Abstract

The on-chip creation of coherent light at visible wavelengths is crucial to field-level deployment of spectroscopy and metrology systems. Although on-chip lasers have been implemented in specific cases, a general solution that is not restricted by limitations of specific gain media has not been reported, to the best of our knowledge. Here, we propose creating visible light from an infrared pump by widely separated optical parametric oscillation (OPO) using silicon nanophotonics. The OPO creates signal and idler light in the 700 nm and 1300 nm bands, respectively, with a 900 nm pump. It operates at a threshold power of $ (0.9 \pm 0.1)\,\,{\rm mW} $, over $ 50 \times $ smaller than other widely separated microcavity OPO works, which have been reported only in the infrared. This low threshold enables direct pumping without need of an intermediate optical amplifier. We further show how the device design can be modified to generate 780 nm and 1500 nm light with a similar power efficiency. Our nanophotonic OPO shows distinct advantages in power efficiency, operation stability, and device scalability, and is a major advance towards flexible on-chip generation of coherent visible light.

Full Article  |  PDF Article
OSA Recommended Articles
On-chip χ(2) microring optical parametric oscillator

Alexander W. Bruch, Xianwen Liu, Joshua B. Surya, Chang-Ling Zou, and Hong X. Tang
Optica 6(10) 1361-1366 (2019)

Visible-pulse generation in gain crystal of near-infrared femtosecond optical parametric oscillator

Tae-Young Jeong, Seung-Hyun Kim, Geon-Hee Kim, and Ki-Ju Yee
Opt. Express 23(20) 25620-25627 (2015)

Spectroscopic and nonlinear-optical applications of a tunable β-barium borate optical parametric oscillator

J. G. Haub, M. J. Johnson, and B. J. Orr
J. Opt. Soc. Am. B 10(9) 1765-1777 (1993)

References

  • View by:
  • |
  • |
  • |

  1. M. T. Hummon, S. Kang, D. G. Bopp, Q. Li, D. A. Westly, S. Kim, C. Fredrick, S. A. Diddams, K. Srinivasan, V. Aksyuk, and J. E. Kitching, “Photonic chip for laser stabilization to an atomic vapor with 10−11 instability,” Optica 5, 443–449 (2018).
    [Crossref]
  2. A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
    [Crossref]
  3. Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
    [Crossref]
  4. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  5. G. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  6. J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. Lett. 14, 973–976 (1965).
    [Crossref]
  7. M. Ebrahimzadeh, M. H. Dunn, and F. Akerboom, “Highly efficient visible urea optical parametric oscillator pumped by a XECL excimer laser,” Opt. Lett. 14, 560–562 (1989).
    [Crossref]
  8. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986).
    [Crossref]
  9. A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell, “Widely tunable optical parametric generation in a photonic crystal fiber,” Opt. Lett. 30, 762–764 (2005).
    [Crossref]
  10. Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett. 30, 1234–1236 (2005).
    [Crossref]
  11. Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, and O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express 16, 10596–10610 (2008).
    [Crossref]
  12. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
    [Crossref]
  13. X. Guo, C.-L. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency,” Optica 3, 1126–1131 (2016).
    [Crossref]
  14. J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
    [Crossref]
  15. S. Fujii, T. Kato, R. Suzuki, and T. Tanabe, “Third-harmonic blue light generation from Kerr clustered combs and dispersive waves,” Opt. Lett. 42, 2010–2013 (2017).
    [Crossref]
  16. T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3, 430–435 (2007).
    [Crossref]
  17. J. B. Surya, X. Guo, C.-L. Zou, and H. X. Tang, “Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings,” Optica 5, 103–108 (2018).
    [Crossref]
  18. L. Chang, A. Boes, P. Pintus, J. D. Peters, M. J. Kennedy, X.-W. Guo, N. Volet, S. Yu, S. B. Papp, and J. E. Bowers, “High efficiency SHG in heterogenous integrated GaAs ring resonators,” APL Photon. 4, 036103 (2019).
    [Crossref]
  19. N. L. B. Sayson, K. E. Webb, S. Coen, M. Erkintalo, and S. G. Murdoch, “Widely tunable optical parametric oscillation in a Kerr microresonator,” Opt. Lett. 42, 5190–5193 (2017).
    [Crossref]
  20. S. Fujii, S. Tanaka, M. Fuchida, H. Amano, Y. Hayama, R. Suzuki, Y. Kakinuma, and T. Tanabe, “Octave-wide phase-matched four-wave mixing in dispersion engineered crystalline microresonators,” Opt. Lett. 44, 3146–3149 (2019).
    [Crossref]
  21. N. L. B. Sayson, T. Bi, V. Ng, H. Pham, L. S. Trainor, H. G. L. Schwefel, S. Coen, M. Erkintalo, and S. G. Murdoch, “Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators,” Nat. Photonics 13, 701–707 (2019).
    [Crossref]
  22. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [Crossref]
  23. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
    [Crossref]
  24. Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2017).
    [Crossref]
  25. M. Karpov, M. H. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9, 1146 (2018).
    [Crossref]
  26. Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
    [Crossref]
  27. A. Singh, Q. Li, S. Liu, Y. Yu, X. Lu, C. Schneider, S. Höfling, J. Lawall, V. Verma, R. Mirin, S. W. Nam, J. Liu, and K. Srinivasan, “Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip,” Optica 6, 563–569 (2019).
    [Crossref]
  28. X. Lu, G. Moille, Q. Li, D. A. Westly, A. Rao, S.-P. Yu, T. C. Briles, S. B. Papp, and K. Srinivasan, “Efficient telecom-to-visible spectral translation using silicon nanophotonics,” Nat. Photonics 13, 593–601 (2019).
    [Crossref]
  29. X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, “Chip-integrated visible-telecom photon pair sources for quantum communication,” Nat. Phys. 15, 373–381 (2019).
    [Crossref]
  30. A. B. Matsko, A. A. Savchenkov, S.-W. Huang, and L. Maleki, “Clustered frequency comb,” Opt. Lett. 41, 5102–5105 (2016).
    [Crossref]
  31. S.-W. Huang, A. K. Vinod, J. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “Quasi-phase-matched multispectral Kerr frequency comb,” Opt. Lett. 42, 2110–2113 (2017).
    [Crossref]
  32. T. J. Kippenberg, S. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
    [Crossref]
  33. X. Lu, S. Rogers, W. C. Jiang, and Q. Lin, “Selective engineering of cavity resonance for frequency matching in optical parametric processes,” Appl. Phys. Lett. 105, 151104 (2014).
    [Crossref]

2019 (6)

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. J. Kennedy, X.-W. Guo, N. Volet, S. Yu, S. B. Papp, and J. E. Bowers, “High efficiency SHG in heterogenous integrated GaAs ring resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

S. Fujii, S. Tanaka, M. Fuchida, H. Amano, Y. Hayama, R. Suzuki, Y. Kakinuma, and T. Tanabe, “Octave-wide phase-matched four-wave mixing in dispersion engineered crystalline microresonators,” Opt. Lett. 44, 3146–3149 (2019).
[Crossref]

N. L. B. Sayson, T. Bi, V. Ng, H. Pham, L. S. Trainor, H. G. L. Schwefel, S. Coen, M. Erkintalo, and S. G. Murdoch, “Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators,” Nat. Photonics 13, 701–707 (2019).
[Crossref]

A. Singh, Q. Li, S. Liu, Y. Yu, X. Lu, C. Schneider, S. Höfling, J. Lawall, V. Verma, R. Mirin, S. W. Nam, J. Liu, and K. Srinivasan, “Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip,” Optica 6, 563–569 (2019).
[Crossref]

X. Lu, G. Moille, Q. Li, D. A. Westly, A. Rao, S.-P. Yu, T. C. Briles, S. B. Papp, and K. Srinivasan, “Efficient telecom-to-visible spectral translation using silicon nanophotonics,” Nat. Photonics 13, 593–601 (2019).
[Crossref]

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, “Chip-integrated visible-telecom photon pair sources for quantum communication,” Nat. Phys. 15, 373–381 (2019).
[Crossref]

2018 (3)

2017 (4)

2016 (5)

A. B. Matsko, A. A. Savchenkov, S.-W. Huang, and L. Maleki, “Clustered frequency comb,” Opt. Lett. 41, 5102–5105 (2016).
[Crossref]

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

X. Guo, C.-L. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency,” Optica 3, 1126–1131 (2016).
[Crossref]

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

2015 (1)

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

2014 (1)

X. Lu, S. Rogers, W. C. Jiang, and Q. Lin, “Selective engineering of cavity resonance for frequency matching in optical parametric processes,” Appl. Phys. Lett. 105, 151104 (2014).
[Crossref]

2013 (1)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

2011 (2)

2008 (1)

2007 (1)

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3, 430–435 (2007).
[Crossref]

2005 (2)

2004 (1)

T. J. Kippenberg, S. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

1989 (1)

1986 (1)

1965 (1)

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. Lett. 14, 973–976 (1965).
[Crossref]

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Agrawal, G. P.

Akerboom, F.

Aksyuk, V.

Amano, H.

Anant, V.

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, “Chip-integrated visible-telecom photon pair sources for quantum communication,” Nat. Phys. 15, 373–381 (2019).
[Crossref]

Bi, T.

N. L. B. Sayson, T. Bi, V. Ng, H. Pham, L. S. Trainor, H. G. L. Schwefel, S. Coen, M. Erkintalo, and S. G. Murdoch, “Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators,” Nat. Photonics 13, 701–707 (2019).
[Crossref]

Boes, A.

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. J. Kennedy, X.-W. Guo, N. Volet, S. Yu, S. B. Papp, and J. E. Bowers, “High efficiency SHG in heterogenous integrated GaAs ring resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

Bopp, D. G.

Bowers, J. E.

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. J. Kennedy, X.-W. Guo, N. Volet, S. Yu, S. B. Papp, and J. E. Bowers, “High efficiency SHG in heterogenous integrated GaAs ring resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

Boyd, M. M.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Briles, T. C.

X. Lu, G. Moille, Q. Li, D. A. Westly, A. Rao, S.-P. Yu, T. C. Briles, S. B. Papp, and K. Srinivasan, “Efficient telecom-to-visible spectral translation using silicon nanophotonics,” Nat. Photonics 13, 593–601 (2019).
[Crossref]

Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2017).
[Crossref]

Carmon, T.

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3, 430–435 (2007).
[Crossref]

Chang, L.

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. J. Kennedy, X.-W. Guo, N. Volet, S. Yu, S. B. Papp, and J. E. Bowers, “High efficiency SHG in heterogenous integrated GaAs ring resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

Chen, A. Y. H.

Cheng, Y.

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

Coen, S.

N. L. B. Sayson, T. Bi, V. Ng, H. Pham, L. S. Trainor, H. G. L. Schwefel, S. Coen, M. Erkintalo, and S. G. Murdoch, “Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators,” Nat. Photonics 13, 701–707 (2019).
[Crossref]

N. L. B. Sayson, K. E. Webb, S. Coen, M. Erkintalo, and S. G. Murdoch, “Widely tunable optical parametric oscillation in a Kerr microresonator,” Opt. Lett. 42, 5190–5193 (2017).
[Crossref]

Davanço, M.

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

Deng, Y.

Diddams, S. A.

Drake, T. E.

Dunn, M. H.

Ebrahimzadeh, M.

Erkintalo, M.

N. L. B. Sayson, T. Bi, V. Ng, H. Pham, L. S. Trainor, H. G. L. Schwefel, S. Coen, M. Erkintalo, and S. G. Murdoch, “Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators,” Nat. Photonics 13, 701–707 (2019).
[Crossref]

N. L. B. Sayson, K. E. Webb, S. Coen, M. Erkintalo, and S. G. Murdoch, “Widely tunable optical parametric oscillation in a Kerr microresonator,” Opt. Lett. 42, 5190–5193 (2017).
[Crossref]

Fang, W.

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

Fang, Z.

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

Feng, M.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Foster, M. A.

Fredrick, C.

Fuchida, M.

Fujii, S.

Gaeta, A. L.

Giordmaine, J. A.

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. Lett. 14, 973–976 (1965).
[Crossref]

Guo, X.

Guo, X.-W.

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. J. Kennedy, X.-W. Guo, N. Volet, S. Yu, S. B. Papp, and J. E. Bowers, “High efficiency SHG in heterogenous integrated GaAs ring resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

Harvey, J. D.

Hayama, Y.

Höfling, S.

Huang, S.-W.

Hummon, M. T.

Ikeda, M.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Ilic, B. R.

Jiang, W. C.

X. Lu, S. Rogers, W. C. Jiang, and Q. Lin, “Selective engineering of cavity resonance for frequency matching in optical parametric processes,” Appl. Phys. Lett. 105, 151104 (2014).
[Crossref]

Johnson, T. J.

Kakinuma, Y.

Kang, S.

Karpov, M.

M. Karpov, M. H. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9, 1146 (2018).
[Crossref]

Kato, T.

Kennedy, M. J.

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. J. Kennedy, X.-W. Guo, N. Volet, S. Yu, S. B. Papp, and J. E. Bowers, “High efficiency SHG in heterogenous integrated GaAs ring resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

Kim, S.

Kippenberg, T. J.

M. Karpov, M. H. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9, 1146 (2018).
[Crossref]

T. J. Kippenberg, S. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

Kitching, J. E.

Knight, J. C.

Knox, W. H.

Kwong, D.-L.

Lawall, J.

Leonhardt, R.

Levy, J. S.

Li, D.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Li, Q.

X. Lu, G. Moille, Q. Li, D. A. Westly, A. Rao, S.-P. Yu, T. C. Briles, S. B. Papp, and K. Srinivasan, “Efficient telecom-to-visible spectral translation using silicon nanophotonics,” Nat. Photonics 13, 593–601 (2019).
[Crossref]

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, “Chip-integrated visible-telecom photon pair sources for quantum communication,” Nat. Phys. 15, 373–381 (2019).
[Crossref]

A. Singh, Q. Li, S. Liu, Y. Yu, X. Lu, C. Schneider, S. Höfling, J. Lawall, V. Verma, R. Mirin, S. W. Nam, J. Liu, and K. Srinivasan, “Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip,” Optica 6, 563–569 (2019).
[Crossref]

M. T. Hummon, S. Kang, D. G. Bopp, Q. Li, D. A. Westly, S. Kim, C. Fredrick, S. A. Diddams, K. Srinivasan, V. Aksyuk, and J. E. Kitching, “Photonic chip for laser stabilization to an atomic vapor with 10−11 instability,” Optica 5, 443–449 (2018).
[Crossref]

Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2017).
[Crossref]

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

Li, Z.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Lin, J.

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

Lin, Q.

Lipson, M.

Liu, J.

A. Singh, Q. Li, S. Liu, Y. Yu, X. Lu, C. Schneider, S. Höfling, J. Lawall, V. Verma, R. Mirin, S. W. Nam, J. Liu, and K. Srinivasan, “Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip,” Optica 6, 563–569 (2019).
[Crossref]

M. Karpov, M. H. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9, 1146 (2018).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Liu, S.

A. Singh, Q. Li, S. Liu, Y. Yu, X. Lu, C. Schneider, S. Höfling, J. Lawall, V. Verma, R. Mirin, S. W. Nam, J. Liu, and K. Srinivasan, “Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip,” Optica 6, 563–569 (2019).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Lu, F.

Lu, X.

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, “Chip-integrated visible-telecom photon pair sources for quantum communication,” Nat. Phys. 15, 373–381 (2019).
[Crossref]

X. Lu, G. Moille, Q. Li, D. A. Westly, A. Rao, S.-P. Yu, T. C. Briles, S. B. Papp, and K. Srinivasan, “Efficient telecom-to-visible spectral translation using silicon nanophotonics,” Nat. Photonics 13, 593–601 (2019).
[Crossref]

A. Singh, Q. Li, S. Liu, Y. Yu, X. Lu, C. Schneider, S. Höfling, J. Lawall, V. Verma, R. Mirin, S. W. Nam, J. Liu, and K. Srinivasan, “Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip,” Optica 6, 563–569 (2019).
[Crossref]

X. Lu, S. Rogers, W. C. Jiang, and Q. Lin, “Selective engineering of cavity resonance for frequency matching in optical parametric processes,” Appl. Phys. Lett. 105, 151104 (2014).
[Crossref]

Ludlow, A. D.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

Lukashchuk, A.

M. Karpov, M. H. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9, 1146 (2018).
[Crossref]

Maleki, L.

Matsko, A. B.

Michael, C. P.

Miller, R. C.

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. Lett. 14, 973–976 (1965).
[Crossref]

Mirin, R.

Moille, G.

X. Lu, G. Moille, Q. Li, D. A. Westly, A. Rao, S.-P. Yu, T. C. Briles, S. B. Papp, and K. Srinivasan, “Efficient telecom-to-visible spectral translation using silicon nanophotonics,” Nat. Photonics 13, 593–601 (2019).
[Crossref]

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, “Chip-integrated visible-telecom photon pair sources for quantum communication,” Nat. Phys. 15, 373–381 (2019).
[Crossref]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Moulton, P. F.

Murdoch, S. G.

Nam, S. W.

Ng, V.

N. L. B. Sayson, T. Bi, V. Ng, H. Pham, L. S. Trainor, H. G. L. Schwefel, S. Coen, M. Erkintalo, and S. G. Murdoch, “Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators,” Nat. Photonics 13, 701–707 (2019).
[Crossref]

Ni, J.

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

Okawachi, Y.

Painter, O. J.

Papp, S. B.

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. J. Kennedy, X.-W. Guo, N. Volet, S. Yu, S. B. Papp, and J. E. Bowers, “High efficiency SHG in heterogenous integrated GaAs ring resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

X. Lu, G. Moille, Q. Li, D. A. Westly, A. Rao, S.-P. Yu, T. C. Briles, S. B. Papp, and K. Srinivasan, “Efficient telecom-to-visible spectral translation using silicon nanophotonics,” Nat. Photonics 13, 593–601 (2019).
[Crossref]

Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2017).
[Crossref]

Peik, E.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

Perahia, R.

Peters, J. D.

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. J. Kennedy, X.-W. Guo, N. Volet, S. Yu, S. B. Papp, and J. E. Bowers, “High efficiency SHG in heterogenous integrated GaAs ring resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

Pfeiffer, M. H.

M. Karpov, M. H. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9, 1146 (2018).
[Crossref]

Pham, H.

N. L. B. Sayson, T. Bi, V. Ng, H. Pham, L. S. Trainor, H. G. L. Schwefel, S. Coen, M. Erkintalo, and S. G. Murdoch, “Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators,” Nat. Photonics 13, 701–707 (2019).
[Crossref]

Pintus, P.

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. J. Kennedy, X.-W. Guo, N. Volet, S. Yu, S. B. Papp, and J. E. Bowers, “High efficiency SHG in heterogenous integrated GaAs ring resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

Qiao, L.

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

Rao, A.

X. Lu, G. Moille, Q. Li, D. A. Westly, A. Rao, S.-P. Yu, T. C. Briles, S. B. Papp, and K. Srinivasan, “Efficient telecom-to-visible spectral translation using silicon nanophotonics,” Nat. Photonics 13, 593–601 (2019).
[Crossref]

Rogers, S.

X. Lu, S. Rogers, W. C. Jiang, and Q. Lin, “Selective engineering of cavity resonance for frequency matching in optical parametric processes,” Appl. Phys. Lett. 105, 151104 (2014).
[Crossref]

Russell, P. St.J.

Saha, K.

Savchenkov, A. A.

Sayson, N. L. B.

N. L. B. Sayson, T. Bi, V. Ng, H. Pham, L. S. Trainor, H. G. L. Schwefel, S. Coen, M. Erkintalo, and S. G. Murdoch, “Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators,” Nat. Photonics 13, 701–707 (2019).
[Crossref]

N. L. B. Sayson, K. E. Webb, S. Coen, M. Erkintalo, and S. G. Murdoch, “Widely tunable optical parametric oscillation in a Kerr microresonator,” Opt. Lett. 42, 5190–5193 (2017).
[Crossref]

Schmidt, P. O.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

Schneider, C.

Schwefel, H. G. L.

N. L. B. Sayson, T. Bi, V. Ng, H. Pham, L. S. Trainor, H. G. L. Schwefel, S. Coen, M. Erkintalo, and S. G. Murdoch, “Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators,” Nat. Photonics 13, 701–707 (2019).
[Crossref]

Singh, A.

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, “Chip-integrated visible-telecom photon pair sources for quantum communication,” Nat. Phys. 15, 373–381 (2019).
[Crossref]

A. Singh, Q. Li, S. Liu, Y. Yu, X. Lu, C. Schneider, S. Höfling, J. Lawall, V. Verma, R. Mirin, S. W. Nam, J. Liu, and K. Srinivasan, “Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip,” Optica 6, 563–569 (2019).
[Crossref]

Spillane, S.

T. J. Kippenberg, S. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

Srinivasan, K.

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, “Chip-integrated visible-telecom photon pair sources for quantum communication,” Nat. Phys. 15, 373–381 (2019).
[Crossref]

X. Lu, G. Moille, Q. Li, D. A. Westly, A. Rao, S.-P. Yu, T. C. Briles, S. B. Papp, and K. Srinivasan, “Efficient telecom-to-visible spectral translation using silicon nanophotonics,” Nat. Photonics 13, 593–601 (2019).
[Crossref]

A. Singh, Q. Li, S. Liu, Y. Yu, X. Lu, C. Schneider, S. Höfling, J. Lawall, V. Verma, R. Mirin, S. W. Nam, J. Liu, and K. Srinivasan, “Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip,” Optica 6, 563–569 (2019).
[Crossref]

M. T. Hummon, S. Kang, D. G. Bopp, Q. Li, D. A. Westly, S. Kim, C. Fredrick, S. A. Diddams, K. Srinivasan, V. Aksyuk, and J. E. Kitching, “Photonic chip for laser stabilization to an atomic vapor with 10−11 instability,” Optica 5, 443–449 (2018).
[Crossref]

Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2017).
[Crossref]

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

Stone, J. R.

Sun, Q.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Sun, Y.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Surya, J. B.

Suzuki, R.

Tanabe, T.

Tanaka, S.

Tang, H. X.

Trainor, L. S.

N. L. B. Sayson, T. Bi, V. Ng, H. Pham, L. S. Trainor, H. G. L. Schwefel, S. Coen, M. Erkintalo, and S. G. Murdoch, “Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators,” Nat. Photonics 13, 701–707 (2019).
[Crossref]

Vahala, K. J.

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3, 430–435 (2007).
[Crossref]

T. J. Kippenberg, S. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

Verma, V.

Vinod, A. K.

Volet, N.

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. J. Kennedy, X.-W. Guo, N. Volet, S. Yu, S. B. Papp, and J. E. Bowers, “High efficiency SHG in heterogenous integrated GaAs ring resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

Wadsworth, W. J.

Wang, M.

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

Webb, K. E.

Wen, Y. H.

Westly, D. A.

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, “Chip-integrated visible-telecom photon pair sources for quantum communication,” Nat. Phys. 15, 373–381 (2019).
[Crossref]

X. Lu, G. Moille, Q. Li, D. A. Westly, A. Rao, S.-P. Yu, T. C. Briles, S. B. Papp, and K. Srinivasan, “Efficient telecom-to-visible spectral translation using silicon nanophotonics,” Nat. Photonics 13, 593–601 (2019).
[Crossref]

M. T. Hummon, S. Kang, D. G. Bopp, Q. Li, D. A. Westly, S. Kim, C. Fredrick, S. A. Diddams, K. Srinivasan, V. Aksyuk, and J. E. Kitching, “Photonic chip for laser stabilization to an atomic vapor with 10−11 instability,” Optica 5, 443–449 (2018).
[Crossref]

Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2017).
[Crossref]

Wong, C. W.

Wong, G. K. L.

Xu, Y.

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

Yang, H.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Yang, J.

Ye, J.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

Yu, M.

Yu, S.

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. J. Kennedy, X.-W. Guo, N. Volet, S. Yu, S. B. Papp, and J. E. Bowers, “High efficiency SHG in heterogenous integrated GaAs ring resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

Yu, S.-P.

X. Lu, G. Moille, Q. Li, D. A. Westly, A. Rao, S.-P. Yu, T. C. Briles, S. B. Papp, and K. Srinivasan, “Efficient telecom-to-visible spectral translation using silicon nanophotonics,” Nat. Photonics 13, 593–601 (2019).
[Crossref]

Yu, Y.

Zhang, L.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Zhang, S.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Zhou, K.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Zhou, Y.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Zou, C.-L.

APL Photon. (1)

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. J. Kennedy, X.-W. Guo, N. Volet, S. Yu, S. B. Papp, and J. E. Bowers, “High efficiency SHG in heterogenous integrated GaAs ring resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

Appl. Phys. Lett. (1)

X. Lu, S. Rogers, W. C. Jiang, and Q. Lin, “Selective engineering of cavity resonance for frequency matching in optical parametric processes,” Appl. Phys. Lett. 105, 151104 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

M. Karpov, M. H. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9, 1146 (2018).
[Crossref]

Nat. Photonics (5)

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

N. L. B. Sayson, T. Bi, V. Ng, H. Pham, L. S. Trainor, H. G. L. Schwefel, S. Coen, M. Erkintalo, and S. G. Murdoch, “Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators,” Nat. Photonics 13, 701–707 (2019).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

X. Lu, G. Moille, Q. Li, D. A. Westly, A. Rao, S.-P. Yu, T. C. Briles, S. B. Papp, and K. Srinivasan, “Efficient telecom-to-visible spectral translation using silicon nanophotonics,” Nat. Photonics 13, 593–601 (2019).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595–599 (2016).
[Crossref]

Nat. Phys. (2)

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3, 430–435 (2007).
[Crossref]

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, “Chip-integrated visible-telecom photon pair sources for quantum communication,” Nat. Phys. 15, 373–381 (2019).
[Crossref]

Opt. Express (2)

Opt. Lett. (9)

N. L. B. Sayson, K. E. Webb, S. Coen, M. Erkintalo, and S. G. Murdoch, “Widely tunable optical parametric oscillation in a Kerr microresonator,” Opt. Lett. 42, 5190–5193 (2017).
[Crossref]

S. Fujii, S. Tanaka, M. Fuchida, H. Amano, Y. Hayama, R. Suzuki, Y. Kakinuma, and T. Tanabe, “Octave-wide phase-matched four-wave mixing in dispersion engineered crystalline microresonators,” Opt. Lett. 44, 3146–3149 (2019).
[Crossref]

A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell, “Widely tunable optical parametric generation in a photonic crystal fiber,” Opt. Lett. 30, 762–764 (2005).
[Crossref]

Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett. 30, 1234–1236 (2005).
[Crossref]

M. Ebrahimzadeh, M. H. Dunn, and F. Akerboom, “Highly efficient visible urea optical parametric oscillator pumped by a XECL excimer laser,” Opt. Lett. 14, 560–562 (1989).
[Crossref]

A. B. Matsko, A. A. Savchenkov, S.-W. Huang, and L. Maleki, “Clustered frequency comb,” Opt. Lett. 41, 5102–5105 (2016).
[Crossref]

S.-W. Huang, A. K. Vinod, J. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “Quasi-phase-matched multispectral Kerr frequency comb,” Opt. Lett. 42, 2110–2113 (2017).
[Crossref]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
[Crossref]

S. Fujii, T. Kato, R. Suzuki, and T. Tanabe, “Third-harmonic blue light generation from Kerr clustered combs and dispersive waves,” Opt. Lett. 42, 2010–2013 (2017).
[Crossref]

Optica (5)

Phys. Rev. Appl. (1)

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

Phys. Rev. Lett. (2)

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. Lett. 14, 973–976 (1965).
[Crossref]

T. J. Kippenberg, S. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

Rev. Mod. Phys. (1)

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

Other (2)

R. W. Boyd, Nonlinear Optics (Academic, 2008).

G. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Supplementary Material (1)

NameDescription
» Supplement 1       Additional details on theory, simulation, fabrication, and supporting measurements.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Design of a nanophotonic visible-telecom optical parametric oscillator. (a) Schematic indicating that the microring device uses cavity-enhanced degenerate four-wave mixing (dFWM) to generate signal and idler light that have frequencies widely separated from the input pump. All interacting modes (pump, signal, and idler) are fundamental transverse-electric modes (TE1), with their dominant electric field components shown in insets. The input pump and the output signal and idler are all coupled with the same waveguide in this scheme. (b) Cross-section view of the microring shows the air cladding and silicon dioxide substrate, and two key geometric parameters, ring width ($ RW $) and height ($ H $). These two parameters, together with the ring outer radius ($ RR $), unambiguously determine the microring dispersion. (c) Dispersion curve ($ D $) of a typical geometry, with $ RR = 23\,\,\unicode{x00B5}{\rm m} $, $ RW = 1160\,\,{\rm nm} $, and $ H = 510\,\,{\rm nm} $. $ D = 0 $ when the pump frequency $ {\nu _{\rm p}} $ is $ \approx 321.7\,\,{\rm THz} $ (932.5 nm), as shown in the zoomed-in inset. The dispersion is anomalous ($ D \gt 0 $) when $ {\nu _{\rm p}} $ is smaller, and normal ($ D \lt 0 $) when $ {\nu _{\rm p}} $ is larger. (d) Frequency mismatch ($ \Delta \nu $) for dFWM for the geometry in (c) at various values of $ {\nu _{\rm p}} $. When the pump is slightly normal at 322 THz (red), there are two cases in which signal and idler modes are phase/frequency matched, with both suitable for widely separated OPO. $ \Delta \nu $ is calculated for specific mode number ($ m $) sets, because dFWM requires the phase-matching condition to be satisfied, i.e., $ {m_{\rm s}} + {m_{\rm i}} = 2{m_{\rm p}} $. The mode frequency for each mode number is calculated for the geometry in (c) by the finite-element method.
Fig. 2.
Fig. 2. OPO frequencies critically depend on ring width ($ RW $) and pumping frequency ($ {\nu _{\rm p}} $). (a) Simulated dispersion ($ D $) curves for different $ RW $, with other parameters specified in the caption of Fig. 1. The zero-dispersion frequency (ZDF) blue shifts with decreasing $ RW $. (b) Experimentally recorded OPO output (signal and idler) frequencies (left axis, $ {\nu _{\rm s}} $ and $ {\nu _{\rm i}} $) and wavelengths (right axis, $ {\lambda _{\rm s}} $ and $ {\lambda _{\rm i}} $) of the aforementioned geometries when $ {\nu _{\rm p}} $ is varied around the ZDF. Widely separated OPO occurs when the dispersion is slightly normal, as suggested by Fig. 1, because potential close-band OPO processes are inhibited. (c) OPO spectra for the $ RW = 1150\,\,{\rm nm} $ device when $ {\nu _{\rm p}} $ is varied. When scanning $ {\nu _{\rm p}} $ from a mode in the anomalous region to one in the normal region, the spectral separation of the OPO signal and idler increases from 9 THz to 37 THz, 61 THz, and 178 THz, and finally decreases to 7 THz (from top to bottom). On the $ y $ axis, 0 dB is referenced to 1 mW, i.e., dBm.
Fig. 3.
Fig. 3. Power dependence of the visible–telecom OPO. (a) When the OPO frequencies are separated widely into the visible–telecom regime, two waveguides are needed to couple the visible and telecom light efficiently. The straight waveguide (top) is used for out-coupling the telecom (idler), and the pulley waveguide (bottom) is for out-coupling the visible (signal). (b) Transmission ($ T $) traces for $ {\nu _{\rm p}} \approx 322\,\,{\rm THz} $ show bistabilities with various pump powers ($ P $). The open circles specify the laser detuning at various powers for the OSA spectra in (e). (c) OPO threshold power is only $ (0.9 \pm 0.1)\,\,{\rm mW} $, measured by the power dependence of the OPO signal peak amplitudes. I-s and II-s denote signal peaks of two OPO tones at 419.8 THz and 388.7 THz in (e). Here, on the $ y $ axis, 0 dB is referenced to 1 mW, i.e., dBm. Error bars are one standard deviation values due to fluctuations in optical path losses. The quoted pump power is on-chip, with the facet loss typically between 2 dB and 3 dB. (d) Zoom-in frequency mismatch curve of Fig. 1(d) suggests two phase-/frequency-matched cases, where the signal/idler frequencies are labeled as I-s/I-i and II-s/II-i, respectively. The pump frequency is labeled as p (around 322 THz). (e) OPO spectra as a function of pump power. When the pump power is 1.0 mW, OPO I is above threshold and OPO II is below threshold, with I-s and I-i located around 419.8 THz (714.6 nm) and 227.8 THz (1316.9 nm), respectively, corresponding to a spectral separation of 192 THz. Next, when the pump power is 1.6 mW, both OPO I and II are above threshold and observable in the spectrum. II-s and II-i are located around 388.7 THz (771.8 nm) and 258.8 THz (1159.2 nm), respectively. The frequencies of both OPO I/II agree reasonably well with the theoretical prediction in (d). Finally, when the pump power is 2.5 mW, close-band FWM adjacent to OPO II is excited, because the modes adjacent to II have smaller frequency mismatch compared to those around I, as indicated by (d). On the $ y $ axis, 0 dB is referenced to 1 mW, i.e., dBm.
Fig. 4.
Fig. 4. OPO on a single widely separated pair. (a) Top panel shows a microring design with only one phase-/frequency-matched widely separated OPO pair. The microring has parameters of $ H = 600\,\,{\rm nm} $ and $ RW = 1440\,\,{\rm nm} $. When the pump laser frequency $ {\nu _{\rm p}} = 293.5\,\,{\rm THz} $, the generated OPO is predicted to have only a single pair with frequencies of 205 THz and 382 THz. The bottom panel shows the experimental optical spectrum, which confirms that only a single widely separated pair is generated at 202.1 THz (1484 nm) and 383.9 THz (781.4 nm) when $ {\nu _{\rm p}} = 293.0\,\,{\rm THz} $ (1024 nm). Due to the large spectral separation, the device needs two waveguides to couple the OPO signal and idler, with spectra shown in red and blue, respectively. (b) Threshold study of the OPO pair with various dropped pump powers $ {P_{\rm d}} = P (1 - T) $, where transmission ($T$) is changed by the laser-cavity detuning ($ \Delta $), as shown in the inset. The threshold power is $ (1.3 \pm 0.1)\,\,{\rm mW} $. (c) Dispersion is normal near the pump, as shown in (a), thereby disfavoring close-band OPO. However, when the pump power is sufficiently above threshold, the close-band OPO process begins to appears. This competitive OPO is much less efficient than the widely separated OPO, but nevertheless needs further suppression for ideal operation. In the $ y $ axes of (b) and (c), 0 dB is referenced to 1 mW, i.e., dBm.

Metrics