Abstract

Focusing scattered light using wavefront shaping provides interesting perspectives from which to image deep in opaque samples, as e.g., in nonlinear fluorescence microscopy. Applying these techniques to in vivo imaging remains challenging due to the short decorrelation time of the speckle in depth, as focusing and imaging has to be achieved within the decorrelation time. In this paper, we experimentally study the focus lifetime after focusing through dynamical scattering media when iterative wavefront optimization and speckle decorrelation occur over the same timescale. We show experimental situations corresponding to a broad distribution of decay rates of the scattering paths, where the focus presents significantly higher stability than the surrounding speckle.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin

Mooseok Jang, Haowen Ruan, Ivo M. Vellekoop, Benjamin Judkewitz, Euiheon Chung, and Changhuei Yang
Biomed. Opt. Express 6(1) 72-85 (2015)

Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation

Yan Liu, Cheng Ma, Yuecheng Shen, Junhui Shi, and Lihong V. Wang
Optica 4(2) 280-288 (2017)

Noninvasive light focusing in scattering media using speckle variance optimization

Antoine Boniface, Baptiste Blochet, Jonathan Dong, and Sylvain Gigan
Optica 6(11) 1381-1385 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Rotter and S. Gigan, “Light fields in complex media: mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89, 015005 (2017).
    [Crossref]
  2. R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
    [Crossref]
  3. M. M. Qureshi, J. Brake, H. J. Jeon, H. Ruan, Y. Liu, A. M. Safi, T. J. Eom, C. Yang, and E. Chung, “In vivo study of optical speckle decorrelation time across depths in the mouse brain,” Biomed. Opt. Express 8, 4855–4864 (2017).
    [Crossref]
  4. Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
    [Crossref]
  5. C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express 20, 15086–15092 (2012).
    [Crossref]
  6. M. Jang, H. Ruan, I. M. Vellekoop, B. Judkewitz, E. Chung, and C. Yang, “Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin,” Biomed. Opt. Express 6, 72–85 (2015).
    [Crossref]
  7. Y. Liu, C. Ma, Y. Shen, J. Shi, and L. V. Wang, “Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation,” Optica 4, 280–288 (2017).
    [Crossref]
  8. D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2, 728–735 (2015).
    [Crossref]
  9. B. Blochet, L. Bourdieu, and S. Gigan, “Focusing light through dynamical samples using fast continuous wavefront optimization,” Opt. Lett. 42, 4994–4997 (2017).
    [Crossref]
  10. M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express 19, 2989–2995 (2011).
    [Crossref]
  11. D. Feldkhun, O. Tzang, K. H. Wagner, and R. Piestun, “Focusing and scanning through scattering media in microseconds,” Optica 6, 72–75 (2019).
    [Crossref]
  12. O. Tzang, E. Niv, S. Singh, S. Labouesse, G. Myatt, and R. Piestun, “Wavefront shaping in complex media at 350  KHz with a 1D-to-2D transform,” arXiv:1808.09025 (2018).
  13. J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109, 8434–8439 (2012).
    [Crossref]
  14. I. N. Papadopoulos, J. S. Jouhanneau, J. F. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11, 116–123 (2017).
    [Crossref]
  15. P. T. Galwaduge, S. H. Kim, L. E. Grosberg, and E. M. C. Hillman, “Simple wavefront correction framework for two-photon microscopy of in-vivo brain,” Biomed. Opt. Express 6, 2997–3013 (2015).
    [Crossref]
  16. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2010).
    [Crossref]
  17. F. Van Beijnum, E. G. Van Putten, A. Lagendijk, and A. P. Mosk, “Frequency bandwidth of light focused through turbid media,” Opt. Lett. 36, 373–375 (2011).
    [Crossref]
  18. G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
    [Crossref]
  19. B. J. Frisken, “Revisiting the method of cumulants for the analysis of dynamic light-scattering data,” Appl. Opt. 40, 4087–4091 (2001).
    [Crossref]
  20. A. P. Wong and P. Wiltzius, “Dynamic light scattering with a CCD camera,” Rev. Sci. Instrum. 64, 2547–2549 (1993).
    [Crossref]
  21. V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum. 73, 2336–2344 (2002).
    [Crossref]
  22. R. Savo, R. Pierrat, U. Najar, R. Carminati, S. Rotter, and S. Gigan, “Observation of mean path length invariance in light-scattering media,” Science 358, 765–768 (2017).
    [Crossref]
  23. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [Crossref]
  24. I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).
    [Crossref]
  25. J. Brake, M. Jang, and C. Yang, “Analyzing the relationship between decorrelation time and tissue thickness in acute rat brain slices using multispeckle diffusing wave spectroscopy,” J. Opt. Soc. Am. A 33, 270–275 (2016).
    [Crossref]
  26. S. L. Jacques, Optical Properties of Biological Tissues: A Review, Physics in Medicine and Biology (2013), Vol. 58, p. R37.
  27. P. Paoletti, P. Ascher, and J. Neyton, “High-affinity zinc inhibition of NMDA NR1-NR2A receptors,” J. Neurosci. 17, 5711–5725 (1997).
    [Crossref]
  28. M. Mounaix, H. B. de Aguiar, and S. Gigan, “Temporal recompression through a scattering medium via a broadband transmission matrix,” Optica 4, 1289–1292 (2017).
    [Crossref]

2019 (1)

2017 (7)

2016 (1)

2015 (5)

2012 (2)

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109, 8434–8439 (2012).
[Crossref]

C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express 20, 15086–15092 (2012).
[Crossref]

2011 (2)

2010 (1)

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2010).
[Crossref]

2008 (1)

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).
[Crossref]

2007 (1)

2002 (1)

V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum. 73, 2336–2344 (2002).
[Crossref]

2001 (1)

1997 (1)

P. Paoletti, P. Ascher, and J. Neyton, “High-affinity zinc inhibition of NMDA NR1-NR2A receptors,” J. Neurosci. 17, 5711–5725 (1997).
[Crossref]

1993 (1)

A. P. Wong and P. Wiltzius, “Dynamic light scattering with a CCD camera,” Rev. Sci. Instrum. 64, 2547–2549 (1993).
[Crossref]

1987 (1)

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
[Crossref]

Ascher, P.

P. Paoletti, P. Ascher, and J. Neyton, “High-affinity zinc inhibition of NMDA NR1-NR2A receptors,” J. Neurosci. 17, 5711–5725 (1997).
[Crossref]

Betzig, E.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2010).
[Crossref]

Bifano, T.

Blochet, B.

Bourdieu, L.

Brake, J.

Carminati, R.

R. Savo, R. Pierrat, U. Najar, R. Carminati, S. Rotter, and S. Gigan, “Observation of mean path length invariance in light-scattering media,” Science 358, 765–768 (2017).
[Crossref]

Chung, E.

Cui, M.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109, 8434–8439 (2012).
[Crossref]

M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express 19, 2989–2995 (2011).
[Crossref]

de Aguiar, H. B.

Eom, T. J.

Feldkhun, D.

Frisken, B. J.

Galwaduge, P. T.

Germain, R. N.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109, 8434–8439 (2012).
[Crossref]

Gigan, S.

B. Blochet, L. Bourdieu, and S. Gigan, “Focusing light through dynamical samples using fast continuous wavefront optimization,” Opt. Lett. 42, 4994–4997 (2017).
[Crossref]

S. Rotter and S. Gigan, “Light fields in complex media: mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89, 015005 (2017).
[Crossref]

M. Mounaix, H. B. de Aguiar, and S. Gigan, “Temporal recompression through a scattering medium via a broadband transmission matrix,” Optica 4, 1289–1292 (2017).
[Crossref]

R. Savo, R. Pierrat, U. Najar, R. Carminati, S. Rotter, and S. Gigan, “Observation of mean path length invariance in light-scattering media,” Science 358, 765–768 (2017).
[Crossref]

Grabar, A. A.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
[Crossref]

Grosberg, L. E.

Hillman, E. M. C.

Hoffman, S.

Horstmeyer, R.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[Crossref]

Jacques, S. L.

S. L. Jacques, Optical Properties of Biological Tissues: A Review, Physics in Medicine and Biology (2013), Vol. 58, p. R37.

Jang, M.

Jeon, H. J.

Ji, N.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2010).
[Crossref]

Jouhanneau, J. S.

I. N. Papadopoulos, J. S. Jouhanneau, J. F. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11, 116–123 (2017).
[Crossref]

Judkewitz, B.

Kim, S. H.

Labouesse, S.

O. Tzang, E. Niv, S. Singh, S. Labouesse, G. Myatt, and R. Piestun, “Wavefront shaping in complex media at 350  KHz with a 1D-to-2D transform,” arXiv:1808.09025 (2018).

Lagendijk, A.

Lai, P.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
[Crossref]

Lequeux, F.

V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum. 73, 2336–2344 (2002).
[Crossref]

Liu, Y.

Lu, Y.

Ma, C.

Y. Liu, C. Ma, Y. Shen, J. Shi, and L. V. Wang, “Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation,” Optica 4, 280–288 (2017).
[Crossref]

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
[Crossref]

Maret, G.

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
[Crossref]

Milkie, D. E.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2010).
[Crossref]

Moore, J.

Mosk, A. P.

Mounaix, M.

Myatt, G.

O. Tzang, E. Niv, S. Singh, S. Labouesse, G. Myatt, and R. Piestun, “Wavefront shaping in complex media at 350  KHz with a 1D-to-2D transform,” arXiv:1808.09025 (2018).

Najar, U.

R. Savo, R. Pierrat, U. Najar, R. Carminati, S. Rotter, and S. Gigan, “Observation of mean path length invariance in light-scattering media,” Science 358, 765–768 (2017).
[Crossref]

Neyton, J.

P. Paoletti, P. Ascher, and J. Neyton, “High-affinity zinc inhibition of NMDA NR1-NR2A receptors,” J. Neurosci. 17, 5711–5725 (1997).
[Crossref]

Niv, E.

O. Tzang, E. Niv, S. Singh, S. Labouesse, G. Myatt, and R. Piestun, “Wavefront shaping in complex media at 350  KHz with a 1D-to-2D transform,” arXiv:1808.09025 (2018).

Paoletti, P.

P. Paoletti, P. Ascher, and J. Neyton, “High-affinity zinc inhibition of NMDA NR1-NR2A receptors,” J. Neurosci. 17, 5711–5725 (1997).
[Crossref]

Papadopoulos, I. N.

I. N. Papadopoulos, J. S. Jouhanneau, J. F. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11, 116–123 (2017).
[Crossref]

Paxman, R.

Pierrat, R.

R. Savo, R. Pierrat, U. Najar, R. Carminati, S. Rotter, and S. Gigan, “Observation of mean path length invariance in light-scattering media,” Science 358, 765–768 (2017).
[Crossref]

Piestun, R.

D. Feldkhun, O. Tzang, K. H. Wagner, and R. Piestun, “Focusing and scanning through scattering media in microseconds,” Optica 6, 72–75 (2019).
[Crossref]

O. Tzang, E. Niv, S. Singh, S. Labouesse, G. Myatt, and R. Piestun, “Wavefront shaping in complex media at 350  KHz with a 1D-to-2D transform,” arXiv:1808.09025 (2018).

Pine, D. J.

V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum. 73, 2336–2344 (2002).
[Crossref]

Poulet, J. F.

I. N. Papadopoulos, J. S. Jouhanneau, J. F. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11, 116–123 (2017).
[Crossref]

Qureshi, M. M.

Rotter, S.

S. Rotter and S. Gigan, “Light fields in complex media: mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89, 015005 (2017).
[Crossref]

R. Savo, R. Pierrat, U. Najar, R. Carminati, S. Rotter, and S. Gigan, “Observation of mean path length invariance in light-scattering media,” Science 358, 765–768 (2017).
[Crossref]

Ruan, H.

Safi, A. M.

Savo, R.

R. Savo, R. Pierrat, U. Najar, R. Carminati, S. Rotter, and S. Gigan, “Observation of mean path length invariance in light-scattering media,” Science 358, 765–768 (2017).
[Crossref]

Shen, Y.

Shi, J.

Singh, S.

O. Tzang, E. Niv, S. Singh, S. Labouesse, G. Myatt, and R. Piestun, “Wavefront shaping in complex media at 350  KHz with a 1D-to-2D transform,” arXiv:1808.09025 (2018).

Stockbridge, C.

Tang, J.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109, 8434–8439 (2012).
[Crossref]

Toussaint, K.

Tzang, O.

D. Feldkhun, O. Tzang, K. H. Wagner, and R. Piestun, “Focusing and scanning through scattering media in microseconds,” Optica 6, 72–75 (2019).
[Crossref]

O. Tzang, E. Niv, S. Singh, S. Labouesse, G. Myatt, and R. Piestun, “Wavefront shaping in complex media at 350  KHz with a 1D-to-2D transform,” arXiv:1808.09025 (2018).

Van Beijnum, F.

Van Putten, E. G.

Vellekoop, I. M.

Viasnoff, V.

V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum. 73, 2336–2344 (2002).
[Crossref]

Wagner, K. H.

Wang, D.

Wang, L. V.

Y. Liu, C. Ma, Y. Shen, J. Shi, and L. V. Wang, “Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation,” Optica 4, 280–288 (2017).
[Crossref]

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
[Crossref]

Wiltzius, P.

A. P. Wong and P. Wiltzius, “Dynamic light scattering with a CCD camera,” Rev. Sci. Instrum. 64, 2547–2549 (1993).
[Crossref]

Wolf, P. E.

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
[Crossref]

Wong, A. P.

A. P. Wong and P. Wiltzius, “Dynamic light scattering with a CCD camera,” Rev. Sci. Instrum. 64, 2547–2549 (1993).
[Crossref]

Xu, X.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
[Crossref]

Yang, C.

Zhou, E. H.

Appl. Opt. (1)

Biomed. Opt. Express (3)

J. Neurosci. (1)

P. Paoletti, P. Ascher, and J. Neyton, “High-affinity zinc inhibition of NMDA NR1-NR2A receptors,” J. Neurosci. 17, 5711–5725 (1997).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Commun. (1)

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
[Crossref]

Nat. Methods (1)

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2010).
[Crossref]

Nat. Photonics (2)

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[Crossref]

I. N. Papadopoulos, J. S. Jouhanneau, J. F. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11, 116–123 (2017).
[Crossref]

Opt. Commun. (1)

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Optica (4)

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109, 8434–8439 (2012).
[Crossref]

Rev. Mod. Phys. (1)

S. Rotter and S. Gigan, “Light fields in complex media: mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89, 015005 (2017).
[Crossref]

Rev. Sci. Instrum. (2)

A. P. Wong and P. Wiltzius, “Dynamic light scattering with a CCD camera,” Rev. Sci. Instrum. 64, 2547–2549 (1993).
[Crossref]

V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum. 73, 2336–2344 (2002).
[Crossref]

Science (1)

R. Savo, R. Pierrat, U. Najar, R. Carminati, S. Rotter, and S. Gigan, “Observation of mean path length invariance in light-scattering media,” Science 358, 765–768 (2017).
[Crossref]

Z. Phys. B (1)

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
[Crossref]

Other (2)

O. Tzang, E. Niv, S. Singh, S. Labouesse, G. Myatt, and R. Piestun, “Wavefront shaping in complex media at 350  KHz with a 1D-to-2D transform,” arXiv:1808.09025 (2018).

S. L. Jacques, Optical Properties of Biological Tissues: A Review, Physics in Medicine and Biology (2013), Vol. 58, p. R37.

Supplementary Material (1)

NameDescription
» Supplement 1       Analytical models

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Experimental setup. P, polarizer; A, aperture; L, lens (focal ${\rm length} = {150}\,\,{\rm mm}$); BS, beamsplitter; MEMS-SLM, MEMS-based spatial light modulator. The wavefront of a collimated laser beam (532 nm) is modulated by a phase-only spatial light modulator. The phase mask is imaged on the back aperture of a microscope objective and focused into a scattering sample. A second microscope objective images the output speckle using a beamsplitter on a CCD camera and PMT. The PMT collects the intensity of one speckle grain through an optical fiber. An iris controls the aperture size to match the speckle grain size with the diameter of the fiber. A polarizer selects one polarization state of the output speckle. The PMT signal is acquired by a DAQ board and sent to a FPGA board. During the optimization algorithm, the FPGA board computes the optimal phase for a given Hadamard mode, adds it to the current phase mask of the SLM, and applies the new mask to the SLM. Optimization of one mode takes 243 µs. (b) A stack of speckle patterns is recorded over time to characterize the decorrelation dynamics of the speckle. (c) After ending the optimization, the focus degrades in time due to the speckle decorrelation.
Fig. 2.
Fig. 2. Focus stability through a monodisperse colloidal solution. (a) Scheme of the scattering process. When propagating inside a scattering medium, light will travel through many scattering sequences and will then interfere to form a speckle pattern. For a dynamical medium, sequences will change in time, leading to the decorrelation of the speckle. (b) Evolution in time of the focus after ending the optimization through a medium with a mean decorrelation time of 70 ms: average (solid line) and standard deviation (blue region) over 500 realizations. Dotted line: intensity correlation function (g2) of the speckle. Averaged over a large number of realizations, the focus presents the same stability as the speckle, even if each individual realization does not. Inset: Residuals of the fit of g2 (dark line) and of an individual focus degradation (blue). (c) Ratio of the focus mean decorrelation time to speckle decorrelation time for different speckle decorrelation times. On average, the focus presents the same stability as the speckle through a monodisperse colloidal solution.
Fig. 3.
Fig. 3. Focusing through two layers (static and fast dynamical) of scattering media. (a) Scheme of the scattering sample. Light is first multiply scattered by a fixed scattering layer (in gray); it then encounters only a few scattering events by propagating through a dynamical scattering layer. Part of the light propagates ballistically through this dynamical layer (black arrows); the other sequences (in red) decorrelate due to the motion of the scatterers. (b) Comparison between focus degradation (solid lines) and speckle decorrelation (dotted lines) for different scattering mean free paths of the colloidal solution. The mean speckle decorrelation time, in presence of the colloidal solution, is below 1 ms. The optimization process isn’t fast enough to compensate for this dynamical scattering. Therefore, the sequences contributing to the focus are mostly static sequences. (c) Mean value of the plateau α after decorrelation for the focus (red diamonds) and speckle (blue square) for different scattering mean free paths of the colloidal solution. Error bars represent the 95% confidence bounds of the fit. (d) CCD images ($320 * 320\,\, \unicode{x00B5}{\rm m}^2$) of the speckle pattern measured before optimization (left) and after a stable focus is obtained for different scattering samples (from left to right: $\ell_s = \infty, $ 2.1 mm, 1.4 mm, and 1.2 mm).
Fig. 4.
Fig. 4. Focusing through two layers (static and slow dynamical) of scattering media. The scheme of the experiment is similar to the one shown in Fig. 3. The dynamical scattering medium is an aqueous colloidal solution of polystyrene beads. Due to the larger polystyrene beads, the mean scattering decorrelation time is slower, ranging from 55 to 405 ms, as compared to the case shown in Fig. 3. Here, the optimization procedure is fast enough to compensate for the dynamical scattering. (a) Example of a focus degradation (red line) and speckle decorrelation (blue line) for a colloidal solution with ${l_s} = {0.6}\,\,{\rm mm}$. Inset shows residuals of the fits. (b) Mean decorrelation of the focus (red diamonds) and mean decorrelation time of the speckle (blue squares) for different scattering mean free paths of the colloidal solution. Error bars represent the 95% confidence bounds of the fit. On average, the focus is two times more stable than the focus. (c) Mean position of the plateau after decorrelation for the speckle (blue squares) and focus (red diamonds), for different scattering mean free paths of the colloidal solution. Error bars represent the 95% confidence bounds of the fit. (d) Standard deviation of the decay rate distribution for the speckle (blue squares) and focus (red diamonds). The scattering sequences contributing to the focus are the more stable ones; their distribution is also narrower compared to the initial speckle decay rate distribution.
Fig. 5.
Fig. 5. (a) Scheme of the setup to maintain acute brain slices. A slice is immersed in an oxygenized buffer which is renewed with a flux. (b) Oblique wide-field image ($4.6 * 4.6 \,\, {\rm mm}^2$) of a typical acute brain slice (cerebellum). (c) Focusing through an acute mouse brain slice (brainstem) of 300 µm. Temporal correlation function in intensity (blue, g2); average focus degradation (red, $\langle {\rm Focus} \rangle$), more stable degradation (${\rm Focus}_+$), and less stable degradation (${\rm Focus}_ - $). The scattering sequences show a fast decorrelation (${\sim}{100}\,\,{\rm ms}$) followed by a slow one (${\sim}{5}\,\,{\rm s}$). On average, the optimization process promotes the most stable sequences at the focus. In the best case, the focus is only formed with stable sequences. On the contrary, in the worst case, the focus degradation follows the speckle decorrelation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g 2 ( t ) = I ( t + t ) I ( t ) I ( t ) 2 1 ,
g 2 ( t ) = | G ( Γ ) exp ( Γ t ) d Γ | 2 .
I f o c u s ( t ) = | G m ( Γ ) . exp ( Γ . t ) d Γ | 2 ,
g 2 ( t ) o r I f o c u s ( t ) = α + ( 1 α ) × exp ( 2 t τ ) × ( 1 + t 2 σ Γ 2 2 ) 2 ,

Metrics