova, S. A. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. A. Oraevsky, “Temperature dependence of Grüneisen parameter in optically absorbing solutions measured by 2D optoacoustic imaging,” Proc. SPIE 8943, 89430S (2014).
[Crossref]

E. Petrova, S. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. Oraevsky, “Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions,” Opt. Express 21, 25077–25090 (2013).
[Crossref]

Crum, L. A.

S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey, and L. A. Crum, “Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound Med. Biol. 27, 33–42(2001).
[Crossref]

Damianou, C. A.

R. Maassmoreno and C. A. Damianou, “Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part I. Analytical model,” J. Acoust. Soc. Am. 100, 2514–2521 (1996).
[Crossref]

de Bever, J.

H. Odeen, S. Almquist, J. de Bever, D. A. Christensen, and D. L. Parker, “MR thermometry for focused ultrasound monitoring utilizing model predictive filtering and ultrasound beam modeling,” J. Ther. Ultrasound 4, 23 (2016).
[Crossref]

de Senneville, B. D.

O. Seror, M. Lepetit-Coiffe, B. Le Bail, B. D. de Senneville, H. Trillaud, C. Moonen, and B. Quesson, “Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo,” Eur. Radiology 18, 408–416 (2008).
[Crossref]

de Zwart, J. A.

B. Quesson, J. A. de Zwart, and C. T. Moonen, “Magnetic resonance temperature imaging for guidance of thermotherapy,” J. Mag. Res. Imag. 12, 525–533 (2000).
[Crossref]

Dieing, A.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol./Hemat. 43, 33–56 (2002).
[Crossref]

DiGiulio, S.

S. DiGiulio, “FDA clears focused ultrasound system for prostate cancer treatment,” Oncology Times 37, 37 (2015).
[Crossref]

Diller, K. R.

J. W. Valvano, J. R. Cochran, and K. R. Diller, “Thermal-conductivity and diffusivity of biomaterials measured with self-heated thermistors,” Int. J. Thermophys. 6, 301–311 (1985).
[Crossref]

Ding, D.

Y. Lyu, Y. Fang, Q. Q. Miao, X. Zhen, D. Ding, and K. Y. Pu, “Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy,” ACS Nano 10, 4472–4481 (2016).
[Crossref]

Ding, R.

F. Gao, X. Feng, R. Zhang, S. Liu, R. Ding, R. Kishor, and Y. Zheng, “Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging,” Sci. Rep. 7, 626 (2017).
[Crossref]

Dong, X. H.

J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]

Dumont, E.

V. Auboiroux, E. Dumont, L. Petrusca, M. Viallon, and R. Salomir, “An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy,” Phys. Med. Biol. 56, 3563–3582 (2011).
[Crossref]

Ebbini, E. S.

D. Liu and E. S. Ebbini, “Real-time 2-D temperature imaging using ultrasound,” IEEE Trans. Biomed. Eng. 57, 12–16 (2010).
[Crossref]

El-Sayed, I. H.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Laser Med. Sci. 23, 217–228 (2008).
[Crossref]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239, 129–135 (2006).
[Crossref]

El-Sayed, M. A.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Laser Med. Sci. 23, 217–228 (2008).
[Crossref]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239, 129–135 (2006).
[Crossref]

Emelianov, S.

B. Wang, J. Su, A. Karpiouk, D. Yeager, and S. Emelianov, Intravascular Photoacoustic and Ultrasound Imaging: From Tissue Characterization to Molecular Imaging to Image-Guided Therapy (Springer, 2011).

Emelianov, S. Y.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref]

Ermilov, S.

E. Petrova, A. Liopo, V. Nadvoretskiy, and S. Ermilov, “Imaging technique for real-time temperature monitoring during cryotherapy of lesions,” J. Biomed. Opt. 21, 116007 (2016).
[Crossref]

E. Petrova, S. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. Oraevsky, “Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions,” Opt. Express 21, 25077–25090 (2013).
[Crossref]

Ermilov, S. A.

E. V. Petrova, M. Motamedi, A. A. Oraevsky, and S. A. Ermilov, “In vivo cryoablation of prostate tissue with temperature monitoring by optoacoustic imaging,” Proc. SPIE 9708, 97080G (2016).
[Crossref]

E. V. Petrova, A. Liopo, A. A. Oraevsky, and S. A. Ermilov, “Universal temperature-dependent normalized optoacoustic response of blood,” Proc. SPIE 9323, 93231Y (2015).
[Crossref]

E. V. Petrova, S. A. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. A. Oraevsky, “Temperature dependence of Grüneisen parameter in optically absorbing solutions measured by 2D optoacoustic imaging,” Proc. SPIE 8943, 89430S (2014).
[Crossref]

E. V. Petrova, A. A. Oraevsky, and S. A. Ermilov, “Red blood cell as a universal optoacoustic sensor for non-invasive temperature monitoring,” Appl. Phys. Lett. 105, 094103 (2014).
[Crossref]

Erpelding, T. N.

M. Pramanik, T. N. Erpelding, L. Jankovic, and L. V. Wang, “Tissue temperature monitoring using thermoacoustic and photoacoustic techniques,” Proc. SPIE 7564, 75641Y (2010).
[Crossref]

Esenaliev, R. O.

R. O. Esenaliev, A. A. Oraevsky, K. V. Larin, I. V. Larina, and M. Motamedi, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D 38, 2633–2639 (1999).
[Crossref]

Falk, M.

M. Falk and R. Issels, “Hyperthermia in oncology,” Int. J. Hyperther. 17, 1–18 (2001).
[Crossref]

Fan, W.

C. Li, W. Zhang, W. Fan, J. Huang, F. Zhang, and P. Wu, “Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound,” Cancer 116, 3934–3942 (2010).
[Crossref]

Fang, L.

X. L. Liang, L. Fang, X. D. Li, X. Zhang, and F. Wang, “Activatable near infrared dye conjugated hyaluronic acid based nanoparticles as a targeted theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal therapy,” Biomaterials 132, 72–84(2017).
[Crossref]

Fang, Y.

Y. Lyu, Y. Fang, Q. Q. Miao, X. Zhen, D. Ding, and K. Y. Pu, “Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy,” ACS Nano 10, 4472–4481 (2016).
[Crossref]

Felix, R.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol./Hemat. 43, 33–56 (2002).
[Crossref]

Feng, X.

F. Gao, X. Feng, R. Zhang, S. Liu, R. Ding, R. Kishor, and Y. Zheng, “Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging,” Sci. Rep. 7, 626 (2017).
[Crossref]

Fink, M.

M. Fink, “Time-reversal acoustics,” J. Phys. Conf. Ser. 118, 012001 (2008).
[Crossref]

M. Fink, “Time reversal of ultrasonic fields. I. Basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 555–566 (1992).
[Crossref]

Galla, T. J.

J. H. Barker, F. Hammersen, I. Bondar, E. Uhl, T. J. Galla, M. D. Menger, and K. Messmer, “The hairless mouse ear for in vivo studies of skin microcirculation,” Plast. Reconstr. Surg. 83, 948–959 (1989).
[Crossref]

Gao, F.

F. Gao, X. Feng, R. Zhang, S. Liu, R. Ding, R. Kishor, and Y. Zheng, “Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging,” Sci. Rep. 7, 626 (2017).
[Crossref]

Gao, L.

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt. 18, 26003 (2013).
[Crossref]

Gao, S.

L. W. Zhang, S. Gao, F. Zhang, K. Yang, Q. J. Ma, and L. Zhu, “Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy,” ACS Nano 8, 12250–12258 (2014).
[Crossref]

Gao, Y.

M. Chen, J. Zhang, C. Cai, Y. Gao, and J. Luo, “Fast direct reconstruction strategy of dynamic fluorescence molecular tomography using graphics processing units,” J. Biomed. Opt. 21, 66010 (2016).
[Crossref]

Giering, K.

K. Giering, I. Lamprecht, and O. Minet, “Specific heat capacities of human and animal tissues,” Proc. SPIE 2624, 188–197 (1996).
[Crossref]

Gong, H.

L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]

Gu, X.

L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]

Gu, Z. J.

J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]

Guo, S. R.

L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
[Crossref]

Hammersen, F.

J. H. Barker, F. Hammersen, I. Bondar, E. Uhl, T. J. Galla, M. D. Menger, and K. Messmer, “The hairless mouse ear for in vivo studies of skin microcirculation,” Plast. Reconstr. Surg. 83, 948–959 (1989).
[Crossref]

He, B.

L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
[Crossref]

He, X. Y.

L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
[Crossref]

Hildebrandt, B.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol./Hemat. 43, 33–56 (2002).
[Crossref]

Holmer, N.

C. A. Barkman, L. O. Almquist, T. Kirkhorn, and N. Holmer, “Thermotherapy: feasibility study using a single focussed ultrasound transducer,” Int. J. Hyperther. 15, 63–76 (1999).
[Crossref]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref]

Hu, Z.

Z. Hu, X. Y. Yang, Y. Liu, G. N. Sankin, E. C. Pua, M. A. Morse, H. K. Lyerly, T. M. Clay, and P. Zhong, “Investigation of HIFU-induced anti-tumor immunity in a murine tumor model,” J. Transl. Med. 5, 34 (2007).
[Crossref]

Huang, C. H.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Huang, J.

C. Li, W. Zhang, W. Fan, J. Huang, F. Zhang, and P. Wu, “Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound,” Cancer 116, 3934–3942 (2010).
[Crossref]

Huang, X.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Laser Med. Sci. 23, 217–228 (2008).
[Crossref]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239, 129–135 (2006).
[Crossref]

Hynynen, K.

E. E. Konofagou, J. Thierman, T. Karjalainen, and K. Hynynen, “The temperature dependence of ultrasound-stimulated acoustic emission,” Ultrasound Med. Biol. 28, 331–338 (2002).
[Crossref]

E. Konofagou, J. Thierman, and K. Hynynen, “Experimental temperature monitoring and coagulation detection using ultrasound-stimulated acoustic emission,” in Ultrasonics Symposium (IEEE, 2001), vol. 1292, pp. 1299–1302.

Hyodo, T.

T. Uchida, H. Ohkusa, H. Yamashita, S. Shoji, Y. Nagata, T. Hyodo, and T. Satoh, “Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer,” Int. J. Urol. 13, 228–233 (2010).
[Crossref]

T. Uchida, H. Ohkusa, Y. Nagata, T. Hyodo, T. Satoh, and A. Irie, “Treatment of localized prostate cancer using high-intensity focused ultrasound,” BJU Int. 97, 56–61 (2006).
[Crossref]

Irie, A.

T. Uchida, H. Ohkusa, Y. Nagata, T. Hyodo, T. Satoh, and A. Irie, “Treatment of localized prostate cancer using high-intensity focused ultrasound,” BJU Int. 97, 56–61 (2006).
[Crossref]

Issels, R.

M. Falk and R. Issels, “Hyperthermia in oncology,” Int. J. Hyperther. 17, 1–18 (2001).
[Crossref]

Jain, P. K.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Laser Med. Sci. 23, 217–228 (2008).
[Crossref]

Jankovic, L.

M. Pramanik, T. N. Erpelding, L. Jankovic, and L. V. Wang, “Tissue temperature monitoring using thermoacoustic and photoacoustic techniques,” Proc. SPIE 7564, 75641Y (2010).
[Crossref]

Johnston, K.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref]

Karjalainen, T.

E. E. Konofagou, J. Thierman, T. Karjalainen, and K. Hynynen, “The temperature dependence of ultrasound-stimulated acoustic emission,” Ultrasound Med. Biol. 28, 331–338 (2002).
[Crossref]

Karpiouk, A.

B. Wang, J. Su, A. Karpiouk, D. Yeager, and S. Emelianov, Intravascular Photoacoustic and Ultrasound Imaging: From Tissue Characterization to Molecular Imaging to Image-Guided Therapy (Springer, 2011).

Ke, H.

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt. 18, 26003 (2013).
[Crossref]

J. Yao, H. Ke, S. Tai, Y. Zhou, and L. V. Wang, “Absolute photoacoustic thermometry in deep tissue,” Opt. Lett. 38, 5228–5231 (2013).
[Crossref]

Kerner, T.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol./Hemat. 43, 33–56 (2002).
[Crossref]

Khokhlova, T. D.

S. M. Nikitin, T. D. Khokhlova, and I. M. Pelivanov, “Temperature dependence of the optoacoustic transformation efficiency in ex vivo tissues for application in monitoring thermal therapies,” J. Biomed. Opt. 17, 061214 (2012).
[Crossref]

Kirkhorn, T.

C. A. Barkman, L. O. Almquist, T. Kirkhorn, and N. Holmer, “Thermotherapy: feasibility study using a single focussed ultrasound transducer,” Int. J. Hyperther. 15, 63–76 (1999).
[Crossref]

Kishor, R.

F. Gao, X. Feng, R. Zhang, S. Liu, R. Ding, R. Kishor, and Y. Zheng, “Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging,” Sci. Rep. 7, 626 (2017).
[Crossref]

Koinzer, S.

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
[Crossref]

Konofagou, E.

E. Konofagou, J. Thierman, and K. Hynynen, “Experimental temperature monitoring and coagulation detection using ultrasound-stimulated acoustic emission,” in Ultrasonics Symposium (IEEE, 2001), vol. 1292, pp. 1299–1302.

Konofagou, E. E.

E. E. Konofagou, J. Thierman, T. Karjalainen, and K. Hynynen, “The temperature dependence of ultrasound-stimulated acoustic emission,” Ultrasound Med. Biol. 28, 331–338 (2002).
[Crossref]

Lamprecht, I.

K. Giering, I. Lamprecht, and O. Minet, “Specific heat capacities of human and animal tissues,” Proc. SPIE 2624, 188–197 (1996).
[Crossref]

Lan, B.

M. Li, B. Lan, W. Liu, J. Xia, and J. Yao, “Internal-illumination photoacoustic computed tomography,” J. Biomed. Opt. 23, 030506 (2018).
[Crossref]

Larin, K. V.

R. O. Esenaliev, A. A. Oraevsky, K. V. Larin, I. V. Larina, and M. Motamedi, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D 38, 2633–2639 (1999).
[Crossref]

Larina, I. V.

R. O. Esenaliev, A. A. Oraevsky, K. V. Larin, I. V. Larina, and M. Motamedi, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D 38, 2633–2639 (1999).
[Crossref]

Larson, T.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref]

Le Bail, B.

O. Seror, M. Lepetit-Coiffe, B. Le Bail, B. D. de Senneville, H. Trillaud, C. Moonen, and B. Quesson, “Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo,” Eur. Radiology 18, 408–416 (2008).
[Crossref]

Lepetit-Coiffe, M.

O. Seror, M. Lepetit-Coiffe, B. Le Bail, B. D. de Senneville, H. Trillaud, C. Moonen, and B. Quesson, “Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo,” Eur. Radiology 18, 408–416 (2008).
[Crossref]

Lewis, M. A.

M. A. Lewis, R. M. Staruch, and R. Chopra, “Thermometry and ablation monitoring with ultrasound,” Int. J. Hyperthermia 31, 163–181 (2015).
[Crossref]

Li, C.

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt. 18, 26003 (2013).
[Crossref]

C. Li, W. Zhang, W. Fan, J. Huang, F. Zhang, and P. Wu, “Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound,” Cancer 116, 3934–3942 (2010).
[Crossref]

Li, L.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Li, L.-F.

G.-L. Sun, Z.-H. Ren, and L.-F. Li, “Clinical study of thermotherapy of HIFU in combination with 3D-CRT treating advanced primary liver cancer,” Jilin Med. J. 29, 542–543 (2008).

Li, M.

M. Li, B. Lan, W. Liu, J. Xia, and J. Yao, “Internal-illumination photoacoustic computed tomography,” J. Biomed. Opt. 23, 030506 (2018).
[Crossref]

Li, P. C.

S. H. Wang and P. C. Li, “Photoacoustic temperature measurements for monitoring of thermal therapy,” Proc. SPIE 7177, 71771S (2009).
[Crossref]

Li, X. D.

X. L. Liang, L. Fang, X. D. Li, X. Zhang, and F. Wang, “Activatable near infrared dye conjugated hyaluronic acid based nanoparticles as a targeted theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal therapy,” Biomaterials 132, 72–84(2017).
[Crossref]

Li, Y. P.

L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
[Crossref]

Liang, X. L.

X. L. Liang, L. Fang, X. D. Li, X. Zhang, and F. Wang, “Activatable near infrared dye conjugated hyaluronic acid based nanoparticles as a targeted theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal therapy,” Biomaterials 132, 72–84(2017).
[Crossref]

Liopo, A.

E. Petrova, A. Liopo, V. Nadvoretskiy, and S. Ermilov, “Imaging technique for real-time temperature monitoring during cryotherapy of lesions,” J. Biomed. Opt. 21, 116007 (2016).
[Crossref]

E. V. Petrova, A. Liopo, A. A. Oraevsky, and S. A. Ermilov, “Universal temperature-dependent normalized optoacoustic response of blood,” Proc. SPIE 9323, 93231Y (2015).
[Crossref]

Liu, D.

D. Liu and E. S. Ebbini, “Real-time 2-D temperature imaging using ultrasound,” IEEE Trans. Biomed. Eng. 57, 12–16 (2010).
[Crossref]

Liu, G.

L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]

Liu, J. J.

L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]

Liu, S.

F. Gao, X. Feng, R. Zhang, S. Liu, R. Ding, R. Kishor, and Y. Zheng, “Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging,” Sci. Rep. 7, 626 (2017).
[Crossref]

Liu, T.

L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]

Liu, W.

M. Li, B. Lan, W. Liu, J. Xia, and J. Yao, “Internal-illumination photoacoustic computed tomography,” J. Biomed. Opt. 23, 030506 (2018).
[Crossref]

Liu, Y.

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt. 18, 26003 (2013).
[Crossref]

Z. Hu, X. Y. Yang, Y. Liu, G. N. Sankin, E. C. Pua, M. A. Morse, H. K. Lyerly, T. M. Clay, and P. Zhong, “Investigation of HIFU-induced anti-tumor immunity in a murine tumor model,” J. Transl. Med. 5, 34 (2007).
[Crossref]

Liu, Z.

L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]

Lu, X.

Y. Xing, X. Lu, E. C. Pua, and P. Zhong, “The effect of high intensity focused ultrasound treatment on metastases in a murine melanoma model,” Biochem. Biophys. Res. Commun. 375, 645–650 (2008).
[Crossref]

Luft, S.

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
[Crossref]

Luo, J.

Y. Zhou, E. Tang, J. Luo, and J. Yao, “Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study,” J. Biomed. Opt. 23, 1–10 (2018).
[Crossref]

M. Chen, J. Zhang, C. Cai, Y. Gao, and J. Luo, “Fast direct reconstruction strategy of dynamic fluorescence molecular tomography using graphics processing units,” J. Biomed. Opt. 21, 66010 (2016).
[Crossref]

Lyerly, H. K.

Z. Hu, X. Y. Yang, Y. Liu, G. N. Sankin, E. C. Pua, M. A. Morse, H. K. Lyerly, T. M. Clay, and P. Zhong, “Investigation of HIFU-induced anti-tumor immunity in a murine tumor model,” J. Transl. Med. 5, 34 (2007).
[Crossref]

Lyu, Y.

Y. Lyu, Y. Fang, Q. Q. Miao, X. Zhen, D. Ding, and K. Y. Pu, “Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy,” ACS Nano 10, 4472–4481 (2016).
[Crossref]

Ma, L.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref]

Ma, Q. J.

L. W. Zhang, S. Gao, F. Zhang, K. Yang, Q. J. Ma, and L. Zhu, “Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy,” ACS Nano 8, 12250–12258 (2014).
[Crossref]

Ma, X. Y.

J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]

Maassmoreno, R.

R. Maassmoreno and C. A. Damianou, “Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part I. Analytical model,” J. Acoust. Soc. Am. 100, 2514–2521 (1996).
[Crossref]

Martin, R. W.

S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey, and L. A. Crum, “Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound Med. Biol. 27, 33–42(2001).
[Crossref]

Maslov, K. I.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Menger, M. D.

J. H. Barker, F. Hammersen, I. Bondar, E. Uhl, T. J. Galla, M. D. Menger, and K. Messmer, “The hairless mouse ear for in vivo studies of skin microcirculation,” Plast. Reconstr. Surg. 83, 948–959 (1989).
[Crossref]

Messmer, K.

J. H. Barker, F. Hammersen, I. Bondar, E. Uhl, T. J. Galla, M. D. Menger, and K. Messmer, “The hairless mouse ear for in vivo studies of skin microcirculation,” Plast. Reconstr. Surg. 83, 948–959 (1989).
[Crossref]

Miao, Q. Q.

Y. Lyu, Y. Fang, Q. Q. Miao, X. Zhen, D. Ding, and K. Y. Pu, “Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy,” ACS Nano 10, 4472–4481 (2016).
[Crossref]

Milner, T.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref]

Minet, O.

K. Giering, I. Lamprecht, and O. Minet, “Specific heat capacities of human and animal tissues,” Proc. SPIE 2624, 188–197 (1996).
[Crossref]

Miura, Y.

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
[Crossref]

Moonen, C.

O. Seror, M. Lepetit-Coiffe, B. Le Bail, B. D. de Senneville, H. Trillaud, C. Moonen, and B. Quesson, “Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo,” Eur. Radiology 18, 408–416 (2008).
[Crossref]

Moonen, C. T.

B. Quesson, J. A. de Zwart, and C. T. Moonen, “Magnetic resonance temperature imaging for guidance of thermotherapy,” J. Mag. Res. Imag. 12, 525–533 (2000).
[Crossref]

Morse, M. A.

Z. Hu, X. Y. Yang, Y. Liu, G. N. Sankin, E. C. Pua, M. A. Morse, H. K. Lyerly, T. M. Clay, and P. Zhong, “Investigation of HIFU-induced anti-tumor immunity in a murine tumor model,” J. Transl. Med. 5, 34 (2007).
[Crossref]

Motamedi, M.

E. V. Petrova, M. Motamedi, A. A. Oraevsky, and S. A. Ermilov, “In vivo cryoablation of prostate tissue with temperature monitoring by optoacoustic imaging,” Proc. SPIE 9708, 97080G (2016).
[Crossref]

R. O. Esenaliev, A. A. Oraevsky, K. V. Larin, I. V. Larina, and M. Motamedi, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D 38, 2633–2639 (1999).
[Crossref]

Nadvoretskiy, V.

E. Petrova, A. Liopo, V. Nadvoretskiy, and S. Ermilov, “Imaging technique for real-time temperature monitoring during cryotherapy of lesions,” J. Biomed. Opt. 21, 116007 (2016).
[Crossref]

E. V. Petrova, S. A. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. A. Oraevsky, “Temperature dependence of Grüneisen parameter in optically absorbing solutions measured by 2D optoacoustic imaging,” Proc. SPIE 8943, 89430S (2014).
[Crossref]

E. Petrova, S. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. Oraevsky, “Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions,” Opt. Express 21, 25077–25090 (2013).
[Crossref]

Nagata, Y.

T. Uchida, H. Ohkusa, H. Yamashita, S. Shoji, Y. Nagata, T. Hyodo, and T. Satoh, “Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer,” Int. J. Urol. 13, 228–233 (2010).
[Crossref]

T. Uchida, H. Ohkusa, Y. Nagata, T. Hyodo, T. Satoh, and A. Irie, “Treatment of localized prostate cancer using high-intensity focused ultrasound,” BJU Int. 97, 56–61 (2006).
[Crossref]

Nelson, P. I.

S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey, and L. A. Crum, “Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound Med. Biol. 27, 33–42(2001).
[Crossref]

Nikitin, S. M.

S. M. Nikitin, T. D. Khokhlova, and I. M. Pelivanov, “Temperature dependence of the optoacoustic transformation efficiency in ex vivo tissues for application in monitoring thermal therapies,” J. Biomed. Opt. 17, 061214 (2012).
[Crossref]

Odeen, H.

H. Odeen, S. Almquist, J. de Bever, D. A. Christensen, and D. L. Parker, “MR thermometry for focused ultrasound monitoring utilizing model predictive filtering and ultrasound beam modeling,” J. Ther. Ultrasound 4, 23 (2016).
[Crossref]

Ohkusa, H.

T. Uchida, H. Ohkusa, H. Yamashita, S. Shoji, Y. Nagata, T. Hyodo, and T. Satoh, “Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer,” Int. J. Urol. 13, 228–233 (2010).
[Crossref]

T. Uchida, H. Ohkusa, Y. Nagata, T. Hyodo, T. Satoh, and A. Irie, “Treatment of localized prostate cancer using high-intensity focused ultrasound,” BJU Int. 97, 56–61 (2006).
[Crossref]

Oraevsky, A.

Oraevsky, A. A.

E. V. Petrova, M. Motamedi, A. A. Oraevsky, and S. A. Ermilov, “In vivo cryoablation of prostate tissue with temperature monitoring by optoacoustic imaging,” Proc. SPIE 9708, 97080G (2016).
[Crossref]

E. V. Petrova, A. Liopo, A. A. Oraevsky, and S. A. Ermilov, “Universal temperature-dependent normalized optoacoustic response of blood,” Proc. SPIE 9323, 93231Y (2015).
[Crossref]

E. V. Petrova, S. A. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. A. Oraevsky, “Temperature dependence of Grüneisen parameter in optically absorbing solutions measured by 2D optoacoustic imaging,” Proc. SPIE 8943, 89430S (2014).
[Crossref]

E. V. Petrova, A. A. Oraevsky, and S. A. Ermilov, “Red blood cell as a universal optoacoustic sensor for non-invasive temperature monitoring,” Appl. Phys. Lett. 105, 094103 (2014).
[Crossref]

R. O. Esenaliev, A. A. Oraevsky, K. V. Larin, I. V. Larina, and M. Motamedi, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D 38, 2633–2639 (1999).
[Crossref]

Oralkan, Ö.

W. Xun, J. L. Sanders, D. N. Stephens, and Ö. Oralkan, “Photoacoustic-imaging-based temperature monitoring for high-intensity focused ultrasound therapy,” in 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2016), pp. 3235–3238.

Orlande, H. R. B.

M. Alaeian and H. R. B. Orlande, “Inverse photoacoustic technique for parameter and temperature estimation in tissues,” Heat Transf. Eng. 38, 1573–1594 (2017).
[Crossref]

Orsi, F.

F. Orsi, P. Arnone, W. Chen, and L. Zhang, “High intensity focused ultrasound ablation: a new therapeutic option for solid tumors,” J. Cancer Res. Ther. 6, 414–420 (2010).
[Crossref]

Park, S.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref]

Parker, D. L.

H. Odeen, S. Almquist, J. de Bever, D. A. Christensen, and D. L. Parker, “MR thermometry for focused ultrasound monitoring utilizing model predictive filtering and ultrasound beam modeling,” J. Ther. Ultrasound 4, 23 (2016).
[Crossref]

Pelivanov, I. M.

S. M. Nikitin, T. D. Khokhlova, and I. M. Pelivanov, “Temperature dependence of the optoacoustic transformation efficiency in ex vivo tissues for application in monitoring thermal therapies,” J. Biomed. Opt. 17, 061214 (2012).
[Crossref]

Petrova, E.

E. Petrova, A. Liopo, V. Nadvoretskiy, and S. Ermilov, “Imaging technique for real-time temperature monitoring during cryotherapy of lesions,” J. Biomed. Opt. 21, 116007 (2016).
[Crossref]

E. Petrova, S. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. Oraevsky, “Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions,” Opt. Express 21, 25077–25090 (2013).
[Crossref]

Petrova, E. V.

E. V. Petrova, M. Motamedi, A. A. Oraevsky, and S. A. Ermilov, “In vivo cryoablation of prostate tissue with temperature monitoring by optoacoustic imaging,” Proc. SPIE 9708, 97080G (2016).
[Crossref]

E. V. Petrova, A. Liopo, A. A. Oraevsky, and S. A. Ermilov, “Universal temperature-dependent normalized optoacoustic response of blood,” Proc. SPIE 9323, 93231Y (2015).
[Crossref]

E. V. Petrova, S. A. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. A. Oraevsky, “Temperature dependence of Grüneisen parameter in optically absorbing solutions measured by 2D optoacoustic imaging,” Proc. SPIE 8943, 89430S (2014).
[Crossref]

E. V. Petrova, A. A. Oraevsky, and S. A. Ermilov, “Red blood cell as a universal optoacoustic sensor for non-invasive temperature monitoring,” Appl. Phys. Lett. 105, 094103 (2014).
[Crossref]

Petrusca, L.

V. Auboiroux, E. Dumont, L. Petrusca, M. Viallon, and R. Salomir, “An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy,” Phys. Med. Biol. 56, 3563–3582 (2011).
[Crossref]

Pramanik, M.

M. Pramanik, “Improving tangential resolution with a modified delay-and-sum reconstruction algorithm in photoacoustic and thermoacoustic tomography,” J. Opt. Soc. Am. A 31, 621–627 (2014).
[Crossref]

M. Pramanik, T. N. Erpelding, L. Jankovic, and L. V. Wang, “Tissue temperature monitoring using thermoacoustic and photoacoustic techniques,” Proc. SPIE 7564, 75641Y (2010).
[Crossref]

M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt. 14, 054024 (2009).
[Crossref]

Ptaszynski, L.

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
[Crossref]

Pu, K. Y.

Y. Lyu, Y. Fang, Q. Q. Miao, X. Zhen, D. Ding, and K. Y. Pu, “Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy,” ACS Nano 10, 4472–4481 (2016).
[Crossref]

Pua, E. C.

Y. Xing, X. Lu, E. C. Pua, and P. Zhong, “The effect of high intensity focused ultrasound treatment on metastases in a murine melanoma model,” Biochem. Biophys. Res. Commun. 375, 645–650 (2008).
[Crossref]

Z. Hu, X. Y. Yang, Y. Liu, G. N. Sankin, E. C. Pua, M. A. Morse, H. K. Lyerly, T. M. Clay, and P. Zhong, “Investigation of HIFU-induced anti-tumor immunity in a murine tumor model,” J. Transl. Med. 5, 34 (2007).
[Crossref]

Quesson, B.

O. Seror, M. Lepetit-Coiffe, B. Le Bail, B. D. de Senneville, H. Trillaud, C. Moonen, and B. Quesson, “Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo,” Eur. Radiology 18, 408–416 (2008).
[Crossref]

B. Quesson, J. A. de Zwart, and C. T. Moonen, “Magnetic resonance temperature imaging for guidance of thermotherapy,” J. Mag. Res. Imag. 12, 525–533 (2000).
[Crossref]

Ren, Z.-H.

G.-L. Sun, Z.-H. Ren, and L.-F. Li, “Clinical study of thermotherapy of HIFU in combination with 3D-CRT treating advanced primary liver cancer,” Jilin Med. J. 29, 542–543 (2008).

Riess, H.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol./Hemat. 43, 33–56 (2002).
[Crossref]

Roider, J.

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
[Crossref]

Salomir, R.

V. Auboiroux, E. Dumont, L. Petrusca, M. Viallon, and R. Salomir, “An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy,” Phys. Med. Biol. 56, 3563–3582 (2011).
[Crossref]

Sanders, J. L.

W. Xun, J. L. Sanders, D. N. Stephens, and Ö. Oralkan, “Photoacoustic-imaging-based temperature monitoring for high-intensity focused ultrasound therapy,” in 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2016), pp. 3235–3238.

Sankin, G. N.

Z. Hu, X. Y. Yang, Y. Liu, G. N. Sankin, E. C. Pua, M. A. Morse, H. K. Lyerly, T. M. Clay, and P. Zhong, “Investigation of HIFU-induced anti-tumor immunity in a murine tumor model,” J. Transl. Med. 5, 34 (2007).
[Crossref]

Satoh, T.

T. Uchida, H. Ohkusa, H. Yamashita, S. Shoji, Y. Nagata, T. Hyodo, and T. Satoh, “Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer,” Int. J. Urol. 13, 228–233 (2010).
[Crossref]

T. Uchida, H. Ohkusa, Y. Nagata, T. Hyodo, T. Satoh, and A. Irie, “Treatment of localized prostate cancer using high-intensity focused ultrasound,” BJU Int. 97, 56–61 (2006).
[Crossref]

Schlott, K.

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
[Crossref]

Seror, O.

O. Seror, M. Lepetit-Coiffe, B. Le Bail, B. D. de Senneville, H. Trillaud, C. Moonen, and B. Quesson, “Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo,” Eur. Radiology 18, 408–416 (2008).
[Crossref]

Shah, J.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref]

Shi, X.

S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey, and L. A. Crum, “Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound Med. Biol. 27, 33–42(2001).
[Crossref]

Shi, X. Z.

L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]

Shoji, S.

T. Uchida, H. Ohkusa, H. Yamashita, S. Shoji, Y. Nagata, T. Hyodo, and T. Satoh, “Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer,” Int. J. Urol. 13, 228–233 (2010).
[Crossref]

Simmons, R.

Y. Zhou, L. Zhai, R. Simmons, and P. Zhong, “Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone,” J. Acoust. Soc. Am. 120, 676–685 (2006).
[Crossref]

Sokolov, K.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref]

Sreenivasa, G.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol./Hemat. 43, 33–56 (2002).
[Crossref]

Staruch, R. M.

M. A. Lewis, R. M. Staruch, and R. Chopra, “Thermometry and ablation monitoring with ultrasound,” Int. J. Hyperthermia 31, 163–181 (2015).
[Crossref]

Stephens, D. N.

W. Xun, J. L. Sanders, D. N. Stephens, and Ö. Oralkan, “Photoacoustic-imaging-based temperature monitoring for high-intensity focused ultrasound therapy,” in 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2016), pp. 3235–3238.

Su, J.

B. Wang, J. Su, A. Karpiouk, D. Yeager, and S. Emelianov, Intravascular Photoacoustic and Ultrasound Imaging: From Tissue Characterization to Molecular Imaging to Image-Guided Therapy (Springer, 2011).

Su, R.

E. V. Petrova, S. A. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. A. Oraevsky, “Temperature dependence of Grüneisen parameter in optically absorbing solutions measured by 2D optoacoustic imaging,” Proc. SPIE 8943, 89430S (2014).
[Crossref]

E. Petrova, S. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. Oraevsky, “Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions,” Opt. Express 21, 25077–25090 (2013).
[Crossref]

Sun, B. Q.

L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]

Sun, G.-L.

G.-L. Sun, Z.-H. Ren, and L.-F. Li, “Clinical study of thermotherapy of HIFU in combination with 3D-CRT treating advanced primary liver cancer,” Jilin Med. J. 29, 542–543 (2008).

Tai, S.

Tan, T.

L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
[Crossref]

Tang, E.

Y. Zhou, E. Tang, J. Luo, and J. Yao, “Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study,” J. Biomed. Opt. 23, 1–10 (2018).
[Crossref]

Thierman, J.

E. E. Konofagou, J. Thierman, T. Karjalainen, and K. Hynynen, “The temperature dependence of ultrasound-stimulated acoustic emission,” Ultrasound Med. Biol. 28, 331–338 (2002).
[Crossref]

E. Konofagou, J. Thierman, and K. Hynynen, “Experimental temperature monitoring and coagulation detection using ultrasound-stimulated acoustic emission,” in Ultrasonics Symposium (IEEE, 2001), vol. 1292, pp. 1299–1302.

Tian, G.

J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]

Trillaud, H.

O. Seror, M. Lepetit-Coiffe, B. Le Bail, B. D. de Senneville, H. Trillaud, C. Moonen, and B. Quesson, “Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo,” Eur. Radiology 18, 408–416 (2008).
[Crossref]

Uchida, T.

T. Uchida, H. Ohkusa, H. Yamashita, S. Shoji, Y. Nagata, T. Hyodo, and T. Satoh, “Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer,” Int. J. Urol. 13, 228–233 (2010).
[Crossref]

T. Uchida, H. Ohkusa, Y. Nagata, T. Hyodo, T. Satoh, and A. Irie, “Treatment of localized prostate cancer using high-intensity focused ultrasound,” BJU Int. 97, 56–61 (2006).
[Crossref]

Uhl, E.

J. H. Barker, F. Hammersen, I. Bondar, E. Uhl, T. J. Galla, M. D. Menger, and K. Messmer, “The hairless mouse ear for in vivo studies of skin microcirculation,” Plast. Reconstr. Surg. 83, 948–959 (1989).
[Crossref]

Vaezy, S.

S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey, and L. A. Crum, “Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound Med. Biol. 27, 33–42(2001).
[Crossref]

Valvano, J. W.

J. W. Valvano, J. R. Cochran, and K. R. Diller, “Thermal-conductivity and diffusivity of biomaterials measured with self-heated thermistors,” Int. J. Thermophys. 6, 301–311 (1985).
[Crossref]

Viallon, M.

V. Auboiroux, E. Dumont, L. Petrusca, M. Viallon, and R. Salomir, “An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy,” Phys. Med. Biol. 56, 3563–3582 (2011).
[Crossref]

Wang, B.

B. Wang, J. Su, A. Karpiouk, D. Yeager, and S. Emelianov, Intravascular Photoacoustic and Ultrasound Imaging: From Tissue Characterization to Molecular Imaging to Image-Guided Therapy (Springer, 2011).

Wang, C.

L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]

Wang, F.

X. L. Liang, L. Fang, X. D. Li, X. Zhang, and F. Wang, “Activatable near infrared dye conjugated hyaluronic acid based nanoparticles as a targeted theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal therapy,” Biomaterials 132, 72–84(2017).
[Crossref]

Wang, H.

L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
[Crossref]

Wang, L.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt. 18, 26003 (2013).
[Crossref]

Wang, L. V.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

J. Yao, H. Ke, S. Tai, Y. Zhou, and L. V. Wang, “Absolute photoacoustic thermometry in deep tissue,” Opt. Lett. 38, 5228–5231 (2013).
[Crossref]

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt. 18, 26003 (2013).
[Crossref]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref]

M. Pramanik, T. N. Erpelding, L. Jankovic, and L. V. Wang, “Tissue temperature monitoring using thermoacoustic and photoacoustic techniques,” Proc. SPIE 7564, 75641Y (2010).
[Crossref]

M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt. 14, 054024 (2009).
[Crossref]

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).

Wang, S. H.

S. H. Wang and P. C. Li, “Photoacoustic temperature measurements for monitoring of thermal therapy,” Proc. SPIE 7177, 71771S (2009).
[Crossref]

Wang, X. Y.

L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]

Wang, Z. L.

J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]

Wong, T. T. W.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Wu, P.

C. Li, W. Zhang, W. Fan, J. Huang, F. Zhang, and P. Wu, “Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound,” Cancer 116, 3934–3942 (2010).
[Crossref]

Wust, P.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol./Hemat. 43, 33–56 (2002).
[Crossref]

Xia, J.

M. Li, B. Lan, W. Liu, J. Xia, and J. Yao, “Internal-illumination photoacoustic computed tomography,” J. Biomed. Opt. 23, 030506 (2018).
[Crossref]

Xing, H. Y.

L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]

Xing, Y.

Y. Xing, X. Lu, E. C. Pua, and P. Zhong, “The effect of high intensity focused ultrasound treatment on metastases in a murine melanoma model,” Biochem. Biophys. Res. Commun. 375, 645–650 (2008).
[Crossref]

Xu, M.

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).

Xun, W.

W. Xun, J. L. Sanders, D. N. Stephens, and Ö. Oralkan, “Photoacoustic-imaging-based temperature monitoring for high-intensity focused ultrasound therapy,” in 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2016), pp. 3235–3238.

Yamashita, H.

T. Uchida, H. Ohkusa, H. Yamashita, S. Shoji, Y. Nagata, T. Hyodo, and T. Satoh, “Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer,” Int. J. Urol. 13, 228–233 (2010).
[Crossref]

Yang, J. M.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Yang, K.

L. W. Zhang, S. Gao, F. Zhang, K. Yang, Q. J. Ma, and L. Zhu, “Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy,” ACS Nano 8, 12250–12258 (2014).
[Crossref]

Yang, X. Y.

Z. Hu, X. Y. Yang, Y. Liu, G. N. Sankin, E. C. Pua, M. A. Morse, H. K. Lyerly, T. M. Clay, and P. Zhong, “Investigation of HIFU-induced anti-tumor immunity in a murine tumor model,” J. Transl. Med. 5, 34 (2007).
[Crossref]

Yao, J.

M. Li, B. Lan, W. Liu, J. Xia, and J. Yao, “Internal-illumination photoacoustic computed tomography,” J. Biomed. Opt. 23, 030506 (2018).
[Crossref]

Y. Zhou, E. Tang, J. Luo, and J. Yao, “Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study,” J. Biomed. Opt. 23, 1–10 (2018).
[Crossref]

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

J. Yao, H. Ke, S. Tai, Y. Zhou, and L. V. Wang, “Absolute photoacoustic thermometry in deep tissue,” Opt. Lett. 38, 5228–5231 (2013).
[Crossref]

Yeager, D.

B. Wang, J. Su, A. Karpiouk, D. Yeager, and S. Emelianov, Intravascular Photoacoustic and Ultrasound Imaging: From Tissue Characterization to Molecular Imaging to Image-Guided Therapy (Springer, 2011).

Yin, W. Y.

J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]

Yu, J.

J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]

Zeng, L. J.

L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
[Crossref]

Zhai, L.

Y. Zhou, L. Zhai, R. Simmons, and P. Zhong, “Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone,” J. Acoust. Soc. Am. 120, 676–685 (2006).
[Crossref]

Zhang, C.

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt. 18, 26003 (2013).
[Crossref]

Zhang, F.

L. W. Zhang, S. Gao, F. Zhang, K. Yang, Q. J. Ma, and L. Zhu, “Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy,” ACS Nano 8, 12250–12258 (2014).
[Crossref]

C. Li, W. Zhang, W. Fan, J. Huang, F. Zhang, and P. Wu, “Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound,” Cancer 116, 3934–3942 (2010).
[Crossref]

Zhang, J.

M. Chen, J. Zhang, C. Cai, Y. Gao, and J. Luo, “Fast direct reconstruction strategy of dynamic fluorescence molecular tomography using graphics processing units,” J. Biomed. Opt. 21, 66010 (2016).
[Crossref]

Zhang, L.

F. Orsi, P. Arnone, W. Chen, and L. Zhang, “High intensity focused ultrasound ablation: a new therapeutic option for solid tumors,” J. Cancer Res. Ther. 6, 414–420 (2010).
[Crossref]

Zhang, L. W.

L. W. Zhang, S. Gao, F. Zhang, K. Yang, Q. J. Ma, and L. Zhu, “Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy,” ACS Nano 8, 12250–12258 (2014).
[Crossref]

Zhang, R.

F. Gao, X. Feng, R. Zhang, S. Liu, R. Ding, R. Kishor, and Y. Zheng, “Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging,” Sci. Rep. 7, 626 (2017).
[Crossref]

Zhang, W.

C. Li, W. Zhang, W. Fan, J. Huang, F. Zhang, and P. Wu, “Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound,” Cancer 116, 3934–3942 (2010).
[Crossref]

Zhang, X.

X. L. Liang, L. Fang, X. D. Li, X. Zhang, and F. Wang, “Activatable near infrared dye conjugated hyaluronic acid based nanoparticles as a targeted theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal therapy,” Biomaterials 132, 72–84(2017).
[Crossref]

J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]

Zhang, Z. W.

L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
[Crossref]

Zhao, Y. L.

J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]

Zhen, X.

Y. Lyu, Y. Fang, Q. Q. Miao, X. Zhen, D. Ding, and K. Y. Pu, “Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy,” ACS Nano 10, 4472–4481 (2016).
[Crossref]

Zheng, X. P.

J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]

Zheng, Y.

F. Gao, X. Feng, R. Zhang, S. Liu, R. Ding, R. Kishor, and Y. Zheng, “Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging,” Sci. Rep. 7, 626 (2017).
[Crossref]

Zhong, P.

Y. Xing, X. Lu, E. C. Pua, and P. Zhong, “The effect of high intensity focused ultrasound treatment on metastases in a murine melanoma model,” Biochem. Biophys. Res. Commun. 375, 645–650 (2008).
[Crossref]

Z. Hu, X. Y. Yang, Y. Liu, G. N. Sankin, E. C. Pua, M. A. Morse, H. K. Lyerly, T. M. Clay, and P. Zhong, “Investigation of HIFU-induced anti-tumor immunity in a murine tumor model,” J. Transl. Med. 5, 34 (2007).
[Crossref]

Y. Zhou, L. Zhai, R. Simmons, and P. Zhong, “Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone,” J. Acoust. Soc. Am. 120, 676–685 (2006).
[Crossref]

Zhou, Y.

Y. Zhou, E. Tang, J. Luo, and J. Yao, “Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study,” J. Biomed. Opt. 23, 1–10 (2018).
[Crossref]

J. Yao, H. Ke, S. Tai, Y. Zhou, and L. V. Wang, “Absolute photoacoustic thermometry in deep tissue,” Opt. Lett. 38, 5228–5231 (2013).
[Crossref]

Y. Zhou, L. Zhai, R. Simmons, and P. Zhong, “Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone,” J. Acoust. Soc. Am. 120, 676–685 (2006).
[Crossref]

Zhu, L.

L. W. Zhang, S. Gao, F. Zhang, K. Yang, Q. J. Ma, and L. Zhu, “Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy,” ACS Nano 8, 12250–12258 (2014).
[Crossref]

Zou, J.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Zou, L. L.

L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
[Crossref]

ACS Nano (2)

Y. Lyu, Y. Fang, Q. Q. Miao, X. Zhen, D. Ding, and K. Y. Pu, “Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy,” ACS Nano 10, 4472–4481 (2016).
[Crossref]

L. W. Zhang, S. Gao, F. Zhang, K. Yang, Q. J. Ma, and L. Zhu, “Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy,” ACS Nano 8, 12250–12258 (2014).
[Crossref]

Adv. Mater. (1)

L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, and Z. Liu, “PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).
[Crossref]

Appl. Phys. Lett. (1)

E. V. Petrova, A. A. Oraevsky, and S. A. Ermilov, “Red blood cell as a universal optoacoustic sensor for non-invasive temperature monitoring,” Appl. Phys. Lett. 105, 094103 (2014).
[Crossref]

Biochem. Biophys. Res. Commun. (1)

Y. Xing, X. Lu, E. C. Pua, and P. Zhong, “The effect of high intensity focused ultrasound treatment on metastases in a murine melanoma model,” Biochem. Biophys. Res. Commun. 375, 645–650 (2008).
[Crossref]

Biomaterials (1)

X. L. Liang, L. Fang, X. D. Li, X. Zhang, and F. Wang, “Activatable near infrared dye conjugated hyaluronic acid based nanoparticles as a targeted theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal therapy,” Biomaterials 132, 72–84(2017).
[Crossref]

BJU Int. (1)

T. Uchida, H. Ohkusa, Y. Nagata, T. Hyodo, T. Satoh, and A. Irie, “Treatment of localized prostate cancer using high-intensity focused ultrasound,” BJU Int. 97, 56–61 (2006).
[Crossref]

Cancer (1)

C. Li, W. Zhang, W. Fan, J. Huang, F. Zhang, and P. Wu, “Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound,” Cancer 116, 3934–3942 (2010).
[Crossref]

Cancer Lett. (1)

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239, 129–135 (2006).
[Crossref]

Crit. Rev. Oncol./Hemat. (1)

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol./Hemat. 43, 33–56 (2002).
[Crossref]

Eur. Radiology (1)

O. Seror, M. Lepetit-Coiffe, B. Le Bail, B. D. de Senneville, H. Trillaud, C. Moonen, and B. Quesson, “Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo,” Eur. Radiology 18, 408–416 (2008).
[Crossref]

Heat Transf. Eng. (1)

M. Alaeian and H. R. B. Orlande, “Inverse photoacoustic technique for parameter and temperature estimation in tissues,” Heat Transf. Eng. 38, 1573–1594 (2017).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

D. Liu and E. S. Ebbini, “Real-time 2-D temperature imaging using ultrasound,” IEEE Trans. Biomed. Eng. 57, 12–16 (2010).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

M. Fink, “Time reversal of ultrasonic fields. I. Basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 555–566 (1992).
[Crossref]

Int. J. Hyperther. (2)

M. Falk and R. Issels, “Hyperthermia in oncology,” Int. J. Hyperther. 17, 1–18 (2001).
[Crossref]

C. A. Barkman, L. O. Almquist, T. Kirkhorn, and N. Holmer, “Thermotherapy: feasibility study using a single focussed ultrasound transducer,” Int. J. Hyperther. 15, 63–76 (1999).
[Crossref]

Int. J. Hyperthermia (1)

M. A. Lewis, R. M. Staruch, and R. Chopra, “Thermometry and ablation monitoring with ultrasound,” Int. J. Hyperthermia 31, 163–181 (2015).
[Crossref]

Int. J. Thermophys. (1)

J. W. Valvano, J. R. Cochran, and K. R. Diller, “Thermal-conductivity and diffusivity of biomaterials measured with self-heated thermistors,” Int. J. Thermophys. 6, 301–311 (1985).
[Crossref]

Int. J. Urol. (1)

T. Uchida, H. Ohkusa, H. Yamashita, S. Shoji, Y. Nagata, T. Hyodo, and T. Satoh, “Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer,” Int. J. Urol. 13, 228–233 (2010).
[Crossref]

J. Acoust. Soc. Am. (2)

R. Maassmoreno and C. A. Damianou, “Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part I. Analytical model,” J. Acoust. Soc. Am. 100, 2514–2521 (1996).
[Crossref]

Y. Zhou, L. Zhai, R. Simmons, and P. Zhong, “Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone,” J. Acoust. Soc. Am. 120, 676–685 (2006).
[Crossref]

J. Biomed. Opt. (9)

M. Li, B. Lan, W. Liu, J. Xia, and J. Yao, “Internal-illumination photoacoustic computed tomography,” J. Biomed. Opt. 23, 030506 (2018).
[Crossref]

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref]

M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt. 14, 054024 (2009).
[Crossref]

M. Chen, J. Zhang, C. Cai, Y. Gao, and J. Luo, “Fast direct reconstruction strategy of dynamic fluorescence molecular tomography using graphics processing units,” J. Biomed. Opt. 21, 66010 (2016).
[Crossref]

S. M. Nikitin, T. D. Khokhlova, and I. M. Pelivanov, “Temperature dependence of the optoacoustic transformation efficiency in ex vivo tissues for application in monitoring thermal therapies,” J. Biomed. Opt. 17, 061214 (2012).
[Crossref]

E. Petrova, A. Liopo, V. Nadvoretskiy, and S. Ermilov, “Imaging technique for real-time temperature monitoring during cryotherapy of lesions,” J. Biomed. Opt. 21, 116007 (2016).
[Crossref]

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. 17, 061219 (2012).
[Crossref]

Y. Zhou, E. Tang, J. Luo, and J. Yao, “Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study,” J. Biomed. Opt. 23, 1–10 (2018).
[Crossref]

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt. 18, 26003 (2013).
[Crossref]

J. Cancer Res. Ther. (1)

F. Orsi, P. Arnone, W. Chen, and L. Zhang, “High intensity focused ultrasound ablation: a new therapeutic option for solid tumors,” J. Cancer Res. Ther. 6, 414–420 (2010).
[Crossref]

J. Mag. Res. Imag. (1)

B. Quesson, J. A. de Zwart, and C. T. Moonen, “Magnetic resonance temperature imaging for guidance of thermotherapy,” J. Mag. Res. Imag. 12, 525–533 (2000).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Conf. Ser. (1)

M. Fink, “Time-reversal acoustics,” J. Phys. Conf. Ser. 118, 012001 (2008).
[Crossref]

J. Phys. D (1)

R. O. Esenaliev, A. A. Oraevsky, K. V. Larin, I. V. Larina, and M. Motamedi, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D 38, 2633–2639 (1999).
[Crossref]

J. Ther. Ultrasound (1)

H. Odeen, S. Almquist, J. de Bever, D. A. Christensen, and D. L. Parker, “MR thermometry for focused ultrasound monitoring utilizing model predictive filtering and ultrasound beam modeling,” J. Ther. Ultrasound 4, 23 (2016).
[Crossref]

J. Transl. Med. (1)

Z. Hu, X. Y. Yang, Y. Liu, G. N. Sankin, E. C. Pua, M. A. Morse, H. K. Lyerly, T. M. Clay, and P. Zhong, “Investigation of HIFU-induced anti-tumor immunity in a murine tumor model,” J. Transl. Med. 5, 34 (2007).
[Crossref]

Jilin Med. J. (1)

G.-L. Sun, Z.-H. Ren, and L.-F. Li, “Clinical study of thermotherapy of HIFU in combination with 3D-CRT treating advanced primary liver cancer,” Jilin Med. J. 29, 542–543 (2008).

Laser Med. Sci. (1)

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Laser Med. Sci. 23, 217–228 (2008).
[Crossref]

Nat. Methods (1)

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Oncology Times (1)

S. DiGiulio, “FDA clears focused ultrasound system for prostate cancer treatment,” Oncology Times 37, 37 (2015).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Med. Biol. (1)

V. Auboiroux, E. Dumont, L. Petrusca, M. Viallon, and R. Salomir, “An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy,” Phys. Med. Biol. 56, 3563–3582 (2011).
[Crossref]

Phys. Rev. E (1)

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).

Plast. Reconstr. Surg. (1)

J. H. Barker, F. Hammersen, I. Bondar, E. Uhl, T. J. Galla, M. D. Menger, and K. Messmer, “The hairless mouse ear for in vivo studies of skin microcirculation,” Plast. Reconstr. Surg. 83, 948–959 (1989).
[Crossref]

Proc. SPIE (6)

K. Giering, I. Lamprecht, and O. Minet, “Specific heat capacities of human and animal tissues,” Proc. SPIE 2624, 188–197 (1996).
[Crossref]

E. V. Petrova, M. Motamedi, A. A. Oraevsky, and S. A. Ermilov, “In vivo cryoablation of prostate tissue with temperature monitoring by optoacoustic imaging,” Proc. SPIE 9708, 97080G (2016).
[Crossref]

E. V. Petrova, S. A. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. A. Oraevsky, “Temperature dependence of Grüneisen parameter in optically absorbing solutions measured by 2D optoacoustic imaging,” Proc. SPIE 8943, 89430S (2014).
[Crossref]

E. V. Petrova, A. Liopo, A. A. Oraevsky, and S. A. Ermilov, “Universal temperature-dependent normalized optoacoustic response of blood,” Proc. SPIE 9323, 93231Y (2015).
[Crossref]

S. H. Wang and P. C. Li, “Photoacoustic temperature measurements for monitoring of thermal therapy,” Proc. SPIE 7177, 71771S (2009).
[Crossref]

M. Pramanik, T. N. Erpelding, L. Jankovic, and L. V. Wang, “Tissue temperature monitoring using thermoacoustic and photoacoustic techniques,” Proc. SPIE 7564, 75641Y (2010).
[Crossref]

Sci. Rep. (1)

F. Gao, X. Feng, R. Zhang, S. Liu, R. Ding, R. Kishor, and Y. Zheng, “Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging,” Sci. Rep. 7, 626 (2017).
[Crossref]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref]

Theranostics (2)

J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma, and Y. L. Zhao, “Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging,” Theranostics 5, 931–945 (2015).
[Crossref]

L. L. Zou, H. Wang, B. He, L. J. Zeng, T. Tan, H. Q. Cao, X. Y. He, Z. W. Zhang, S. R. Guo, and Y. P. Li, “Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics,” Theranostics 6, 762–772 (2016).
[Crossref]

Ultrasound Med. Biol. (2)

E. E. Konofagou, J. Thierman, T. Karjalainen, and K. Hynynen, “The temperature dependence of ultrasound-stimulated acoustic emission,” Ultrasound Med. Biol. 28, 331–338 (2002).
[Crossref]

S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey, and L. A. Crum, “Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound Med. Biol. 27, 33–42(2001).
[Crossref]

Other (3)

B. Wang, J. Su, A. Karpiouk, D. Yeager, and S. Emelianov, Intravascular Photoacoustic and Ultrasound Imaging: From Tissue Characterization to Molecular Imaging to Image-Guided Therapy (Springer, 2011).

E. Konofagou, J. Thierman, and K. Hynynen, “Experimental temperature monitoring and coagulation detection using ultrasound-stimulated acoustic emission,” in Ultrasonics Symposium (IEEE, 2001), vol. 1292, pp. 1299–1302.

W. Xun, J. L. Sanders, D. N. Stephens, and Ö. Oralkan, “Photoacoustic-imaging-based temperature monitoring for high-intensity focused ultrasound therapy,” in 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2016), pp. 3235–3238.

Supplementary Material (3)

NameDescription
» Supplement 1       Supplemental Document
» Visualization 1       The dynamic temperature mapping by TEMPT during HIFU treatment.
» Visualization 2       The dynamic temperature mapping by traditional PA thermometry during HIFU treatment.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Thermal energy memory effect in TEMPT. (a) PA signal generation by a single laser pulse. (b) TEMPT measurement performed at time t0 during the thermotherapy. The local temperature is T0. (c) The temporal pattern of a burst of laser pulses used in TEMPT. (d) The thermal energy accumulation during the laser pulse burst leads to a local temperature rise. (e) The pattern of PA signals generated by the laser pulse burst. Note that PA signal amplitude depends on the local temperature when the laser pulse strikes. The accumulated thermal energy from earlier laser pulses leads to increased PA signal amplitudes by later pulses.
Fig. 2.
Fig. 2. Three key steps of TEMPT. Step 1: PA signal excitation, acquisition, and reconstruction with a burst of laser pulses. Step 2: Ratiometric measurement and reconstruction of the Grüneisen parameter. Step 3: Absolute temperature mapping at a single time point and during the thermotherapy treatment.
Fig. 3.
Fig. 3. TEMPT of temperatures on tissue phantoms. (a) Schematic of the PAT system. UT, ultrasonic transducer. Two ink-filled tubes with different temperatures were sandwiched between two slices of chicken tissue (each 1.5 cm thick). (b) Reconstructed PAT image of the tissue phantom, showing the positions of the two tubes. (c) Increase in PA signal amplitudes of the two tubes as a function of the laser pulse number, reflecting the elevated local temperatures. (d) TEMPT temperature map of the two tubes (shown in color) overlaid onto the ultrasound image (shown in gray). The temperatures measured by the thermocouple in Tube 1 and Tube 2 were 32°C and 40°C, respectively. (e) TEMPT temperatures of the two tubes as a function of the reference temperatures measured by the needle thermometer.
Fig. 4.
Fig. 4. Schematic of in vivo TEMPT during HIFU heating. Note that the HIFU focus was located at about 2 mm beneath the skin surface of the mouse left limb.
Fig. 5.
Fig. 5. TEMPT of absolute temperatures in vivo during HIFU treatment. (a) Reconstructed PAT image of the mouse left hindlimb. (b) TEMPT temperature maps at different HIFU heating times. Note that the temperature maps are thresholded at 37°C. The dashed lines indicate the approximate the HIFU focus. (c) TEMPT temperatures (shown in color) overlaid on the corresponding ultrasound images (shown in gray). (d) TEMPT temperatures in the HIFU focus [red box in (a)] and in a representative surrounding tissue area [blue box in (a)] as a function of the heating time. (e) Conventional PA thermometry of relative temperature changes at different HIFU heating times. (f) Conventional PA thermometry of relative temperature changes in the HIFU focus [red box in (a)] and in the surrounding tissue [blue box in (a)] as a function of the heating time.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

p1=Γ0(T0)ημaϕδt,
pN=(Γ0(T0)+ΔΓ)ημaϕδt=[Γ0(T0)+bημaϕδt(N1)]ημaϕδt,N2,whereb=kTρCV,
pNp1p12=bη2μa2ϕ2δt2Γ02η2μa2ϕ2δt2·(N1)=bΓ02·(N1),N2.
Γ0(T0)=p12b(N1)pNp1,N2.
T0=115.89Γ013.14.