Abstract

Multicolor waveguide holography remains a challenge due to its inherent design complexity, compounded by the limited low-loss materials available in the optical range as well as challenges in nanofabrication. In this study, we first propose and experimentally demonstrate a multicolor, computer-generated hologram (CGH) in an all-dielectric waveguide metasurface system. Light beams from three different color laser sources (red, green, and blue) are coupled into the waveguide via a single-period grating without any beam splitters or prisms. A multicolor holographic image can be decoupled in the far field through a binary metasurface CGH without any lenses. This technology enables lens-free, ultraminiature augmented and virtual reality displays.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Full-color holographic display with increased-viewing-angle [Invited]

Zhenxiang Zeng, Huadong Zheng, Yingjie Yu, Anand K. Asundi, and Sergiy Valyukh
Appl. Opt. 56(13) F112-F120 (2017)

Multiplexing encoding method for full-color dynamic 3D holographic display

Gaolei Xue, Juan Liu, Xin Li, Jia Jia, Zhao Zhang, Bin Hu, and Yongtian Wang
Opt. Express 22(15) 18473-18482 (2014)

Holographic waveguide display with a combined-grating in-coupler

Jingjing Guo, Yan Tu, Lanlan Yang, Lili Wang, and Baoping Wang
Appl. Opt. 55(32) 9293-9298 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [Crossref]
  2. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393–400 (1963).
    [Crossref]
  3. B. J. Thompson, “Applications of holography,” Rep. Prog. Phys. 41, 633–674 (1978).
    [Crossref]
  4. T. H. Jeong, “Basic principles and applications of holography,” in Fundamentals of Photonics (Lake Forest College, 2010), pp. 381–417.
  5. M. J. Richardson and J. D. Wiltshire, The Hologram Principles and Techniques (Wiley, 2018).
  6. B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Dev. 13, 160–168 (1969).
    [Crossref]
  7. W. J. Dallas, “Computer-generated holograms,” Comput. Opt. Res. 41, 291–366 (1980).
    [Crossref]
  8. D. Abookasis and J. Rosen, “Computer-generated holograms of three-dimensional objects synthesized from their multiple angular viewpoints,” J. Opt. Soc. Am. A 20, 1537–1545 (2003).
    [Crossref]
  9. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
    [Crossref]
  10. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
    [Crossref]
  11. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [Crossref]
  12. J. B. Pendry, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [Crossref]
  13. J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
    [Crossref]
  14. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
    [Crossref]
  15. L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
    [Crossref]
  16. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
    [Crossref]
  17. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
    [Crossref]
  18. A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photon. Rev. 9, 195–213 (2015).
    [Crossref]
  19. S. Larouche, Y.-J. Tsai, T. Tyler, N. Jokerst, and D. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11, 450–454 (2012).
    [Crossref]
  20. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
    [Crossref]
  21. W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
    [Crossref]
  22. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
    [Crossref]
  23. B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
    [Crossref]
  24. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
    [Crossref]
  25. X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
    [Crossref]
  26. X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
    [Crossref]
  27. W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10, 10671–10680 (2016).
    [Crossref]
  28. L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
    [Crossref]
  29. S. C. Malek, H. S. Ee, and R. Agarwal, “Strain multiplexed metasurface holograms on a stretchable substrate,” Nano Lett. 17, 3641–3645 (2017).
    [Crossref]
  30. Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays,” Nano Lett. 14, 2485–2490 (2014).
    [Crossref]
  31. K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
    [Crossref]
  32. L. Wang, S. Kruk, H. Tang, T. Li, I. Kravchenko, D. N. Neshev, and Y. S. Kivshar, “Grayscale transparent metasurface holograms,” Optica 3, 1504–1505 (2016).
    [Crossref]
  33. T. Suhara, H. Nishihara, and J. Koyama, “Waveguide holograms: a new approach to hologram integration,” Opt. Commun. 19, 353–358 (1976).
    [Crossref]
  34. M. D. Drake, M. L. Lidd, and M. A. Fiddy, “Waveguide hologram fingerprint entry device,” Opt. Eng. 35, 2499–2505 (1996).
    [Crossref]
  35. M. Li, M. Hagberg, J. Bengtsson, N. Eriksson, and A. Larsson, “Optical waveguide fan-out elements using dislocated gratings for both outcoupling and phase shifting,” IEEE Photon. Technol. Lett. 8, 1199–1201 (1996).
    [Crossref]
  36. M. Li, A. Larsson, N. Eriksson, M. Hagberg, and J. Bengtsson, “Continuous-level phase-only computer-generated hologram realized by dislocated binary gratings,” Opt. Lett. 21, 1516–1518 (1996).
    [Crossref]
  37. M. Li, J. Bengtsson, M. Hagberg, A. Larsson, and T. Suhara, “Off-plane computer-generated waveguide hologram,” IEEE J. Sel. Top. Quantum Electron. 2, 226–235 (1996).
    [Crossref]
  38. M. Li, S. Kristjánsson, N. Eriksson, and A. Larsson, “Multiplexed computer-generated waveguide hologram using gratings with different spatial frequencies,” IEEE Photon. Technol. Lett. 8, 1653–1655 (1996).
    [Crossref]
  39. M. Li and S. Kristj, “Independent image replay in a multiplexed computer-generated waveguide hologram using interlaced gratings with orthogonal grooves,” IEEE Photon. Technol. Lett. 10, 385–387 (1998).
    [Crossref]
  40. D. A. P. Bulla, B.-H. V. Borges, M. A. Romero, N. Morimoto, and L. G. Neto, “Design and fabrication of SiO2/Si3N4 integrated-optics waveguides on silicon substrates,” IEEE Trans. Microwave Theory Tech. 50, 9–12 (2002).
    [Crossref]
  41. J. Backlund and C.-F. Carlstro, “Incoupling waveguide holograms for simultaneous focusing into multiple arbitrary positions,” Appl. Opt. 38, 5738–5746 (1999).
    [Crossref]
  42. T. Imai, T. Kurihara, S. Yagi, Y. Kurokawa, M. Endo, and T. Tanabe, “Orthogonal aperture multiplexing for multilayered waveguide holographic read-only memories,” Appl. Opt. 42, 7085–7092 (2003).
    [Crossref]
  43. S. Takushima, M. Uemukai, and T. Suhara, “GaInP red distributed-Bragg-reflector laser integrated with phase-shifted grating coupler for multispot focusing,” Jpn. J. Appl. Phys. 48, 030206 (2009).
    [Crossref]
  44. K. Uenishi, M. Uemukai, and T. Suhara, “Rotation-symmetric multispot focusing phase-shifted grating coupler for integrated semiconductor laser,” Jpn. J. Appl. Phys. 51, 058001 (2012).
    [Crossref]
  45. M. Li, P. Modh, S. Kristj, and A. Larsson, “Demonstration of computer-generated waveguide hologram on InGaAsP-InP waveguide for 1550-nm optical wavelength,” IEEE Photon. Technol. Lett. 9, 958–960 (1997).
    [Crossref]
  46. J. Bengtsson, J. Backlund, N. Eriksson, P. Modh, J. Vukusic, and A. Larsson, “Diffractive optics at the surface of light-emitting/receiving semiconductor components,” J. Mod. Opt. 47, 2455–2466 (2000).
    [Crossref]
  47. V. O. Smolsk, O. V. Smolski, E. C. Browy, E. G. Johnson, and Z. A. Shellenbarger, “Design and experimental study of the controlled two-dimensional-intensity profile of the output beam from a broad-area laser diode using grating outcouplers,” Opt. Eng. 51, 074204 (2012).
    [Crossref]
  48. P. Modh, J. Backlund, J. Bengtsson, A. Larsson, N. Shimada, and T. Suhara, “Multifunctional gratings for surface-emitting lasers: design and implementation,” Appl. Opt. 42, 4847–4854 (2003).
    [Crossref]
  49. M. T. W. Ang, G. T. Reed, A. P. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, “Blazed-grating couplers in unibond SOI,” Proc. SPIE 3896, 360–368 (1999).
    [Crossref]
  50. A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
    [Crossref]
  51. T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “High-luminance see-through eyewear display with novel volume hologram waveguide technology,” SID Int. Symp. Dig. Tech. Pap. 46, 192–195 (2015).
    [Crossref]
  52. D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free 3D display,” Nature 495, 348–351 (2013).
    [Crossref]
  53. S. K. M. Ozaki and J.-I. Kato, “Surface-plasmon holography with white-light illumination,” Science 332, 218–220 (2011).
    [Crossref]
  54. Z. Knittl, Optics of Thin Films (An Optical Multilayer Theory) (Wiley, 1976).
  55. K. R. Harper, “Theory, design, and fabrication of diffractive grating coupler for slab waveguide,” Ph.D. thesis (Brigham Young University, 2003), p. 193.
  56. S. Peng, H. Bertoni, and T. Tamir, “Analysis of periodic thin-film structures with rectangular profiles,” Opt. Commun. 10, 91–94 (1974).
    [Crossref]
  57. K. A. Winick, “Effective-index method and coupled-mode theory for almost-periodic waveguide gratings: a comparison,” Appl. Opt. 31, 757–764 (1992).
    [Crossref]
  58. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  59. M. Moharam and T. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [Crossref]
  60. S. M. Norton, T. Erdogan, and G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A 14, 629–639 (1997).
    [Crossref]

2017 (2)

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

S. C. Malek, H. S. Ee, and R. Agarwal, “Strain multiplexed metasurface holograms on a stretchable substrate,” Nano Lett. 17, 3641–3645 (2017).
[Crossref]

2016 (6)

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10, 10671–10680 (2016).
[Crossref]

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

L. Wang, S. Kruk, H. Tang, T. Li, I. Kravchenko, D. N. Neshev, and Y. S. Kivshar, “Grayscale transparent metasurface holograms,” Optica 3, 1504–1505 (2016).
[Crossref]

2015 (5)

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “High-luminance see-through eyewear display with novel volume hologram waveguide technology,” SID Int. Symp. Dig. Tech. Pap. 46, 192–195 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photon. Rev. 9, 195–213 (2015).
[Crossref]

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

2014 (3)

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays,” Nano Lett. 14, 2485–2490 (2014).
[Crossref]

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

2013 (4)

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free 3D display,” Nature 495, 348–351 (2013).
[Crossref]

2012 (3)

K. Uenishi, M. Uemukai, and T. Suhara, “Rotation-symmetric multispot focusing phase-shifted grating coupler for integrated semiconductor laser,” Jpn. J. Appl. Phys. 51, 058001 (2012).
[Crossref]

V. O. Smolsk, O. V. Smolski, E. C. Browy, E. G. Johnson, and Z. A. Shellenbarger, “Design and experimental study of the controlled two-dimensional-intensity profile of the output beam from a broad-area laser diode using grating outcouplers,” Opt. Eng. 51, 074204 (2012).
[Crossref]

S. Larouche, Y.-J. Tsai, T. Tyler, N. Jokerst, and D. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11, 450–454 (2012).
[Crossref]

2011 (2)

S. K. M. Ozaki and J.-I. Kato, “Surface-plasmon holography with white-light illumination,” Science 332, 218–220 (2011).
[Crossref]

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref]

2009 (2)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

S. Takushima, M. Uemukai, and T. Suhara, “GaInP red distributed-Bragg-reflector laser integrated with phase-shifted grating coupler for multispot focusing,” Jpn. J. Appl. Phys. 48, 030206 (2009).
[Crossref]

2006 (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

J. B. Pendry, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

2003 (3)

2002 (1)

D. A. P. Bulla, B.-H. V. Borges, M. A. Romero, N. Morimoto, and L. G. Neto, “Design and fabrication of SiO2/Si3N4 integrated-optics waveguides on silicon substrates,” IEEE Trans. Microwave Theory Tech. 50, 9–12 (2002).
[Crossref]

2000 (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

J. Bengtsson, J. Backlund, N. Eriksson, P. Modh, J. Vukusic, and A. Larsson, “Diffractive optics at the surface of light-emitting/receiving semiconductor components,” J. Mod. Opt. 47, 2455–2466 (2000).
[Crossref]

1999 (2)

M. T. W. Ang, G. T. Reed, A. P. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, “Blazed-grating couplers in unibond SOI,” Proc. SPIE 3896, 360–368 (1999).
[Crossref]

J. Backlund and C.-F. Carlstro, “Incoupling waveguide holograms for simultaneous focusing into multiple arbitrary positions,” Appl. Opt. 38, 5738–5746 (1999).
[Crossref]

1998 (1)

M. Li and S. Kristj, “Independent image replay in a multiplexed computer-generated waveguide hologram using interlaced gratings with orthogonal grooves,” IEEE Photon. Technol. Lett. 10, 385–387 (1998).
[Crossref]

1997 (2)

M. Li, P. Modh, S. Kristj, and A. Larsson, “Demonstration of computer-generated waveguide hologram on InGaAsP-InP waveguide for 1550-nm optical wavelength,” IEEE Photon. Technol. Lett. 9, 958–960 (1997).
[Crossref]

S. M. Norton, T. Erdogan, and G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A 14, 629–639 (1997).
[Crossref]

1996 (5)

M. Li, A. Larsson, N. Eriksson, M. Hagberg, and J. Bengtsson, “Continuous-level phase-only computer-generated hologram realized by dislocated binary gratings,” Opt. Lett. 21, 1516–1518 (1996).
[Crossref]

M. D. Drake, M. L. Lidd, and M. A. Fiddy, “Waveguide hologram fingerprint entry device,” Opt. Eng. 35, 2499–2505 (1996).
[Crossref]

M. Li, M. Hagberg, J. Bengtsson, N. Eriksson, and A. Larsson, “Optical waveguide fan-out elements using dislocated gratings for both outcoupling and phase shifting,” IEEE Photon. Technol. Lett. 8, 1199–1201 (1996).
[Crossref]

M. Li, J. Bengtsson, M. Hagberg, A. Larsson, and T. Suhara, “Off-plane computer-generated waveguide hologram,” IEEE J. Sel. Top. Quantum Electron. 2, 226–235 (1996).
[Crossref]

M. Li, S. Kristjánsson, N. Eriksson, and A. Larsson, “Multiplexed computer-generated waveguide hologram using gratings with different spatial frequencies,” IEEE Photon. Technol. Lett. 8, 1653–1655 (1996).
[Crossref]

1992 (1)

1981 (1)

1980 (1)

W. J. Dallas, “Computer-generated holograms,” Comput. Opt. Res. 41, 291–366 (1980).
[Crossref]

1978 (1)

B. J. Thompson, “Applications of holography,” Rep. Prog. Phys. 41, 633–674 (1978).
[Crossref]

1976 (1)

T. Suhara, H. Nishihara, and J. Koyama, “Waveguide holograms: a new approach to hologram integration,” Opt. Commun. 19, 353–358 (1976).
[Crossref]

1974 (1)

S. Peng, H. Bertoni, and T. Tamir, “Analysis of periodic thin-film structures with rectangular profiles,” Opt. Commun. 10, 91–94 (1974).
[Crossref]

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

1969 (1)

B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Dev. 13, 160–168 (1969).
[Crossref]

1963 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Abookasis, D.

Agarwal, R.

S. C. Malek, H. S. Ee, and R. Agarwal, “Strain multiplexed metasurface holograms on a stretchable substrate,” Nano Lett. 17, 3641–3645 (2017).
[Crossref]

Aiki, K.

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “High-luminance see-through eyewear display with novel volume hologram waveguide technology,” SID Int. Symp. Dig. Tech. Pap. 46, 192–195 (2015).
[Crossref]

Akutsu, K.

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “High-luminance see-through eyewear display with novel volume hologram waveguide technology,” SID Int. Symp. Dig. Tech. Pap. 46, 192–195 (2015).
[Crossref]

Ang, M. T. W.

M. T. W. Ang, G. T. Reed, A. P. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, “Blazed-grating couplers in unibond SOI,” Proc. SPIE 3896, 360–368 (1999).
[Crossref]

Arbabi, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Backlund, J.

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Baron, A.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

Beausoleil, R. G.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free 3D display,” Nature 495, 348–351 (2013).
[Crossref]

Bengtsson, J.

P. Modh, J. Backlund, J. Bengtsson, A. Larsson, N. Shimada, and T. Suhara, “Multifunctional gratings for surface-emitting lasers: design and implementation,” Appl. Opt. 42, 4847–4854 (2003).
[Crossref]

J. Bengtsson, J. Backlund, N. Eriksson, P. Modh, J. Vukusic, and A. Larsson, “Diffractive optics at the surface of light-emitting/receiving semiconductor components,” J. Mod. Opt. 47, 2455–2466 (2000).
[Crossref]

M. Li, A. Larsson, N. Eriksson, M. Hagberg, and J. Bengtsson, “Continuous-level phase-only computer-generated hologram realized by dislocated binary gratings,” Opt. Lett. 21, 1516–1518 (1996).
[Crossref]

M. Li, J. Bengtsson, M. Hagberg, A. Larsson, and T. Suhara, “Off-plane computer-generated waveguide hologram,” IEEE J. Sel. Top. Quantum Electron. 2, 226–235 (1996).
[Crossref]

M. Li, M. Hagberg, J. Bengtsson, N. Eriksson, and A. Larsson, “Optical waveguide fan-out elements using dislocated gratings for both outcoupling and phase shifting,” IEEE Photon. Technol. Lett. 8, 1199–1201 (1996).
[Crossref]

Bertoni, H.

S. Peng, H. Bertoni, and T. Tamir, “Analysis of periodic thin-film structures with rectangular profiles,” Opt. Commun. 10, 91–94 (1974).
[Crossref]

Bo Li, Y.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Boag, A.

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays,” Nano Lett. 14, 2485–2490 (2014).
[Crossref]

Borges, B.-H. V.

D. A. P. Bulla, B.-H. V. Borges, M. A. Romero, N. Morimoto, and L. G. Neto, “Design and fabrication of SiO2/Si3N4 integrated-optics waveguides on silicon substrates,” IEEE Trans. Microwave Theory Tech. 50, 9–12 (2002).
[Crossref]

Brady, D.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Brener, I.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

Brown, B. R.

B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Dev. 13, 160–168 (1969).
[Crossref]

Browy, E. C.

V. O. Smolsk, O. V. Smolski, E. C. Browy, E. G. Johnson, and Z. A. Shellenbarger, “Design and experimental study of the controlled two-dimensional-intensity profile of the output beam from a broad-area laser diode using grating outcouplers,” Opt. Eng. 51, 074204 (2012).
[Crossref]

Brug, J.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free 3D display,” Nature 495, 348–351 (2013).
[Crossref]

Bulla, D. A. P.

D. A. P. Bulla, B.-H. V. Borges, M. A. Romero, N. Morimoto, and L. G. Neto, “Design and fabrication of SiO2/Si3N4 integrated-optics waveguides on silicon substrates,” IEEE Trans. Microwave Theory Tech. 50, 9–12 (2002).
[Crossref]

Bykov, A. Y.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photon. Rev. 9, 195–213 (2015).
[Crossref]

Cao, L.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Capasso, F.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

Carlstro, C.-F.

Cheah, K.-W.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, J.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Chen, L.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Chen, S.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, W. T.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Chen, X.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chiang, I. D.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Chong, K. E.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

Chu, W.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Dallas, W. J.

W. J. Dallas, “Computer-generated holograms,” Comput. Opt. Res. 41, 291–366 (1980).
[Crossref]

Decker, M.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

Devaux, E.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref]

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

Ding, J.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Dominguez, J.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

Dong, F.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Drake, M. D.

M. D. Drake, M. L. Lidd, and M. A. Fiddy, “Waveguide hologram fingerprint entry device,” Opt. Eng. 35, 2499–2505 (1996).
[Crossref]

Driscoll, T.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Ebbesen, T. W.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref]

Ee, H. S.

S. C. Malek, H. S. Ee, and R. Agarwal, “Strain multiplexed metasurface holograms on a stretchable substrate,” Nano Lett. 17, 3641–3645 (2017).
[Crossref]

Eitan, M.

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays,” Nano Lett. 14, 2485–2490 (2014).
[Crossref]

Endo, M.

Erdogan, T.

Eriksson, N.

J. Bengtsson, J. Backlund, N. Eriksson, P. Modh, J. Vukusic, and A. Larsson, “Diffractive optics at the surface of light-emitting/receiving semiconductor components,” J. Mod. Opt. 47, 2455–2466 (2000).
[Crossref]

M. Li, A. Larsson, N. Eriksson, M. Hagberg, and J. Bengtsson, “Continuous-level phase-only computer-generated hologram realized by dislocated binary gratings,” Opt. Lett. 21, 1516–1518 (1996).
[Crossref]

M. Li, M. Hagberg, J. Bengtsson, N. Eriksson, and A. Larsson, “Optical waveguide fan-out elements using dislocated gratings for both outcoupling and phase shifting,” IEEE Photon. Technol. Lett. 8, 1199–1201 (1996).
[Crossref]

M. Li, S. Kristjánsson, N. Eriksson, and A. Larsson, “Multiplexed computer-generated waveguide hologram using gratings with different spatial frequencies,” IEEE Photon. Technol. Lett. 8, 1653–1655 (1996).
[Crossref]

Evans, A. G. R.

M. T. W. Ang, G. T. Reed, A. P. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, “Blazed-grating couplers in unibond SOI,” Proc. SPIE 3896, 360–368 (1999).
[Crossref]

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Fattal, D.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free 3D display,” Nature 495, 348–351 (2013).
[Crossref]

Fiddy, M. A.

M. D. Drake, M. L. Lidd, and M. A. Fiddy, “Waveguide hologram fingerprint entry device,” Opt. Eng. 35, 2499–2505 (1996).
[Crossref]

Fiorentino, M.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free 3D display,” Nature 495, 348–351 (2013).
[Crossref]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Gao, J.

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10, 10671–10680 (2016).
[Crossref]

Gaylord, T.

Genet, C.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Gong, Q.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Gu, M.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Hagberg, M.

M. Li, A. Larsson, N. Eriksson, M. Hagberg, and J. Bengtsson, “Continuous-level phase-only computer-generated hologram realized by dislocated binary gratings,” Opt. Lett. 21, 1516–1518 (1996).
[Crossref]

M. Li, M. Hagberg, J. Bengtsson, N. Eriksson, and A. Larsson, “Optical waveguide fan-out elements using dislocated gratings for both outcoupling and phase shifting,” IEEE Photon. Technol. Lett. 8, 1199–1201 (1996).
[Crossref]

M. Li, J. Bengtsson, M. Hagberg, A. Larsson, and T. Suhara, “Off-plane computer-generated waveguide hologram,” IEEE J. Sel. Top. Quantum Electron. 2, 226–235 (1996).
[Crossref]

Han, J.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

Hanein, Y.

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays,” Nano Lett. 14, 2485–2490 (2014).
[Crossref]

Harper, K. R.

K. R. Harper, “Theory, design, and fabrication of diffractive grating coupler for slab waveguide,” Ph.D. thesis (Brigham Young University, 2003), p. 193.

Hong, M.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Hsu, W. L.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Hu, B.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Huang, Y. W.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Hugonin, J. P.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref]

Hunt, J.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Iluz, Z.

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays,” Nano Lett. 14, 2485–2490 (2014).
[Crossref]

Imai, T.

James, A. R.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

Jeong, T. H.

T. H. Jeong, “Basic principles and applications of holography,” in Fundamentals of Photonics (Lake Forest College, 2010), pp. 381–417.

Ji, W.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Jia, J.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Jiang, M.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Jin, G.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Johnson, E. G.

V. O. Smolsk, O. V. Smolski, E. C. Browy, E. G. Johnson, and Z. A. Shellenbarger, “Design and experimental study of the controlled two-dimensional-intensity profile of the output beam from a broad-area laser diode using grating outcouplers,” Opt. Eng. 51, 074204 (2012).
[Crossref]

Jokerst, N.

S. Larouche, Y.-J. Tsai, T. Tyler, N. Jokerst, and D. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11, 450–454 (2012).
[Crossref]

Josey, M. R.

M. T. W. Ang, G. T. Reed, A. P. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, “Blazed-grating couplers in unibond SOI,” Proc. SPIE 3896, 360–368 (1999).
[Crossref]

Jun Cui, T.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Kato, E.

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “High-luminance see-through eyewear display with novel volume hologram waveguide technology,” SID Int. Symp. Dig. Tech. Pap. 46, 192–195 (2015).
[Crossref]

Kato, J.-I.

S. K. M. Ozaki and J.-I. Kato, “Surface-plasmon holography with white-light illumination,” Science 332, 218–220 (2011).
[Crossref]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

Kildishev, A. V.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Kivshar, Y. S.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

L. Wang, S. Kruk, H. Tang, T. Li, I. Kravchenko, D. N. Neshev, and Y. S. Kivshar, “Grayscale transparent metasurface holograms,” Optica 3, 1504–1505 (2016).
[Crossref]

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photon. Rev. 9, 195–213 (2015).
[Crossref]

Knittl, Z.

Z. Knittl, Optics of Thin Films (An Optical Multilayer Theory) (Wiley, 1976).

Koyama, J.

T. Suhara, H. Nishihara, and J. Koyama, “Waveguide holograms: a new approach to hologram integration,” Opt. Commun. 19, 353–358 (1976).
[Crossref]

Kravchenko, I.

Kristj, S.

M. Li and S. Kristj, “Independent image replay in a multiplexed computer-generated waveguide hologram using interlaced gratings with orthogonal grooves,” IEEE Photon. Technol. Lett. 10, 385–387 (1998).
[Crossref]

M. Li, P. Modh, S. Kristj, and A. Larsson, “Demonstration of computer-generated waveguide hologram on InGaAsP-InP waveguide for 1550-nm optical wavelength,” IEEE Photon. Technol. Lett. 9, 958–960 (1997).
[Crossref]

Kristjánsson, S.

M. Li, S. Kristjánsson, N. Eriksson, and A. Larsson, “Multiplexed computer-generated waveguide hologram using gratings with different spatial frequencies,” IEEE Photon. Technol. Lett. 8, 1653–1655 (1996).
[Crossref]

Kruk, S.

Kurihara, T.

Kurokawa, Y.

Kuwahara, M.

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “High-luminance see-through eyewear display with novel volume hologram waveguide technology,” SID Int. Symp. Dig. Tech. Pap. 46, 192–195 (2015).
[Crossref]

Lalanne, P.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref]

Larouche, S.

S. Larouche, Y.-J. Tsai, T. Tyler, N. Jokerst, and D. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11, 450–454 (2012).
[Crossref]

Larsson, A.

P. Modh, J. Backlund, J. Bengtsson, A. Larsson, N. Shimada, and T. Suhara, “Multifunctional gratings for surface-emitting lasers: design and implementation,” Appl. Opt. 42, 4847–4854 (2003).
[Crossref]

J. Bengtsson, J. Backlund, N. Eriksson, P. Modh, J. Vukusic, and A. Larsson, “Diffractive optics at the surface of light-emitting/receiving semiconductor components,” J. Mod. Opt. 47, 2455–2466 (2000).
[Crossref]

M. Li, P. Modh, S. Kristj, and A. Larsson, “Demonstration of computer-generated waveguide hologram on InGaAsP-InP waveguide for 1550-nm optical wavelength,” IEEE Photon. Technol. Lett. 9, 958–960 (1997).
[Crossref]

M. Li, A. Larsson, N. Eriksson, M. Hagberg, and J. Bengtsson, “Continuous-level phase-only computer-generated hologram realized by dislocated binary gratings,” Opt. Lett. 21, 1516–1518 (1996).
[Crossref]

M. Li, J. Bengtsson, M. Hagberg, A. Larsson, and T. Suhara, “Off-plane computer-generated waveguide hologram,” IEEE J. Sel. Top. Quantum Electron. 2, 226–235 (1996).
[Crossref]

M. Li, S. Kristjánsson, N. Eriksson, and A. Larsson, “Multiplexed computer-generated waveguide hologram using gratings with different spatial frequencies,” IEEE Photon. Technol. Lett. 8, 1653–1655 (1996).
[Crossref]

M. Li, M. Hagberg, J. Bengtsson, N. Eriksson, and A. Larsson, “Optical waveguide fan-out elements using dislocated gratings for both outcoupling and phase shifting,” IEEE Photon. Technol. Lett. 8, 1199–1201 (1996).
[Crossref]

Li, C.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Li, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Li, J.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

Li, L.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Li, M.

M. Li and S. Kristj, “Independent image replay in a multiplexed computer-generated waveguide hologram using interlaced gratings with orthogonal grooves,” IEEE Photon. Technol. Lett. 10, 385–387 (1998).
[Crossref]

M. Li, P. Modh, S. Kristj, and A. Larsson, “Demonstration of computer-generated waveguide hologram on InGaAsP-InP waveguide for 1550-nm optical wavelength,” IEEE Photon. Technol. Lett. 9, 958–960 (1997).
[Crossref]

M. Li, A. Larsson, N. Eriksson, M. Hagberg, and J. Bengtsson, “Continuous-level phase-only computer-generated hologram realized by dislocated binary gratings,” Opt. Lett. 21, 1516–1518 (1996).
[Crossref]

M. Li, S. Kristjánsson, N. Eriksson, and A. Larsson, “Multiplexed computer-generated waveguide hologram using gratings with different spatial frequencies,” IEEE Photon. Technol. Lett. 8, 1653–1655 (1996).
[Crossref]

M. Li, J. Bengtsson, M. Hagberg, A. Larsson, and T. Suhara, “Off-plane computer-generated waveguide hologram,” IEEE J. Sel. Top. Quantum Electron. 2, 226–235 (1996).
[Crossref]

M. Li, M. Hagberg, J. Bengtsson, N. Eriksson, and A. Larsson, “Optical waveguide fan-out elements using dislocated gratings for both outcoupling and phase shifting,” IEEE Photon. Technol. Lett. 8, 1199–1201 (1996).
[Crossref]

Li, Q.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Li, Q. T.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Li, T.

Li, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Li, Y.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Liao, C. Y.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Lidd, M. L.

M. D. Drake, M. L. Lidd, and M. A. Fiddy, “Waveguide hologram fingerprint entry device,” Opt. Eng. 35, 2499–2505 (1996).
[Crossref]

Lin, H. T.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Lipworth, G.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Liu, A. Q.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Liu, J.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Liu, L.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

Liu, S.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

Lohmann, A. W.

B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Dev. 13, 160–168 (1969).
[Crossref]

Luo, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Ma, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Machida, A.

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “High-luminance see-through eyewear display with novel volume hologram waveguide technology,” SID Int. Symp. Dig. Tech. Pap. 46, 192–195 (2015).
[Crossref]

Malek, S. C.

S. C. Malek, H. S. Ee, and R. Agarwal, “Strain multiplexed metasurface holograms on a stretchable substrate,” Nano Lett. 17, 3641–3645 (2017).
[Crossref]

Matsumura, I.

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “High-luminance see-through eyewear display with novel volume hologram waveguide technology,” SID Int. Symp. Dig. Tech. Pap. 46, 192–195 (2015).
[Crossref]

Minovich, A. E.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photon. Rev. 9, 195–213 (2015).
[Crossref]

Miroshnichenko, A. E.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photon. Rev. 9, 195–213 (2015).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Modh, P.

P. Modh, J. Backlund, J. Bengtsson, A. Larsson, N. Shimada, and T. Suhara, “Multifunctional gratings for surface-emitting lasers: design and implementation,” Appl. Opt. 42, 4847–4854 (2003).
[Crossref]

J. Bengtsson, J. Backlund, N. Eriksson, P. Modh, J. Vukusic, and A. Larsson, “Diffractive optics at the surface of light-emitting/receiving semiconductor components,” J. Mod. Opt. 47, 2455–2466 (2000).
[Crossref]

M. Li, P. Modh, S. Kristj, and A. Larsson, “Demonstration of computer-generated waveguide hologram on InGaAsP-InP waveguide for 1550-nm optical wavelength,” IEEE Photon. Technol. Lett. 9, 958–960 (1997).
[Crossref]

Moharam, M.

Morimoto, N.

D. A. P. Bulla, B.-H. V. Borges, M. A. Romero, N. Morimoto, and L. G. Neto, “Design and fabrication of SiO2/Si3N4 integrated-optics waveguides on silicon substrates,” IEEE Trans. Microwave Theory Tech. 50, 9–12 (2002).
[Crossref]

Morris, G. M.

Mrozack, A.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Mukawa, H.

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “High-luminance see-through eyewear display with novel volume hologram waveguide technology,” SID Int. Symp. Dig. Tech. Pap. 46, 192–195 (2015).
[Crossref]

Murzina, T. V.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photon. Rev. 9, 195–213 (2015).
[Crossref]

Nakano, S.

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “High-luminance see-through eyewear display with novel volume hologram waveguide technology,” SID Int. Symp. Dig. Tech. Pap. 46, 192–195 (2015).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Neshev, D. N.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

L. Wang, S. Kruk, H. Tang, T. Li, I. Kravchenko, D. N. Neshev, and Y. S. Kivshar, “Grayscale transparent metasurface holograms,” Optica 3, 1504–1505 (2016).
[Crossref]

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photon. Rev. 9, 195–213 (2015).
[Crossref]

Neto, L. G.

D. A. P. Bulla, B.-H. V. Borges, M. A. Romero, N. Morimoto, and L. G. Neto, “Design and fabrication of SiO2/Si3N4 integrated-optics waveguides on silicon substrates,” IEEE Trans. Microwave Theory Tech. 50, 9–12 (2002).
[Crossref]

Ni, X.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Nishihara, H.

T. Suhara, H. Nishihara, and J. Koyama, “Waveguide holograms: a new approach to hologram integration,” Opt. Commun. 19, 353–358 (1976).
[Crossref]

Norton, S. M.

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

Oku, T.

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “High-luminance see-through eyewear display with novel volume hologram waveguide technology,” SID Int. Symp. Dig. Tech. Pap. 46, 192–195 (2015).
[Crossref]

Ouyang, C.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

Ozaki, S. K. M.

S. K. M. Ozaki and J.-I. Kato, “Surface-plasmon holography with white-light illumination,” Science 332, 218–220 (2011).
[Crossref]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Peng, S.

S. Peng, H. Bertoni, and T. Tamir, “Analysis of periodic thin-film structures with rectangular profiles,” Opt. Commun. 10, 91–94 (1974).
[Crossref]

Peng, Z.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free 3D display,” Nature 495, 348–351 (2013).
[Crossref]

Pu, M.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Qiu, C.-W.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Reed, G. T.

M. T. W. Ang, G. T. Reed, A. P. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, “Blazed-grating couplers in unibond SOI,” Proc. SPIE 3896, 360–368 (1999).
[Crossref]

Ren, H.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Reynolds, M.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Richardson, M. J.

M. J. Richardson and J. D. Wiltshire, The Hologram Principles and Techniques (Wiley, 2018).

Rodier, J. C.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref]

Romero, M. A.

D. A. P. Bulla, B.-H. V. Borges, M. A. Romero, N. Morimoto, and L. G. Neto, “Design and fabrication of SiO2/Si3N4 integrated-optics waveguides on silicon substrates,” IEEE Trans. Microwave Theory Tech. 50, 9–12 (2002).
[Crossref]

Rosen, J.

Rousseau, E.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref]

Routley, P. R.

M. T. W. Ang, G. T. Reed, A. P. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, “Blazed-grating couplers in unibond SOI,” Proc. SPIE 3896, 360–368 (1999).
[Crossref]

Sahu, A.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Scheuer, J.

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays,” Nano Lett. 14, 2485–2490 (2014).
[Crossref]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Shalaev, V. M.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Shellenbarger, Z. A.

V. O. Smolsk, O. V. Smolski, E. C. Browy, E. G. Johnson, and Z. A. Shellenbarger, “Design and experimental study of the controlled two-dimensional-intensity profile of the output beam from a broad-area laser diode using grating outcouplers,” Opt. Eng. 51, 074204 (2012).
[Crossref]

Shi, Y.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

Shimada, N.

Smith, D.

S. Larouche, Y.-J. Tsai, T. Tyler, N. Jokerst, and D. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11, 450–454 (2012).
[Crossref]

Smith, D. R.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Smolsk, V. O.

V. O. Smolsk, O. V. Smolski, E. C. Browy, E. G. Johnson, and Z. A. Shellenbarger, “Design and experimental study of the controlled two-dimensional-intensity profile of the output beam from a broad-area laser diode using grating outcouplers,” Opt. Eng. 51, 074204 (2012).
[Crossref]

Smolski, O. V.

V. O. Smolsk, O. V. Smolski, E. C. Browy, E. G. Johnson, and Z. A. Shellenbarger, “Design and experimental study of the controlled two-dimensional-intensity profile of the output beam from a broad-area laser diode using grating outcouplers,” Opt. Eng. 51, 074204 (2012).
[Crossref]

Song, Z.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Staude, I.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

Su, X.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

Subramania, G. S.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

Suhara, T.

K. Uenishi, M. Uemukai, and T. Suhara, “Rotation-symmetric multispot focusing phase-shifted grating coupler for integrated semiconductor laser,” Jpn. J. Appl. Phys. 51, 058001 (2012).
[Crossref]

S. Takushima, M. Uemukai, and T. Suhara, “GaInP red distributed-Bragg-reflector laser integrated with phase-shifted grating coupler for multispot focusing,” Jpn. J. Appl. Phys. 48, 030206 (2009).
[Crossref]

P. Modh, J. Backlund, J. Bengtsson, A. Larsson, N. Shimada, and T. Suhara, “Multifunctional gratings for surface-emitting lasers: design and implementation,” Appl. Opt. 42, 4847–4854 (2003).
[Crossref]

M. Li, J. Bengtsson, M. Hagberg, A. Larsson, and T. Suhara, “Off-plane computer-generated waveguide hologram,” IEEE J. Sel. Top. Quantum Electron. 2, 226–235 (1996).
[Crossref]

T. Suhara, H. Nishihara, and J. Koyama, “Waveguide holograms: a new approach to hologram integration,” Opt. Commun. 19, 353–358 (1976).
[Crossref]

Sun, C.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Sun, G.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Sun, S.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Takushima, S.

S. Takushima, M. Uemukai, and T. Suhara, “GaInP red distributed-Bragg-reflector laser integrated with phase-shifted grating coupler for multispot focusing,” Jpn. J. Appl. Phys. 48, 030206 (2009).
[Crossref]

Tamir, T.

S. Peng, H. Bertoni, and T. Tamir, “Analysis of periodic thin-film structures with rectangular profiles,” Opt. Commun. 10, 91–94 (1974).
[Crossref]

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Tanabe, T.

Tang, H.

Thompson, B. J.

B. J. Thompson, “Applications of holography,” Rep. Prog. Phys. 41, 633–674 (1978).
[Crossref]

Tran, T.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free 3D display,” Nature 495, 348–351 (2013).
[Crossref]

Tsai, D. P.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Tsai, Y.-J.

S. Larouche, Y.-J. Tsai, T. Tyler, N. Jokerst, and D. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11, 450–454 (2012).
[Crossref]

Tyler, T.

S. Larouche, Y.-J. Tsai, T. Tyler, N. Jokerst, and D. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11, 450–454 (2012).
[Crossref]

Uemukai, M.

K. Uenishi, M. Uemukai, and T. Suhara, “Rotation-symmetric multispot focusing phase-shifted grating coupler for integrated semiconductor laser,” Jpn. J. Appl. Phys. 51, 058001 (2012).
[Crossref]

S. Takushima, M. Uemukai, and T. Suhara, “GaInP red distributed-Bragg-reflector laser integrated with phase-shifted grating coupler for multispot focusing,” Jpn. J. Appl. Phys. 48, 030206 (2009).
[Crossref]

Uenishi, K.

K. Uenishi, M. Uemukai, and T. Suhara, “Rotation-symmetric multispot focusing phase-shifted grating coupler for integrated semiconductor laser,” Jpn. J. Appl. Phys. 51, 058001 (2012).
[Crossref]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

van Heerden, P. J.

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Vo, S.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free 3D display,” Nature 495, 348–351 (2013).
[Crossref]

Vonsovici, A. P.

M. T. W. Ang, G. T. Reed, A. P. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, “Blazed-grating couplers in unibond SOI,” Proc. SPIE 3896, 360–368 (1999).
[Crossref]

Vukusic, J.

J. Bengtsson, J. Backlund, N. Eriksson, P. Modh, J. Vukusic, and A. Larsson, “Diffractive optics at the surface of light-emitting/receiving semiconductor components,” J. Mod. Opt. 47, 2455–2466 (2000).
[Crossref]

Wan, W.

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10, 10671–10680 (2016).
[Crossref]

Wan, X.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Wang, B.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Wang, C. M.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Wang, L.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

L. Wang, S. Kruk, H. Tang, T. Li, I. Kravchenko, D. N. Neshev, and Y. S. Kivshar, “Grayscale transparent metasurface holograms,” Optica 3, 1504–1505 (2016).
[Crossref]

Wang, Y.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Wiltshire, J. D.

M. J. Richardson and J. D. Wiltshire, The Hologram Principles and Techniques (Wiley, 2018).

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Winick, K. A.

Xiao, Y. F.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Xu, L.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Xu, N.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

Xue, G.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Yagi, S.

Yang, D.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Yang, K. Y.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Yang, X.

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10, 10671–10680 (2016).
[Crossref]

Yifat, Y.

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays,” Nano Lett. 14, 2485–2490 (2014).
[Crossref]

Yoshida, T.

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “High-luminance see-through eyewear display with novel volume hologram waveguide technology,” SID Int. Symp. Dig. Tech. Pap. 46, 192–195 (2015).
[Crossref]

Zentgraf, T.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

Zhang, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhang, S.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhang, W.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

Zhang, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

Zhao, Z.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Zheng, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Zhou, L.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

ACS Nano (1)

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10, 10671–10680 (2016).
[Crossref]

ACS Photon. (1)

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

Adv. Mater. (1)

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

Appl. Opt. (5)

Comput. Opt. Res. (1)

W. J. Dallas, “Computer-generated holograms,” Comput. Opt. Res. 41, 291–366 (1980).
[Crossref]

IBM J. Res. Dev. (1)

B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Dev. 13, 160–168 (1969).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Li, J. Bengtsson, M. Hagberg, A. Larsson, and T. Suhara, “Off-plane computer-generated waveguide hologram,” IEEE J. Sel. Top. Quantum Electron. 2, 226–235 (1996).
[Crossref]

IEEE Photon. Technol. Lett. (4)

M. Li, S. Kristjánsson, N. Eriksson, and A. Larsson, “Multiplexed computer-generated waveguide hologram using gratings with different spatial frequencies,” IEEE Photon. Technol. Lett. 8, 1653–1655 (1996).
[Crossref]

M. Li and S. Kristj, “Independent image replay in a multiplexed computer-generated waveguide hologram using interlaced gratings with orthogonal grooves,” IEEE Photon. Technol. Lett. 10, 385–387 (1998).
[Crossref]

M. Li, P. Modh, S. Kristj, and A. Larsson, “Demonstration of computer-generated waveguide hologram on InGaAsP-InP waveguide for 1550-nm optical wavelength,” IEEE Photon. Technol. Lett. 9, 958–960 (1997).
[Crossref]

M. Li, M. Hagberg, J. Bengtsson, N. Eriksson, and A. Larsson, “Optical waveguide fan-out elements using dislocated gratings for both outcoupling and phase shifting,” IEEE Photon. Technol. Lett. 8, 1199–1201 (1996).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

D. A. P. Bulla, B.-H. V. Borges, M. A. Romero, N. Morimoto, and L. G. Neto, “Design and fabrication of SiO2/Si3N4 integrated-optics waveguides on silicon substrates,” IEEE Trans. Microwave Theory Tech. 50, 9–12 (2002).
[Crossref]

J. Mod. Opt. (1)

J. Bengtsson, J. Backlund, N. Eriksson, P. Modh, J. Vukusic, and A. Larsson, “Diffractive optics at the surface of light-emitting/receiving semiconductor components,” J. Mod. Opt. 47, 2455–2466 (2000).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Jpn. J. Appl. Phys. (2)

S. Takushima, M. Uemukai, and T. Suhara, “GaInP red distributed-Bragg-reflector laser integrated with phase-shifted grating coupler for multispot focusing,” Jpn. J. Appl. Phys. 48, 030206 (2009).
[Crossref]

K. Uenishi, M. Uemukai, and T. Suhara, “Rotation-symmetric multispot focusing phase-shifted grating coupler for integrated semiconductor laser,” Jpn. J. Appl. Phys. 51, 058001 (2012).
[Crossref]

Laser Photon. Rev. (1)

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photon. Rev. 9, 195–213 (2015).
[Crossref]

Nano Lett. (5)

S. C. Malek, H. S. Ee, and R. Agarwal, “Strain multiplexed metasurface holograms on a stretchable substrate,” Nano Lett. 17, 3641–3645 (2017).
[Crossref]

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays,” Nano Lett. 14, 2485–2490 (2014).
[Crossref]

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref]

Nat. Commun. (4)

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Nat. Mater. (2)

S. Larouche, Y.-J. Tsai, T. Tyler, N. Jokerst, and D. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11, 450–454 (2012).
[Crossref]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

Nat. Nanotechnol. (2)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Nature (2)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free 3D display,” Nature 495, 348–351 (2013).
[Crossref]

Opt. Commun. (2)

S. Peng, H. Bertoni, and T. Tamir, “Analysis of periodic thin-film structures with rectangular profiles,” Opt. Commun. 10, 91–94 (1974).
[Crossref]

T. Suhara, H. Nishihara, and J. Koyama, “Waveguide holograms: a new approach to hologram integration,” Opt. Commun. 19, 353–358 (1976).
[Crossref]

Opt. Eng. (2)

M. D. Drake, M. L. Lidd, and M. A. Fiddy, “Waveguide hologram fingerprint entry device,” Opt. Eng. 35, 2499–2505 (1996).
[Crossref]

V. O. Smolsk, O. V. Smolski, E. C. Browy, E. G. Johnson, and Z. A. Shellenbarger, “Design and experimental study of the controlled two-dimensional-intensity profile of the output beam from a broad-area laser diode using grating outcouplers,” Opt. Eng. 51, 074204 (2012).
[Crossref]

Opt. Lett. (1)

Optica (1)

Optik (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Phys. Rev. Lett. (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Proc. SPIE (1)

M. T. W. Ang, G. T. Reed, A. P. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, “Blazed-grating couplers in unibond SOI,” Proc. SPIE 3896, 360–368 (1999).
[Crossref]

Rep. Prog. Phys. (1)

B. J. Thompson, “Applications of holography,” Rep. Prog. Phys. 41, 633–674 (1978).
[Crossref]

Sci. Adv. (1)

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Science (6)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

J. B. Pendry, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

S. K. M. Ozaki and J.-I. Kato, “Surface-plasmon holography with white-light illumination,” Science 332, 218–220 (2011).
[Crossref]

SID Int. Symp. Dig. Tech. Pap. (1)

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “High-luminance see-through eyewear display with novel volume hologram waveguide technology,” SID Int. Symp. Dig. Tech. Pap. 46, 192–195 (2015).
[Crossref]

Other (4)

Z. Knittl, Optics of Thin Films (An Optical Multilayer Theory) (Wiley, 1976).

K. R. Harper, “Theory, design, and fabrication of diffractive grating coupler for slab waveguide,” Ph.D. thesis (Brigham Young University, 2003), p. 193.

T. H. Jeong, “Basic principles and applications of holography,” in Fundamentals of Photonics (Lake Forest College, 2010), pp. 381–417.

M. J. Richardson and J. D. Wiltshire, The Hologram Principles and Techniques (Wiley, 2018).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental content on theory, fabrication, and characterization.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Design of an all-dielectric out-of-plane excited computer-generated multicolor waveguide holography system. (a). A schematic diagram of the system. Three-color semiconductor laser light sources (red, green, and blue) are coupled into the waveguide through one grating coupler; the propagated waves in the slab waveguide are decoupled by a CGH in an intended range of angles (the gray region) to reconstruct a holographic image (red “R” + green “G” + blue “B”) in free space. A certain color light wave (e.g., green) decoupled by a different color hologram (e.g., red “R” hologram) would generate a wrong color letter (green “R”) outside of the collection range (the gray region), or be suppressed (e.g., blue “B” hologram). (b). A 3D conceptual system demonstration for a multicolor hologram (a painted bunting).
Fig. 2.
Fig. 2. Waveguide mode analysis and a grating coupler design. (a) Optical transfer matrix in a multilayer system; (b) the fundamental modes corresponding to wavelengths in the red, green, and blue; (c) the k -space diagram for the grating coupler (direct reflected beams from the input coupler locate outside of the collection gray region to avoid interfering with the projected holographic image); (d) a SEM image of a grating coupler.
Fig. 3.
Fig. 3. Hologram generation and reconstruction example illustration. (a) The desired object; (b) the separated Fourier components for different colors; (c) the corresponding computer-generated hologram; (d) the reconstructed image based on the generated hologram.
Fig. 4.
Fig. 4. The holographic image is generated in free space.
Fig. 5.
Fig. 5. Theoretical (left) and experimental (right) holographic image comparison of several multicolor holograms.