Abstract

A radially polarized beam is axially symmetric and is able to produce tightly focused light fields beyond the Gaussian beam diffraction limit. However, with the current technology, its duration is limited by the relatively narrow bandwidth that the generation techniques can support. Using a 10 cycle pulse with a central wavelength of 1.8 μm, we show that radially polarized beams can be compressed to the few-cycle regime, while still maintaining their radially polarized nature. Therefore, it seems feasible, using only well-developed methods, to reach focused intensities of 1019W/cm2. Conversion via high-harmonic generation will also open a route for applications in attosecond science, especially for a wide range of optical measurements and optical control that require high spatial and high temporal resolution.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compressing μJ-level pulses from 250  fs to sub-10  fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St. J. Russell
Opt. Lett. 40(7) 1238-1241 (2015)

Temporal pulse division in hollow fiber compressors

Hermance Jacqmin, Aurélie Jullien, Brigitte Mercier, and Rodrigo Lopez-Martens
J. Opt. Soc. Am. B 32(9) 1901-1909 (2015)

Propagation dynamics of radially polarized pulses in a gas-filled hollow-core fiber

Ding Wang, Lingling Qiao, Ruirui Zhao, Yu Zhao, and Yuxin Leng
Opt. Express 25(4) 3083-3091 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
    [Crossref]
  2. B. J. Roxworthy and K. C. Toussaint, “Optical trapping with π-phase cylindrical vector beams,” New J. Phys. 12, 073012 (2010).
    [Crossref]
  3. R. Chen, K. Agarwal, C. J. R. Sheppard, and X. Chen, “Imaging using cylindrical vector beams in a high-numerical-aperture microscopy system,” Opt. Lett. 38, 3111–3114 (2013).
    [Crossref]
  4. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
    [Crossref]
  5. B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55, 3539–3545 (1997).
    [Crossref]
  6. C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
    [Crossref]
  7. G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, and R. R. Alfano, “Using the nonseparability of vector beams to encode information for optical communication,” Opt. Lett. 40, 4887–4890 (2015).
    [Crossref]
  8. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [Crossref]
  9. D. Pohl, “Operation of a ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
    [Crossref]
  10. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996).
    [Crossref]
  11. M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14, 2650–2656 (2006).
    [Crossref]
  12. M. Nisoli and G. Sansone, “New frontiers in attosecond science,” Prog. Quantum Electron. 33, 17–59 (2009).
    [Crossref]
  13. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5  fs,” Opt. Lett. 22, 522–524 (1997).
    [Crossref]
  14. B. Schmidt, A. Shiner, P. Lassonde, J. Kieffer, P. Corkum, D. M. Villeneuve, and F. Légaré, “CEP stable 16 cycle laser pulses at 18  μm,” Opt. Express 19, 6858–6864 (2011).
    [Crossref]
  15. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1, 139–149 (1984).
    [Crossref]
  16. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
    [Crossref]
  17. P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
    [Crossref]
  18. H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt. 18, 124002 (2016).
    [Crossref]
  19. C. Zhang, G. Vampa, D. M. Villeneuve, and P. B. Corkum, “Attosecond lighthouse driven by sub-two-cycle, 1.8  μm laser pulses,” J. Phys. B 472, 6–10 (2015).
    [Crossref]
  20. L. Yan, P. Gregg, E. Karimi, A. Rubano, L. Marrucci, R. Boyd, and S. Ramachandran, “Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy,” Optica 2, 900–903 (2015).
    [Crossref]
  21. B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É. Bisson, J. Kasparian, J.-P. Wolf, D. M. Villeneuve, J.-C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8  μm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96, 121109 (2010).
    [Crossref]
  22. F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
    [Crossref]
  23. M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
    [Crossref]
  24. “S-waveplate (Radial Polarization Converter),” Altechna, https://www.altechna.com/products/s-waveplate-radial-polarization-converter/ .
  25. V. Cardin, N. Thiré, S. Beaulieu, V. Wanie, F. Légaré, and B. E. Schmidt, “0.42  TW 2-cycle pulses at 1.8  μm via hollow-core fiber compression,” Appl. Phys. Lett. 107, 181101 (2015).
    [Crossref]
  26. M. Seidel, G. Arisholm, J. Brons, V. Pervak, and O. Pronin, “All solid-state spectral broadening: an average and peak power scalable method for compression of ultrashort pulses,” Opt. Express 24, 9412–9428 (2016).
    [Crossref]
  27. C.-H. Lu, Y.-J. Tsou, H.-Y. Chen, B.-H. Chen, Y.-C. Cheng, S.-D. Yang, M.-C. Chen, C.-C. Hsu, and A. H. Kung, “Generation of intense supercontinuum in condensed media,” Optica 1, 400–406 (2014).
    [Crossref]
  28. M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357, 303–306 (2017).
    [Crossref]
  29. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).
    [Crossref]

2017 (2)

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357, 303–306 (2017).
[Crossref]

2016 (2)

M. Seidel, G. Arisholm, J. Brons, V. Pervak, and O. Pronin, “All solid-state spectral broadening: an average and peak power scalable method for compression of ultrashort pulses,” Opt. Express 24, 9412–9428 (2016).
[Crossref]

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt. 18, 124002 (2016).
[Crossref]

2015 (4)

C. Zhang, G. Vampa, D. M. Villeneuve, and P. B. Corkum, “Attosecond lighthouse driven by sub-two-cycle, 1.8  μm laser pulses,” J. Phys. B 472, 6–10 (2015).
[Crossref]

L. Yan, P. Gregg, E. Karimi, A. Rubano, L. Marrucci, R. Boyd, and S. Ramachandran, “Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy,” Optica 2, 900–903 (2015).
[Crossref]

G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, and R. R. Alfano, “Using the nonseparability of vector beams to encode information for optical communication,” Opt. Lett. 40, 4887–4890 (2015).
[Crossref]

V. Cardin, N. Thiré, S. Beaulieu, V. Wanie, F. Légaré, and B. E. Schmidt, “0.42  TW 2-cycle pulses at 1.8  μm via hollow-core fiber compression,” Appl. Phys. Lett. 107, 181101 (2015).
[Crossref]

2014 (1)

2013 (2)

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

R. Chen, K. Agarwal, C. J. R. Sheppard, and X. Chen, “Imaging using cylindrical vector beams in a high-numerical-aperture microscopy system,” Opt. Lett. 38, 3111–3114 (2013).
[Crossref]

2011 (2)

B. Schmidt, A. Shiner, P. Lassonde, J. Kieffer, P. Corkum, D. M. Villeneuve, and F. Légaré, “CEP stable 16 cycle laser pulses at 18  μm,” Opt. Express 19, 6858–6864 (2011).
[Crossref]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

2010 (2)

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É. Bisson, J. Kasparian, J.-P. Wolf, D. M. Villeneuve, J.-C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8  μm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96, 121109 (2010).
[Crossref]

B. J. Roxworthy and K. C. Toussaint, “Optical trapping with π-phase cylindrical vector beams,” New J. Phys. 12, 073012 (2010).
[Crossref]

2009 (2)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
[Crossref]

M. Nisoli and G. Sansone, “New frontiers in attosecond science,” Prog. Quantum Electron. 33, 17–59 (2009).
[Crossref]

2007 (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

2006 (1)

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

2000 (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

1997 (2)

1996 (2)

M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996).
[Crossref]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

1986 (1)

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref]

1984 (1)

1972 (1)

D. Pohl, “Operation of a ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
[Crossref]

Agarwal, K.

Alfano, R. R.

April, A.

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

Arisholm, G.

Arissian, L.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

Beaulieu, S.

V. Cardin, N. Thiré, S. Beaulieu, V. Wanie, F. Légaré, and B. E. Schmidt, “0.42  TW 2-cycle pulses at 1.8  μm via hollow-core fiber compression,” Appl. Phys. Lett. 107, 181101 (2015).
[Crossref]

Béjot, P.

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É. Bisson, J. Kasparian, J.-P. Wolf, D. M. Villeneuve, J.-C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8  μm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96, 121109 (2010).
[Crossref]

Beresna, M.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Beversluis, M. R.

Bisson, É.

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É. Bisson, J. Kasparian, J.-P. Wolf, D. M. Villeneuve, J.-C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8  μm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96, 121109 (2010).
[Crossref]

Bouchard, F.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt. 18, 124002 (2016).
[Crossref]

Boyd, R.

Boyd, R. W.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt. 18, 124002 (2016).
[Crossref]

Brabec, T.

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

Brons, J.

Brown, G. G.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

Cardin, V.

V. Cardin, N. Thiré, S. Beaulieu, V. Wanie, F. Légaré, and B. E. Schmidt, “0.42  TW 2-cycle pulses at 1.8  μm via hollow-core fiber compression,” Appl. Phys. Lett. 107, 181101 (2015).
[Crossref]

Chen, B.-H.

Chen, H.-Y.

Chen, M.-C.

Chen, R.

Chen, X.

Cheng, Y.-C.

Corkum, P.

Corkum, P. B.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357, 303–306 (2017).
[Crossref]

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

C. Zhang, G. Vampa, D. M. Villeneuve, and P. B. Corkum, “Attosecond lighthouse driven by sub-two-cycle, 1.8  μm laser pulses,” J. Phys. B 472, 6–10 (2015).
[Crossref]

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É. Bisson, J. Kasparian, J.-P. Wolf, D. M. Villeneuve, J.-C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8  μm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96, 121109 (2010).
[Crossref]

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref]

De Silvestri, S.

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5  fs,” Opt. Lett. 22, 522–524 (1997).
[Crossref]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Esarey, E.

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55, 3539–3545 (1997).
[Crossref]

Ferencz, K.

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Fickler, R.

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt. 18, 124002 (2016).
[Crossref]

Fortin, P.-L.

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

Fourmaux, S.

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

Gagnon-Bischoff, J.

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt. 18, 124002 (2016).
[Crossref]

Gecevicius, M.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Gertus, T.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Giguère, M.

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É. Bisson, J. Kasparian, J.-P. Wolf, D. M. Villeneuve, J.-C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8  μm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96, 121109 (2010).
[Crossref]

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Gregg, P.

Hafizi, B.

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55, 3539–3545 (1997).
[Crossref]

Hammond, T. J.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

Hsu, C.-C.

Johnston, K.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357, 303–306 (2017).
[Crossref]

Karimi, E.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt. 18, 124002 (2016).
[Crossref]

L. Yan, P. Gregg, E. Karimi, A. Rubano, L. Marrucci, R. Boyd, and S. Ramachandran, “Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy,” Optica 2, 900–903 (2015).
[Crossref]

Kasparian, J.

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É. Bisson, J. Kasparian, J.-P. Wolf, D. M. Villeneuve, J.-C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8  μm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96, 121109 (2010).
[Crossref]

Kazansky, P. G.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Kieffer, J.

Kieffer, J.-C.

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É. Bisson, J. Kasparian, J.-P. Wolf, D. M. Villeneuve, J.-C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8  μm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96, 121109 (2010).
[Crossref]

Ko, D. H.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

Kong, F.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

Krausz, F.

Kung, A. H.

Larocque, H.

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt. 18, 124002 (2016).
[Crossref]

Lassonde, P.

Leach, J.

Légaré, F.

V. Cardin, N. Thiré, S. Beaulieu, V. Wanie, F. Légaré, and B. E. Schmidt, “0.42  TW 2-cycle pulses at 1.8  μm via hollow-core fiber compression,” Appl. Phys. Lett. 107, 181101 (2015).
[Crossref]

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

B. Schmidt, A. Shiner, P. Lassonde, J. Kieffer, P. Corkum, D. M. Villeneuve, and F. Légaré, “CEP stable 16 cycle laser pulses at 18  μm,” Opt. Express 19, 6858–6864 (2011).
[Crossref]

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É. Bisson, J. Kasparian, J.-P. Wolf, D. M. Villeneuve, J.-C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8  μm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96, 121109 (2010).
[Crossref]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Li, Z.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

Lu, C.-H.

Marceau, V.

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

Marrucci, L.

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Milione, G.

Naumov, A. Y.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357, 303–306 (2017).
[Crossref]

Nguyen, T. A.

Nisoli, M.

M. Nisoli and G. Sansone, “New frontiers in attosecond science,” Prog. Quantum Electron. 33, 17–59 (2009).
[Crossref]

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5  fs,” Opt. Lett. 22, 522–524 (1997).
[Crossref]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

Nolan, D. A.

Novotny, L.

Payeur, S.

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

Pervak, V.

Piché, M.

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

Pohl, D.

D. Pohl, “Operation of a ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
[Crossref]

Pronin, O.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Ramachandran, S.

Rolland, C.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref]

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Ropers, C.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357, 303–306 (2017).
[Crossref]

Roxworthy, B. J.

B. J. Roxworthy and K. C. Toussaint, “Optical trapping with π-phase cylindrical vector beams,” New J. Phys. 12, 073012 (2010).
[Crossref]

Rubano, A.

Sansone, G.

M. Nisoli and G. Sansone, “New frontiers in attosecond science,” Prog. Quantum Electron. 33, 17–59 (2009).
[Crossref]

Sartania, S.

Schadt, M.

Schmidt, B.

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

B. Schmidt, A. Shiner, P. Lassonde, J. Kieffer, P. Corkum, D. M. Villeneuve, and F. Légaré, “CEP stable 16 cycle laser pulses at 18  μm,” Opt. Express 19, 6858–6864 (2011).
[Crossref]

Schmidt, B. E.

V. Cardin, N. Thiré, S. Beaulieu, V. Wanie, F. Légaré, and B. E. Schmidt, “0.42  TW 2-cycle pulses at 1.8  μm via hollow-core fiber compression,” Appl. Phys. Lett. 107, 181101 (2015).
[Crossref]

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É. Bisson, J. Kasparian, J.-P. Wolf, D. M. Villeneuve, J.-C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8  μm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96, 121109 (2010).
[Crossref]

Seidel, M.

Shank, C. V.

Sheppard, C. J. R.

Shiner, A.

Shiner, A. D.

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É. Bisson, J. Kasparian, J.-P. Wolf, D. M. Villeneuve, J.-C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8  μm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96, 121109 (2010).
[Crossref]

Sivis, M.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357, 303–306 (2017).
[Crossref]

Spielmann, C.

Sprangle, P.

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55, 3539–3545 (1997).
[Crossref]

Srinivasan-Rao, T.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref]

Stalder, M.

Staudte, A.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357, 303–306 (2017).
[Crossref]

Stolen, R. H.

Stranick, S. J.

Svelto, O.

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5  fs,” Opt. Lett. 22, 522–524 (1997).
[Crossref]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

Szipöcs, R.

Taucer, M.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357, 303–306 (2017).
[Crossref]

Thiré, N.

V. Cardin, N. Thiré, S. Beaulieu, V. Wanie, F. Légaré, and B. E. Schmidt, “0.42  TW 2-cycle pulses at 1.8  μm via hollow-core fiber compression,” Appl. Phys. Lett. 107, 181101 (2015).
[Crossref]

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

Tomlinson, W. J.

Toussaint, K. C.

B. J. Roxworthy and K. C. Toussaint, “Optical trapping with π-phase cylindrical vector beams,” New J. Phys. 12, 073012 (2010).
[Crossref]

Trallero-Herrero, C.

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É. Bisson, J. Kasparian, J.-P. Wolf, D. M. Villeneuve, J.-C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8  μm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96, 121109 (2010).
[Crossref]

Tsou, Y.-J.

Upham, J.

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt. 18, 124002 (2016).
[Crossref]

Vampa, G.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357, 303–306 (2017).
[Crossref]

C. Zhang, G. Vampa, D. M. Villeneuve, and P. B. Corkum, “Attosecond lighthouse driven by sub-two-cycle, 1.8  μm laser pulses,” J. Phys. B 472, 6–10 (2015).
[Crossref]

Varin, C.

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

Villeneuve, D. M.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357, 303–306 (2017).
[Crossref]

C. Zhang, G. Vampa, D. M. Villeneuve, and P. B. Corkum, “Attosecond lighthouse driven by sub-two-cycle, 1.8  μm laser pulses,” J. Phys. B 472, 6–10 (2015).
[Crossref]

B. Schmidt, A. Shiner, P. Lassonde, J. Kieffer, P. Corkum, D. M. Villeneuve, and F. Légaré, “CEP stable 16 cycle laser pulses at 18  μm,” Opt. Express 19, 6858–6864 (2011).
[Crossref]

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É. Bisson, J. Kasparian, J.-P. Wolf, D. M. Villeneuve, J.-C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8  μm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96, 121109 (2010).
[Crossref]

Wanie, V.

V. Cardin, N. Thiré, S. Beaulieu, V. Wanie, F. Légaré, and B. E. Schmidt, “0.42  TW 2-cycle pulses at 1.8  μm via hollow-core fiber compression,” Appl. Phys. Lett. 107, 181101 (2015).
[Crossref]

Wolf, J.-P.

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É. Bisson, J. Kasparian, J.-P. Wolf, D. M. Villeneuve, J.-C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8  μm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96, 121109 (2010).
[Crossref]

Yan, L.

Yang, S.-D.

Zhan, Q.

Zhang, C.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

C. Zhang, G. Vampa, D. M. Villeneuve, and P. B. Corkum, “Attosecond lighthouse driven by sub-two-cycle, 1.8  μm laser pulses,” J. Phys. B 472, 6–10 (2015).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. A (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Appl. Phys. Lett. (5)

D. Pohl, “Operation of a ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
[Crossref]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É. Bisson, J. Kasparian, J.-P. Wolf, D. M. Villeneuve, J.-C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8  μm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96, 121109 (2010).
[Crossref]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

V. Cardin, N. Thiré, S. Beaulieu, V. Wanie, F. Légaré, and B. E. Schmidt, “0.42  TW 2-cycle pulses at 1.8  μm via hollow-core fiber compression,” Appl. Phys. Lett. 107, 181101 (2015).
[Crossref]

Appl. Sci. (1)

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

J. Opt. (1)

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt. 18, 124002 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

C. Zhang, G. Vampa, D. M. Villeneuve, and P. B. Corkum, “Attosecond lighthouse driven by sub-two-cycle, 1.8  μm laser pulses,” J. Phys. B 472, 6–10 (2015).
[Crossref]

Nat. Commun. (1)

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

New J. Phys. (1)

B. J. Roxworthy and K. C. Toussaint, “Optical trapping with π-phase cylindrical vector beams,” New J. Phys. 12, 073012 (2010).
[Crossref]

Opt. Commun. (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Optica (2)

Phys. Rev. E (1)

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55, 3539–3545 (1997).
[Crossref]

Phys. Rev. Lett. (2)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref]

Prog. Quantum Electron. (1)

M. Nisoli and G. Sansone, “New frontiers in attosecond science,” Prog. Quantum Electron. 33, 17–59 (2009).
[Crossref]

Science (1)

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357, 303–306 (2017).
[Crossref]

Other (1)

“S-waveplate (Radial Polarization Converter),” Altechna, https://www.altechna.com/products/s-waveplate-radial-polarization-converter/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Setup of a few-cycle vortex beam generation experiment with a 1.8 μm laser source. P1 and P2, polarizers; Vpp, power supply for the q-plate; L, lens; HWP, achromatic half-wave plate for the central wavelength of 1.8 μm; QWP, achromatic quarter-wave plate for the central wavelength of 1.8 μm. The fiber is 20 cm long with a 150 μm or 250 μm core. The right lower two figures show the beam profile of the output beams after the fiber is put under vacuum and is filled with 8 bar Kr gas, respectively.
Fig. 2.
Fig. 2. “Polarization identicality” of the laser beam before and after the q-plate. This measure is defined in the text and is an indicator of the conversion efficiency of the q-plate at a given wavelength, where values closer to zero indicate a higher efficiency. The blue and red curves show the identicality of the beam before and after the q-plate, respectively.
Fig. 3.
Fig. 3. Compression of the radially polarized beam. (a) Spectra of the spatially polarized beam measured at four different spatial locations after the fiber compressor. The spectra of the lower, left, and right parts are similar, and the upper spectrum is a little broader than the others. (b–e) Temporal profiles (blue curves) and phases (red curves) of the laser fields corresponding to the four spectra in (a), measured using a FROG. The pulse durations of the lower, left, and right parts are 17 fs, and that of the upper part is 15 fs, which agree with their bandwidths.
Fig. 4.
Fig. 4. Polarization measurement of the radially polarized beam. (a) Beam profile without polarization selection. (b–e) Beam profiles upon propagation through a polarizer, measured with a CCD camera for four different axis angles.
Fig. 5.
Fig. 5. Wavefront interference scan and the focus beam profile. (a) Integrated intensity profiles for a full 360° scan. (b) Interference signal for one point of the beam as a function of HWP angle. (c) Phase retrieved for different points on the circle’s circumference. (d) Focus beam profile of the compressed radially polarized beam.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

(cosϕsinϕ)=12eiϕ·(1i)+12eiϕ·(1i),
(cosϕsinϕ)12eiϕ·(1i)λ/412eiϕ·(11)P12eiϕ·(10)12eiϕ·(1i)λ/412eiϕ·(11)P12eiϕ·(10)cosϕ·(10),
(cosϕsinϕ)12eiϕ·(1i)λ/212eiϕ·ei2θ·(1i)λ/412eiϕ·ei2θ·(11)P12eiϕ·ei2θ·(10)12eiϕ·(1i)λ/212eiϕ·ei2θ·(1i)λ/412eiϕ·ei2θ·(11)P12eiϕ·ei2θ·(10)cos(ϕ2θ)·(10),

Metrics