Abstract

Heteroepitaxy of III–V compound semiconductors on industry standard (001) silicon (Si) substrates is highly desirable for large-scale electronic and photonic integrated circuits. Challenges of this approach relate primarily to lattice, polarity, and coefficient of thermal expansion mismatch, which ultimately generate a high density of defects and limit the reliability of active devices. Ongoing efforts to monolithically integrate lasers in silicon photonics include leveraging quantum dots for reduced sensitivity to defects and the ability to enable 1310 nm lasers with gallium arsenide (GaAs) and related compounds. In this work, to extend the operation window to the widely used 1550 nm telecommunications region, we have demonstrated continuous-wave (CW) electrically pumped indium phosphide (InP)-based quantum well lasers on complementary metal-oxide-semiconductor (CMOS)-compatible (001) Si. Heteroepitaxy of InP and related compounds on Si poses additional challenges because the lattice mismatch is significantly larger compared to GaAs. Key to our approach is the development of a low dislocation density InP-on-Si template by metalorganic chemical vapor deposition (MOCVD). Following an InP buffer with a surface defect density of ${1.15} \times {{10}^8}/{{\rm cm}^2}$, a seven-layer indium gallium arsenide phosphide (InGaAsP) multi-quantum well laser diode structure was grown. Fabry–Perot ridge waveguide lasers were then fabricated. A 20-µm wide and 1000-µm long laser demonstrates a room temperature continuous-wave (CW) lasing threshold current density of ${2.05}\;{{\rm kA}/{\rm cm}^2}$ and a maximum output power of 18 mW per facet without facet coating. CW lasing up to 65°C and pulsed lasing greater than 105°C were achieved. This MOCVD-based heteroepitaxy approach offers a practical path toward monolithic integration of InP lasers in silicon photonics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

4 December 2019: A correction was made to the funding section.

References

  • View by:
  • |
  • |
  • |

  1. Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
    [Crossref]
  2. B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” Opt. Express 24, 10435–10444 (2016).
    [Crossref]
  3. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
    [Crossref]
  4. K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
    [Crossref]
  5. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
    [Crossref]
  6. A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
    [Crossref]
  7. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
    [Crossref]
  8. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
    [Crossref]
  9. K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1–7 (2017).
    [Crossref]
  10. P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
    [Crossref]
  11. H. Zhao, S. Pinna, F. Sang, B. Song, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “High-power indium phosphide photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 25, 1–10 (2019).
    [Crossref]
  12. B. J. Isaac, B. Song, S. Pinna, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuit transceiver for FMCW LiDAR,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
    [Crossref]
  13. Y. Liu, A. Wichman, B. Isaac, J. Kalkavage, E. J. Adles, T. R. Clark, and J. Klamkin, “Tuning optimization of ring resonator delays for integrated optical beam forming networks,” J. Lightwave Technol. 35, 4954–4960 (2017).
    [Crossref]
  14. M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30, 3876 (1991).
    [Crossref]
  15. T. Yamada, M. Tachikawa, T. Sasaki, H. Mori, and Y. Kadota, “7000 h continuous wave operation of multiple quantum well laser on Si at 50  C,” Appl. Phys. Lett. 70, 1614–1615 (1997).
    [Crossref]
  16. S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5  µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26, 14514–14523 (2018).
    [Crossref]
  17. B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
    [Crossref]
  18. B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55  µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
    [Crossref]
  19. S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5  µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113, 221103 (2018).
    [Crossref]
  20. Y. Zhang, Y. Su, Y. Bi, J. Pan, H. Yu, Y. Zhang, J. Sun, X. Sun, and M. Chong, “Inclined emitting slotted single-mode laser with 1.7° vertical divergence angle for PIC applications,” Opt. Lett. 43, 86–89 (2018).
    [Crossref]
  21. B. Shi, Y. Han, Q. Li, and K. M. Lau, “1.55-µm lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
    [Crossref]
  22. B. Zhang, W. Q. Wei, J. H. Wang, J. Y. Zhang, H. Cong, Q. Feng, T. Wang, and J. J. Zhang, “1310  nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy,” Opt. Express 27, 19348–19358 (2019).
    [Crossref]
  23. B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).
    [Crossref]
  24. L. Megalini, S. Š. Brunelli, W. Charles, A. Taylor, B. Isaac, J. Bowers, and J. Klamkin, “Strain-compensated InGaAsP superlattices for defect reduction of InP grown on exact-oriented (001) patterned Si substrates by metal organic chemical vapor deposition,” Materials 11, 337 (2018).
    [Crossref]
  25. B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: the role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123, 193104 (2018).
    [Crossref]
  26. Q. Li and K. M. Lau, “Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics,” Prog. Cryst. Growth Charact. Mater. 63, 105–120 (2017).
    [Crossref]
  27. B. Shi, L. Wang, A. A. Taylor, S. Suran Brunelli, H. Zhao, B. Song, and J. Klamkin, “MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3  µm quantum dot laser applications,” Appl. Phys. Lett. 114, 172102 (2019).
    [Crossref]
  28. G. H. Schwuttke, K. Brack, and E. W. Hearn, “The influence of stacking faults on leakage currents of FET devices,” Microelectron. Reliab. 10, 467–470 (1971).
    [Crossref]
  29. A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3, B1–B9 (2015).
    [Crossref]
  30. T. S. Rao, K. Nozawa, and Y. Horikoshi, “Migration enhanced epitaxy growth of GaAs on Si with (GaAs)1−x(Si2)x GaAs strained layer superlattice buffer layers,” Appl. Phys. Lett. 62, 154–156 (1993).
    [Crossref]
  31. N. J. Quitoriano and E. A. Fitzgerald, “Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation,” J. Appl. Phys. 102, 033511 (2007).
    [Crossref]
  32. E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
    [Crossref]
  33. H. Itakura, T. Suzuki, Z. K. Jiang, T. Soga, T. Jimbo, and M. Umeno, “Effect of InGaAs/InP strained layer superlattice in InP-on-Si,” J. Cryst. Growth 115, 154–157 (1991).
    [Crossref]
  34. S. Mahajan, “Defects in semiconductors and their effects on devices,” Acta Mater. 48, 137–149 (2000).
    [Crossref]
  35. I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3  µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
    [Crossref]
  36. A. Vega-Flick, D. Jung, S. Yue, J. E. Bowers, and B. Liao, “Reduced thermal conductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain,” Phys. Rev. Mater. 3, 034603 (2019).
    [Crossref]
  37. T. Sasaki, H. Mori, M. Tachikawa, and T. Yamada, “Aging tests of InP-based laser diodes heteroepitaxially grown on Si substrates,” J. Appl. Phys. 84, 6725–6728 (1998).
    [Crossref]
  38. E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
    [Crossref]
  39. Y. Hasegawa, T. Egawa, T. Jimbo, and M. Umeno, “Influences of dark line defects on characteristics of AlGaAs/GaAs quantum well lasers grown on Si substrates,” Jpn. J. Appl. Phys. 34, 2994–2999 (1995).
    [Crossref]
  40. M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-µm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60, 472–473 (1992).
    [Crossref]
  41. M. Fukuda, K. Wakita, and G. Iwane, “Observation of dark defects related to degradation in InGaAsP/InP DH lasers under accelerated operation,” Jpn. J. Appl. Phys. 20, L87–L90 (1981).
    [Crossref]
  42. F. Olsson, “Selective epitaxy of indium phosphide and heteroepitaxy of indium phosphide on silicon for monolithic integration,” Doctoral dissertation (KTH, 2008).
  43. B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photon. Technol. Lett. 27, 748–751 (2015).
    [Crossref]
  44. B. Shi and K. M. Lau, “Enhanced optical properties of InAs/InAlGaAs/InP quantum dots grown by metal-organic chemical vapor deposition using a double-cap technique,” J. Cryst. Growth 433, 19–23 (2016).
    [Crossref]
  45. M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: material structures and devices,” Prog. Quantum Electron. 38, 237–313 (2014).
    [Crossref]

2019 (8)

H. Zhao, S. Pinna, F. Sang, B. Song, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “High-power indium phosphide photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 25, 1–10 (2019).
[Crossref]

B. J. Isaac, B. Song, S. Pinna, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuit transceiver for FMCW LiDAR,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[Crossref]

B. Shi, Y. Han, Q. Li, and K. M. Lau, “1.55-µm lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

B. Shi, L. Wang, A. A. Taylor, S. Suran Brunelli, H. Zhao, B. Song, and J. Klamkin, “MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3  µm quantum dot laser applications,” Appl. Phys. Lett. 114, 172102 (2019).
[Crossref]

E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
[Crossref]

E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
[Crossref]

A. Vega-Flick, D. Jung, S. Yue, J. E. Bowers, and B. Liao, “Reduced thermal conductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain,” Phys. Rev. Mater. 3, 034603 (2019).
[Crossref]

B. Zhang, W. Q. Wei, J. H. Wang, J. Y. Zhang, H. Cong, Q. Feng, T. Wang, and J. J. Zhang, “1310  nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy,” Opt. Express 27, 19348–19358 (2019).
[Crossref]

2018 (5)

Y. Zhang, Y. Su, Y. Bi, J. Pan, H. Yu, Y. Zhang, J. Sun, X. Sun, and M. Chong, “Inclined emitting slotted single-mode laser with 1.7° vertical divergence angle for PIC applications,” Opt. Lett. 43, 86–89 (2018).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5  µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26, 14514–14523 (2018).
[Crossref]

L. Megalini, S. Š. Brunelli, W. Charles, A. Taylor, B. Isaac, J. Bowers, and J. Klamkin, “Strain-compensated InGaAsP superlattices for defect reduction of InP grown on exact-oriented (001) patterned Si substrates by metal organic chemical vapor deposition,” Materials 11, 337 (2018).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: the role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123, 193104 (2018).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5  µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113, 221103 (2018).
[Crossref]

2017 (8)

Q. Li and K. M. Lau, “Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics,” Prog. Cryst. Growth Charact. Mater. 63, 105–120 (2017).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55  µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1–7 (2017).
[Crossref]

Y. Liu, A. Wichman, B. Isaac, J. Kalkavage, E. J. Adles, T. R. Clark, and J. Klamkin, “Tuning optimization of ring resonator delays for integrated optical beam forming networks,” J. Lightwave Technol. 35, 4954–4960 (2017).
[Crossref]

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

2016 (3)

B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” Opt. Express 24, 10435–10444 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

B. Shi and K. M. Lau, “Enhanced optical properties of InAs/InAlGaAs/InP quantum dots grown by metal-organic chemical vapor deposition using a double-cap technique,” J. Cryst. Growth 433, 19–23 (2016).
[Crossref]

2015 (2)

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photon. Technol. Lett. 27, 748–751 (2015).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3, B1–B9 (2015).
[Crossref]

2014 (2)

M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: material structures and devices,” Prog. Quantum Electron. 38, 237–313 (2014).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

2012 (1)

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

2010 (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

2007 (1)

N. J. Quitoriano and E. A. Fitzgerald, “Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation,” J. Appl. Phys. 102, 033511 (2007).
[Crossref]

2006 (1)

2005 (1)

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

2004 (1)

I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3  µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
[Crossref]

2000 (1)

S. Mahajan, “Defects in semiconductors and their effects on devices,” Acta Mater. 48, 137–149 (2000).
[Crossref]

1998 (1)

T. Sasaki, H. Mori, M. Tachikawa, and T. Yamada, “Aging tests of InP-based laser diodes heteroepitaxially grown on Si substrates,” J. Appl. Phys. 84, 6725–6728 (1998).
[Crossref]

1997 (1)

T. Yamada, M. Tachikawa, T. Sasaki, H. Mori, and Y. Kadota, “7000 h continuous wave operation of multiple quantum well laser on Si at 50  C,” Appl. Phys. Lett. 70, 1614–1615 (1997).
[Crossref]

1995 (1)

Y. Hasegawa, T. Egawa, T. Jimbo, and M. Umeno, “Influences of dark line defects on characteristics of AlGaAs/GaAs quantum well lasers grown on Si substrates,” Jpn. J. Appl. Phys. 34, 2994–2999 (1995).
[Crossref]

1993 (1)

T. S. Rao, K. Nozawa, and Y. Horikoshi, “Migration enhanced epitaxy growth of GaAs on Si with (GaAs)1−x(Si2)x GaAs strained layer superlattice buffer layers,” Appl. Phys. Lett. 62, 154–156 (1993).
[Crossref]

1992 (1)

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-µm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60, 472–473 (1992).
[Crossref]

1991 (2)

H. Itakura, T. Suzuki, Z. K. Jiang, T. Soga, T. Jimbo, and M. Umeno, “Effect of InGaAs/InP strained layer superlattice in InP-on-Si,” J. Cryst. Growth 115, 154–157 (1991).
[Crossref]

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30, 3876 (1991).
[Crossref]

1981 (1)

M. Fukuda, K. Wakita, and G. Iwane, “Observation of dark defects related to degradation in InGaAsP/InP DH lasers under accelerated operation,” Jpn. J. Appl. Phys. 20, L87–L90 (1981).
[Crossref]

1971 (1)

G. H. Schwuttke, K. Brack, and E. W. Hearn, “The influence of stacking faults on leakage currents of FET devices,” Microelectron. Reliab. 10, 467–470 (1971).
[Crossref]

Adles, E. J.

Arakawa, Y.

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1–7 (2017).
[Crossref]

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

Badcock, T. J.

I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3  µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
[Crossref]

Behfar, A.

Bertru, N.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

Bi, Y.

Bowers, J.

L. Megalini, S. Š. Brunelli, W. Charles, A. Taylor, B. Isaac, J. Bowers, and J. Klamkin, “Strain-compensated InGaAsP superlattices for defect reduction of InP grown on exact-oriented (001) patterned Si substrates by metal organic chemical vapor deposition,” Materials 11, 337 (2018).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Bowers, J. E.

A. Vega-Flick, D. Jung, S. Yue, J. E. Bowers, and B. Liao, “Reduced thermal conductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain,” Phys. Rev. Mater. 3, 034603 (2019).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3, B1–B9 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

Brack, K.

G. H. Schwuttke, K. Brack, and E. W. Hearn, “The influence of stacking faults on leakage currents of FET devices,” Microelectron. Reliab. 10, 467–470 (1971).
[Crossref]

Brunelli, S. Š.

L. Megalini, S. Š. Brunelli, W. Charles, A. Taylor, B. Isaac, J. Bowers, and J. Klamkin, “Strain-compensated InGaAsP superlattices for defect reduction of InP grown on exact-oriented (001) patterned Si substrates by metal organic chemical vapor deposition,” Materials 11, 337 (2018).
[Crossref]

Brunelli, S. T. Š.

H. Zhao, S. Pinna, F. Sang, B. Song, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “High-power indium phosphide photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 25, 1–10 (2019).
[Crossref]

Caroff, P.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

Castellano, A.

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Cerutti, L.

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Charles, W.

L. Megalini, S. Š. Brunelli, W. Charles, A. Taylor, B. Isaac, J. Bowers, and J. Klamkin, “Strain-compensated InGaAsP superlattices for defect reduction of InP grown on exact-oriented (001) patterned Si substrates by metal organic chemical vapor deposition,” Materials 11, 337 (2018).
[Crossref]

Chen, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Childs, D. T.

I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3  µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
[Crossref]

Chong, M.

Clark, T. R.

Cohen, O.

Coldren, L. A.

H. Zhao, S. Pinna, F. Sang, B. Song, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “High-power indium phosphide photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 25, 1–10 (2019).
[Crossref]

B. J. Isaac, B. Song, S. Pinna, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuit transceiver for FMCW LiDAR,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[Crossref]

Cong, H.

Dehaese, O.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

Egawa, T.

Y. Hasegawa, T. Egawa, T. Jimbo, and M. Umeno, “Influences of dark line defects on characteristics of AlGaAs/GaAs quantum well lasers grown on Si substrates,” Jpn. J. Appl. Phys. 34, 2994–2999 (1995).
[Crossref]

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Fang, A. W.

Fastenau, J. M.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Feng, Q.

Fitzgerald, E. A.

N. J. Quitoriano and E. A. Fitzgerald, “Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation,” J. Appl. Phys. 102, 033511 (2007).
[Crossref]

Folliot, H.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

Fukuda, M.

M. Fukuda, K. Wakita, and G. Iwane, “Observation of dark defects related to degradation in InGaAsP/InP DH lasers under accelerated operation,” Jpn. J. Appl. Phys. 20, L87–L90 (1981).
[Crossref]

Garreau, A.

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Gossard, A. C.

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3, B1–B9 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Groom, K. M.

I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3  µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
[Crossref]

Guo, W.

Han, Y.

B. Shi, Y. Han, Q. Li, and K. M. Lau, “1.55-µm lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

Hasegawa, Y.

Y. Hasegawa, T. Egawa, T. Jimbo, and M. Umeno, “Influences of dark line defects on characteristics of AlGaAs/GaAs quantum well lasers grown on Si substrates,” Jpn. J. Appl. Phys. 34, 2994–2999 (1995).
[Crossref]

Hearn, E. W.

G. H. Schwuttke, K. Brack, and E. W. Hearn, “The influence of stacking faults on leakage currents of FET devices,” Microelectron. Reliab. 10, 467–470 (1971).
[Crossref]

Homeyer, E.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

Hopkinson, M.

I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3  µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
[Crossref]

Horikoshi, Y.

T. S. Rao, K. Nozawa, and Y. Horikoshi, “Migration enhanced epitaxy growth of GaAs on Si with (GaAs)1−x(Si2)x GaAs strained layer superlattice buffer layers,” Appl. Phys. Lett. 62, 154–156 (1993).
[Crossref]

Hu, E. L.

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55  µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

Hughes, E. T.

E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
[Crossref]

E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
[Crossref]

Isaac, B.

L. Megalini, S. Š. Brunelli, W. Charles, A. Taylor, B. Isaac, J. Bowers, and J. Klamkin, “Strain-compensated InGaAsP superlattices for defect reduction of InP grown on exact-oriented (001) patterned Si substrates by metal organic chemical vapor deposition,” Materials 11, 337 (2018).
[Crossref]

Y. Liu, A. Wichman, B. Isaac, J. Kalkavage, E. J. Adles, T. R. Clark, and J. Klamkin, “Tuning optimization of ring resonator delays for integrated optical beam forming networks,” J. Lightwave Technol. 35, 4954–4960 (2017).
[Crossref]

Isaac, B. J.

B. J. Isaac, B. Song, S. Pinna, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuit transceiver for FMCW LiDAR,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[Crossref]

Itakura, H.

H. Itakura, T. Suzuki, Z. K. Jiang, T. Soga, T. Jimbo, and M. Umeno, “Effect of InGaAs/InP strained layer superlattice in InP-on-Si,” J. Cryst. Growth 115, 154–157 (1991).
[Crossref]

Itoh, Y.

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-µm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60, 472–473 (1992).
[Crossref]

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30, 3876 (1991).
[Crossref]

Iwane, G.

M. Fukuda, K. Wakita, and G. Iwane, “Observation of dark defects related to degradation in InGaAsP/InP DH lasers under accelerated operation,” Jpn. J. Appl. Phys. 20, L87–L90 (1981).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Jiang, Z. K.

H. Itakura, T. Suzuki, Z. K. Jiang, T. Soga, T. Jimbo, and M. Umeno, “Effect of InGaAs/InP strained layer superlattice in InP-on-Si,” J. Cryst. Growth 115, 154–157 (1991).
[Crossref]

Jimbo, T.

Y. Hasegawa, T. Egawa, T. Jimbo, and M. Umeno, “Influences of dark line defects on characteristics of AlGaAs/GaAs quantum well lasers grown on Si substrates,” Jpn. J. Appl. Phys. 34, 2994–2999 (1995).
[Crossref]

H. Itakura, T. Suzuki, Z. K. Jiang, T. Soga, T. Jimbo, and M. Umeno, “Effect of InGaAs/InP strained layer superlattice in InP-on-Si,” J. Cryst. Growth 115, 154–157 (1991).
[Crossref]

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

Jung, D.

A. Vega-Flick, D. Jung, S. Yue, J. E. Bowers, and B. Liao, “Reduced thermal conductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain,” Phys. Rev. Mater. 3, 034603 (2019).
[Crossref]

Kadota, Y.

T. Yamada, M. Tachikawa, T. Sasaki, H. Mori, and Y. Kadota, “7000 h continuous wave operation of multiple quantum well laser on Si at 50  C,” Appl. Phys. Lett. 70, 1614–1615 (1997).
[Crossref]

Kalkavage, J.

Khan, M. Z. M.

M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: material structures and devices,” Prog. Quantum Electron. 38, 237–313 (2014).
[Crossref]

Klamkin, J.

B. Shi, L. Wang, A. A. Taylor, S. Suran Brunelli, H. Zhao, B. Song, and J. Klamkin, “MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3  µm quantum dot laser applications,” Appl. Phys. Lett. 114, 172102 (2019).
[Crossref]

H. Zhao, S. Pinna, F. Sang, B. Song, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “High-power indium phosphide photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 25, 1–10 (2019).
[Crossref]

B. J. Isaac, B. Song, S. Pinna, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuit transceiver for FMCW LiDAR,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[Crossref]

L. Megalini, S. Š. Brunelli, W. Charles, A. Taylor, B. Isaac, J. Bowers, and J. Klamkin, “Strain-compensated InGaAsP superlattices for defect reduction of InP grown on exact-oriented (001) patterned Si substrates by metal organic chemical vapor deposition,” Materials 11, 337 (2018).
[Crossref]

Y. Liu, A. Wichman, B. Isaac, J. Kalkavage, E. J. Adles, T. R. Clark, and J. Klamkin, “Tuning optimization of ring resonator delays for integrated optical beam forming networks,” J. Lightwave Technol. 35, 4954–4960 (2017).
[Crossref]

B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” Opt. Express 24, 10435–10444 (2016).
[Crossref]

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Kunert, B.

Labbé, C.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

Lau, K. M.

B. Shi, Y. Han, Q. Li, and K. M. Lau, “1.55-µm lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5  µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26, 14514–14523 (2018).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: the role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123, 193104 (2018).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5  µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113, 221103 (2018).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55  µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

Q. Li and K. M. Lau, “Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics,” Prog. Cryst. Growth Charact. Mater. 63, 105–120 (2017).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).
[Crossref]

B. Shi and K. M. Lau, “Enhanced optical properties of InAs/InAlGaAs/InP quantum dots grown by metal-organic chemical vapor deposition using a double-cap technique,” J. Cryst. Growth 433, 19–23 (2016).
[Crossref]

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photon. Technol. Lett. 27, 748–751 (2015).
[Crossref]

Le Corre, A.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

Lelarge, F.

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Li, Q.

B. Shi, Y. Han, Q. Li, and K. M. Lau, “1.55-µm lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5  µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26, 14514–14523 (2018).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5  µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113, 221103 (2018).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: the role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123, 193104 (2018).
[Crossref]

Q. Li and K. M. Lau, “Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics,” Prog. Cryst. Growth Charact. Mater. 63, 105–120 (2017).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55  µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photon. Technol. Lett. 27, 748–751 (2015).
[Crossref]

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liang, D.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Liao, B.

A. Vega-Flick, D. Jung, S. Yue, J. E. Bowers, and B. Liao, “Reduced thermal conductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain,” Phys. Rev. Mater. 3, 034603 (2019).
[Crossref]

Liu, A. W. K.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Liu, A. Y.

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3, B1–B9 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Liu, H.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liu, H. Y.

I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3  µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
[Crossref]

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Liu, Y.

Loualiche, S.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

Lubyshev, D.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Mahajan, S.

S. Mahajan, “Defects in semiconductors and their effects on devices,” Acta Mater. 48, 137–149 (2000).
[Crossref]

Megalini, L.

L. Megalini, S. Š. Brunelli, W. Charles, A. Taylor, B. Isaac, J. Bowers, and J. Klamkin, “Strain-compensated InGaAsP superlattices for defect reduction of InP grown on exact-oriented (001) patterned Si substrates by metal organic chemical vapor deposition,” Materials 11, 337 (2018).
[Crossref]

Mori, H.

T. Sasaki, H. Mori, M. Tachikawa, and T. Yamada, “Aging tests of InP-based laser diodes heteroepitaxially grown on Si substrates,” J. Appl. Phys. 84, 6725–6728 (1998).
[Crossref]

T. Yamada, M. Tachikawa, T. Sasaki, H. Mori, and Y. Kadota, “7000 h continuous wave operation of multiple quantum well laser on Si at 50  C,” Appl. Phys. Lett. 70, 1614–1615 (1997).
[Crossref]

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-µm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60, 472–473 (1992).
[Crossref]

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30, 3876 (1991).
[Crossref]

Mowbray, D. J.

I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3  µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
[Crossref]

Mukherjee, K.

E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
[Crossref]

E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
[Crossref]

Narcy, G.

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Ng, K. W.

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photon. Technol. Lett. 27, 748–751 (2015).
[Crossref]

Ng, T. K.

M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: material structures and devices,” Prog. Quantum Electron. 38, 237–313 (2014).
[Crossref]

Nishi, K.

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1–7 (2017).
[Crossref]

Norman, J.

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3, B1–B9 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Nozawa, K.

T. S. Rao, K. Nozawa, and Y. Horikoshi, “Migration enhanced epitaxy growth of GaAs on Si with (GaAs)1−x(Si2)x GaAs strained layer superlattice buffer layers,” Appl. Phys. Lett. 62, 154–156 (1993).
[Crossref]

Olsson, F.

F. Olsson, “Selective epitaxy of indium phosphide and heteroepitaxy of indium phosphide on silicon for monolithic integration,” Doctoral dissertation (KTH, 2008).

Ooi, B. S.

M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: material structures and devices,” Prog. Quantum Electron. 38, 237–313 (2014).
[Crossref]

Pan, J.

Paniccia, M. J.

Pantouvaki, M.

Paranthoen, C.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

Park, H.

Pinna, S.

H. Zhao, S. Pinna, F. Sang, B. Song, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “High-power indium phosphide photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 25, 1–10 (2019).
[Crossref]

B. J. Isaac, B. Song, S. Pinna, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuit transceiver for FMCW LiDAR,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[Crossref]

Piron, R.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

Platz, C.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

Quitoriano, N. J.

N. J. Quitoriano and E. A. Fitzgerald, “Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation,” J. Appl. Phys. 102, 033511 (2007).
[Crossref]

Rao, T. S.

T. S. Rao, K. Nozawa, and Y. Horikoshi, “Migration enhanced epitaxy growth of GaAs on Si with (GaAs)1−x(Si2)x GaAs strained layer superlattice buffer layers,” Appl. Phys. Lett. 62, 154–156 (1993).
[Crossref]

Ristic, S.

Robbins, D.

I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3  µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
[Crossref]

Rodriguez, J. B.

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Roelkens, G.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sakai, Y.

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-µm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60, 472–473 (1992).
[Crossref]

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30, 3876 (1991).
[Crossref]

Sang, F.

H. Zhao, S. Pinna, F. Sang, B. Song, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “High-power indium phosphide photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 25, 1–10 (2019).
[Crossref]

Sasaki, T.

T. Sasaki, H. Mori, M. Tachikawa, and T. Yamada, “Aging tests of InP-based laser diodes heteroepitaxially grown on Si substrates,” J. Appl. Phys. 84, 6725–6728 (1998).
[Crossref]

T. Yamada, M. Tachikawa, T. Sasaki, H. Mori, and Y. Kadota, “7000 h continuous wave operation of multiple quantum well laser on Si at 50  C,” Appl. Phys. Lett. 70, 1614–1615 (1997).
[Crossref]

Schwuttke, G. H.

G. H. Schwuttke, K. Brack, and E. W. Hearn, “The influence of stacking faults on leakage currents of FET devices,” Microelectron. Reliab. 10, 467–470 (1971).
[Crossref]

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sellers, I. R.

I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3  µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
[Crossref]

Shah, R. D.

E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
[Crossref]

E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
[Crossref]

Shi, B.

B. Shi, Y. Han, Q. Li, and K. M. Lau, “1.55-µm lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

B. Shi, L. Wang, A. A. Taylor, S. Suran Brunelli, H. Zhao, B. Song, and J. Klamkin, “MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3  µm quantum dot laser applications,” Appl. Phys. Lett. 114, 172102 (2019).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: the role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123, 193104 (2018).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5  µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113, 221103 (2018).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5  µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26, 14514–14523 (2018).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55  µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

B. Shi and K. M. Lau, “Enhanced optical properties of InAs/InAlGaAs/InP quantum dots grown by metal-organic chemical vapor deposition using a double-cap technique,” J. Cryst. Growth 433, 19–23 (2016).
[Crossref]

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photon. Technol. Lett. 27, 748–751 (2015).
[Crossref]

Shi, Y.

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Skolnick, M. S.

I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3  µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
[Crossref]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Snyder, A.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Soga, T.

H. Itakura, T. Suzuki, Z. K. Jiang, T. Soga, T. Jimbo, and M. Umeno, “Effect of InGaAs/InP strained layer superlattice in InP-on-Si,” J. Cryst. Growth 115, 154–157 (1991).
[Crossref]

Song, B.

B. Shi, L. Wang, A. A. Taylor, S. Suran Brunelli, H. Zhao, B. Song, and J. Klamkin, “MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3  µm quantum dot laser applications,” Appl. Phys. Lett. 114, 172102 (2019).
[Crossref]

H. Zhao, S. Pinna, F. Sang, B. Song, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “High-power indium phosphide photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 25, 1–10 (2019).
[Crossref]

B. J. Isaac, B. Song, S. Pinna, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuit transceiver for FMCW LiDAR,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[Crossref]

B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” Opt. Express 24, 10435–10444 (2016).
[Crossref]

Srinivasan, S.

Stagarescu, C.

Su, Y.

Sugawara, M.

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1–7 (2017).
[Crossref]

Sugo, M.

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-µm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60, 472–473 (1992).
[Crossref]

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30, 3876 (1991).
[Crossref]

Sun, J.

Sun, X.

Suran Brunelli, S.

B. Shi, L. Wang, A. A. Taylor, S. Suran Brunelli, H. Zhao, B. Song, and J. Klamkin, “MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3  µm quantum dot laser applications,” Appl. Phys. Lett. 114, 172102 (2019).
[Crossref]

Suzuki, T.

H. Itakura, T. Suzuki, Z. K. Jiang, T. Soga, T. Jimbo, and M. Umeno, “Effect of InGaAs/InP strained layer superlattice in InP-on-Si,” J. Cryst. Growth 115, 154–157 (1991).
[Crossref]

Tachikawa, M.

T. Sasaki, H. Mori, M. Tachikawa, and T. Yamada, “Aging tests of InP-based laser diodes heteroepitaxially grown on Si substrates,” J. Appl. Phys. 84, 6725–6728 (1998).
[Crossref]

T. Yamada, M. Tachikawa, T. Sasaki, H. Mori, and Y. Kadota, “7000 h continuous wave operation of multiple quantum well laser on Si at 50  C,” Appl. Phys. Lett. 70, 1614–1615 (1997).
[Crossref]

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30, 3876 (1991).
[Crossref]

Takemasa, K.

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1–7 (2017).
[Crossref]

Tanabe, K.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

Tang, C. W.

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photon. Technol. Lett. 27, 748–751 (2015).
[Crossref]

Tang, M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Taylor, A.

L. Megalini, S. Š. Brunelli, W. Charles, A. Taylor, B. Isaac, J. Bowers, and J. Klamkin, “Strain-compensated InGaAsP superlattices for defect reduction of InP grown on exact-oriented (001) patterned Si substrates by metal organic chemical vapor deposition,” Materials 11, 337 (2018).
[Crossref]

Taylor, A. A.

B. Shi, L. Wang, A. A. Taylor, S. Suran Brunelli, H. Zhao, B. Song, and J. Klamkin, “MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3  µm quantum dot laser applications,” Appl. Phys. Lett. 114, 172102 (2019).
[Crossref]

Tournié, E.

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Umeno, M.

Y. Hasegawa, T. Egawa, T. Jimbo, and M. Umeno, “Influences of dark line defects on characteristics of AlGaAs/GaAs quantum well lasers grown on Si substrates,” Jpn. J. Appl. Phys. 34, 2994–2999 (1995).
[Crossref]

H. Itakura, T. Suzuki, Z. K. Jiang, T. Soga, T. Jimbo, and M. Umeno, “Effect of InGaAs/InP strained layer superlattice in InP-on-Si,” J. Cryst. Growth 115, 154–157 (1991).
[Crossref]

Van Campenhout, J.

Van Thourhout, D.

Vega-Flick, A.

A. Vega-Flick, D. Jung, S. Yue, J. E. Bowers, and B. Liao, “Reduced thermal conductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain,” Phys. Rev. Mater. 3, 034603 (2019).
[Crossref]

Wakita, K.

M. Fukuda, K. Wakita, and G. Iwane, “Observation of dark defects related to degradation in InGaAsP/InP DH lasers under accelerated operation,” Jpn. J. Appl. Phys. 20, L87–L90 (1981).
[Crossref]

Wan, Y.

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55  µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photon. Technol. Lett. 27, 748–751 (2015).
[Crossref]

Wang, J. H.

Wang, L.

B. Shi, L. Wang, A. A. Taylor, S. Suran Brunelli, H. Zhao, B. Song, and J. Klamkin, “MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3  µm quantum dot laser applications,” Appl. Phys. Lett. 114, 172102 (2019).
[Crossref]

Wang, T.

Wang, Z.

Watanabe, K.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

Wei, W. Q.

Wichman, A.

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Yamada, T.

T. Sasaki, H. Mori, M. Tachikawa, and T. Yamada, “Aging tests of InP-based laser diodes heteroepitaxially grown on Si substrates,” J. Appl. Phys. 84, 6725–6728 (1998).
[Crossref]

T. Yamada, M. Tachikawa, T. Sasaki, H. Mori, and Y. Kadota, “7000 h continuous wave operation of multiple quantum well laser on Si at 50  C,” Appl. Phys. Lett. 70, 1614–1615 (1997).
[Crossref]

Yu, H.

Yue, S.

A. Vega-Flick, D. Jung, S. Yue, J. E. Bowers, and B. Liao, “Reduced thermal conductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain,” Phys. Rev. Mater. 3, 034603 (2019).
[Crossref]

Zhang, B.

Zhang, C.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Zhang, J. J.

Zhang, J. Y.

Zhang, Y.

Zhao, H.

H. Zhao, S. Pinna, F. Sang, B. Song, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “High-power indium phosphide photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 25, 1–10 (2019).
[Crossref]

B. Shi, L. Wang, A. A. Taylor, S. Suran Brunelli, H. Zhao, B. Song, and J. Klamkin, “MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3  µm quantum dot laser applications,” Appl. Phys. Lett. 114, 172102 (2019).
[Crossref]

Zhu, S.

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5  µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113, 221103 (2018).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5  µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26, 14514–14523 (2018).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55  µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

Zou, X.

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photon. Technol. Lett. 27, 748–751 (2015).
[Crossref]

ACS Photon. (1)

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55  µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

Acta Mater. (1)

S. Mahajan, “Defects in semiconductors and their effects on devices,” Acta Mater. 48, 137–149 (2000).
[Crossref]

APL Photon. (1)

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Appl. Phys. Lett. (8)

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

T. Yamada, M. Tachikawa, T. Sasaki, H. Mori, and Y. Kadota, “7000 h continuous wave operation of multiple quantum well laser on Si at 50  C,” Appl. Phys. Lett. 70, 1614–1615 (1997).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55  µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

B. Shi, L. Wang, A. A. Taylor, S. Suran Brunelli, H. Zhao, B. Song, and J. Klamkin, “MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3  µm quantum dot laser applications,” Appl. Phys. Lett. 114, 172102 (2019).
[Crossref]

T. S. Rao, K. Nozawa, and Y. Horikoshi, “Migration enhanced epitaxy growth of GaAs on Si with (GaAs)1−x(Si2)x GaAs strained layer superlattice buffer layers,” Appl. Phys. Lett. 62, 154–156 (1993).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5  µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113, 221103 (2018).
[Crossref]

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-µm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60, 472–473 (1992).
[Crossref]

Electron. Lett. (1)

I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3  µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

B. Shi, Y. Han, Q. Li, and K. M. Lau, “1.55-µm lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

H. Zhao, S. Pinna, F. Sang, B. Song, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “High-power indium phosphide photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 25, 1–10 (2019).
[Crossref]

B. J. Isaac, B. Song, S. Pinna, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuit transceiver for FMCW LiDAR,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[Crossref]

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1–7 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (1)

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photon. Technol. Lett. 27, 748–751 (2015).
[Crossref]

J. Appl. Phys. (5)

T. Sasaki, H. Mori, M. Tachikawa, and T. Yamada, “Aging tests of InP-based laser diodes heteroepitaxially grown on Si substrates,” J. Appl. Phys. 84, 6725–6728 (1998).
[Crossref]

E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: the role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123, 193104 (2018).
[Crossref]

N. J. Quitoriano and E. A. Fitzgerald, “Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation,” J. Appl. Phys. 102, 033511 (2007).
[Crossref]

E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
[Crossref]

J. Cryst. Growth (3)

H. Itakura, T. Suzuki, Z. K. Jiang, T. Soga, T. Jimbo, and M. Umeno, “Effect of InGaAs/InP strained layer superlattice in InP-on-Si,” J. Cryst. Growth 115, 154–157 (1991).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).
[Crossref]

B. Shi and K. M. Lau, “Enhanced optical properties of InAs/InAlGaAs/InP quantum dots grown by metal-organic chemical vapor deposition using a double-cap technique,” J. Cryst. Growth 433, 19–23 (2016).
[Crossref]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (3)

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30, 3876 (1991).
[Crossref]

Y. Hasegawa, T. Egawa, T. Jimbo, and M. Umeno, “Influences of dark line defects on characteristics of AlGaAs/GaAs quantum well lasers grown on Si substrates,” Jpn. J. Appl. Phys. 34, 2994–2999 (1995).
[Crossref]

M. Fukuda, K. Wakita, and G. Iwane, “Observation of dark defects related to degradation in InGaAsP/InP DH lasers under accelerated operation,” Jpn. J. Appl. Phys. 20, L87–L90 (1981).
[Crossref]

Laser Photon. Rev. (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Materials (1)

L. Megalini, S. Š. Brunelli, W. Charles, A. Taylor, B. Isaac, J. Bowers, and J. Klamkin, “Strain-compensated InGaAsP superlattices for defect reduction of InP grown on exact-oriented (001) patterned Si substrates by metal organic chemical vapor deposition,” Materials 11, 337 (2018).
[Crossref]

Microelectron. Reliab. (1)

G. H. Schwuttke, K. Brack, and E. W. Hearn, “The influence of stacking faults on leakage currents of FET devices,” Microelectron. Reliab. 10, 467–470 (1971).
[Crossref]

Nat. Photonics (1)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optica (1)

Photon. Res. (1)

Phys. Rev. Mater. (1)

A. Vega-Flick, D. Jung, S. Yue, J. E. Bowers, and B. Liao, “Reduced thermal conductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain,” Phys. Rev. Mater. 3, 034603 (2019).
[Crossref]

Prog. Cryst. Growth Charact. Mater. (1)

Q. Li and K. M. Lau, “Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics,” Prog. Cryst. Growth Charact. Mater. 63, 105–120 (2017).
[Crossref]

Prog. Quantum Electron. (1)

M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: material structures and devices,” Prog. Quantum Electron. 38, 237–313 (2014).
[Crossref]

Sci. Rep. (1)

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

Other (1)

F. Olsson, “Selective epitaxy of indium phosphide and heteroepitaxy of indium phosphide on silicon for monolithic integration,” Doctoral dissertation (KTH, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) 3D schematic representation of InP LD on CMOS-compatible (001) Si and (b) tilted cross-section false color SEM image of an as-cleaved ${20}\;{\unicode{x00B5}{\rm m}} \times {1000}\;{\unicode{x00B5}{\rm m}}$ device.
Fig. 2.
Fig. 2. (a) Epitaxial structure and (b) cross-sectional STEM image of the 3.9 µm InP buffer grown on V-grooved (001) Si. (c) Optical microscope image of the InP surface after growth and (d) a ${10} \times {10}\;{{\unicode{x00B5}{\rm m}}^2}$ AFM scan of the surface morphology demonstrating a roughness of 3.79 nm. (e) Representative ECCI image of the InP buffer revealing surface defects. Low power excitation RT-PL spectra of (f) the InP-on-Si with and without insertion of SLSs, and (g) seven-layer InGaAsP-based QW active structure grown on InP-on-Si template and InP native substrate, respectively.
Fig. 3.
Fig. 3. Schematic illustration of the process steps for the ridge laser fabrication including: (a) the as-grown QW laser, (b) p-metal deposition and ridge etch, (c) etch to expose n-contact layer, (d) n-metal deposition, (e) sidewall passivation, and (f) probe pad formation. Optical microscope images of as-fabricated laser bars (g) on InP and (h) on Si.
Fig. 4.
Fig. 4. (a) IV characteristics, (b) LI characteristics and total wall-plug efficiency for the ${20}\;{\unicode{x00B5}{\rm m}} \times {1000}\;{\unicode{x00B5}{\rm m}}$ ridge laser on InP and on InP-on-Si.
Fig. 5.
Fig. 5. (a) Emission spectra at progressively increased currents for a ${20}\;{\unicode{x00B5}{\rm m}} \times {500}\;{\unicode{x00B5}{\rm m}}$ laser device on Si. The measurement temperature was fixed at 20°C. (b) Lasing spectra for the same device at various stage temperatures with an injection current of 400 mA.
Fig. 6.
Fig. 6. LI characteristics for lasers on InP for various cavity lengths under (a) CW and (b) pulsed current injection. The cavity width is 20 µm for all devices. (c) Dependence of threshold current density of InP laser on the cavity length under both operation modes. (d) LI plots for lasers on Si for different cavity lengths under (d) CW and (e) pulsed operation, along with (f) their extracted threshold current densities.
Fig. 7.
Fig. 7. Measured LI characteristics for the ${20}\;{\unicode{x00B5}{\rm m}} \times {1000}\;{\unicode{x00B5}{\rm m}}$ ridge laser on Si as a function of stage temperature under: (a) CW pumping and (b) pulsed operation, and (c) temperature dependence of threshold current. (d) LI curves from the same device size on InP at various stage temperatures under (d) CW and (e) pulsed operations, and (f) temperature dependence of the threshold current.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I t h ( T 1 ) I t h ( T 2 ) = exp ( T 1 T 2 T 0 ) .