Abstract

The effects of the anisotropy orientation in hyperbolic media have only recently emerged as a way to control and manipulate several optical effects. Here, we show from both experimental and theoretical evidence that highly oriented-asymmetric absorption can be induced in simple crystal quartz. This can be achieved by controlling the orientation of the anisotropy with respect to the surface of the crystal at infrared regions where crystal quartz behaves as a hyperbolic medium. What is perhaps most intriguing here is that not only is the absorption asymmetric, but it can also be significantly enhanced. Finally, we also show various mechanisms through which the asymmetry in the absorption can be optimized, such as controlling the thickness of the crystal. Such phenomena are key for directional-dependent optical devices and present a pathway for engineering angle-encoded detection and sensing.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Extraordinary reflection and refraction from natural hyperbolic materials

Sheng Zhou, Abdullah Khan, Shu-Fang Fu, and Xuan-Zhang Wang
Opt. Express 27(11) 15222-15235 (2019)

Compendium of natural hyperbolic materials

Karolina Korzeb, Marcin Gajc, and Dorota Anna Pawlak
Opt. Express 23(20) 25406-25424 (2015)

Tunable perfect absorption at infrared frequencies by a graphene-hBN hyper crystal

Jipeng Wu, Leyong Jiang, Jun Guo, Xiaoyu Dai, Yuanjiang Xiang, and Shuangchun Wen
Opt. Express 24(15) 17103-17114 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhang, Q. Du, C. Wang, T. Fakhrul, S. Liu, L. Deng, D. Huang, P. Pintus, J. Bowers, C. A. Ross, J. Hu, and L. Bi, “Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics,” Optica 6, 473–478 (2019).
    [Crossref]
  2. X. Wu, “High extinction ratio hexagonal boron nitride polarizer,” Optik 175, 290–295 (2018).
    [Crossref]
  3. C. Ranacher, C. Consani, A. Tortschanoff, R. Jannesari, M. Bergmeister, T. Grille, and B. Jakoby, “Mid-infrared absorption gas sensing using a silicon strip waveguide,” Sens. Actuators A 277, 117–123 (2018).
    [Crossref]
  4. Y. Xie, X. Fan, J. D. Wilson, R. N. Simons, Y. Chen, and J. Q. Xiao, “A universal electromagnetic energy conversion adapter based on a metamaterial absorber,” Sci. Rep. 4, 6301 (2014).
    [Crossref]
  5. G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97, 035128 (2018).
    [Crossref]
  6. Y. Ra’di, V. S. Asadchy, and S. A. Tretyakov, “Total absorption of electromagnetic waves in ultimately thin layers,” IEEE Trans. Antennas Propag. 61, 4606–4614 (2013).
    [Crossref]
  7. M. Yazdi, M. Albooyeh, R. Alaee, V. Asadchy, N. Komjani, C. Rockstuhl, C. R. Simovski, and S. Tretyakov, “A bianisotropic metasurface with resonant asymmetric absorption,” IEEE Trans. Antennas Propag. 63, 3004–3015 (2015).
    [Crossref]
  8. X. Wang, A. Díaz-Rubio, V. S. Asadchy, G. Ptitcyn, A. A. Generalov, J. Ala-Laurinaho, and S. A. Tretyakov, “Extreme asymmetry in metasurfaces via evanescent fields engineering: angular-asymmetric absorption,” Phys. Rev. Lett. 121, 256802 (2018).
    [Crossref]
  9. G. B. Smith, “Theory of angular selective transmittance in oblique columnar thin films containing metal and voids,” Appl. Opt. 29, 3685–3693 (1990).
    [Crossref]
  10. D. P. G. Russo and J. H. Harris, “Wave propagation in anisotropic thin-film optical waveguides,” J. Opt. Soc. Am. 63, 138–145 (1973).
    [Crossref]
  11. A. Knoesen, M. Moharam, and T. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals,” Appl. Phys. B 38, 171–178 (1985).
    [Crossref]
  12. A. D. Boardman, P. Egan, and M. McCall, “Optic axis-driven new horizons for hyperbolic metamaterials,” EPJ Appl. Metamater. 2, 11 (2015).
    [Crossref]
  13. S. M. Hashemi and I. S. Nefedov, “Wideband perfect absorption in arrays of tilted carbon nanotubes,” Phys. Rev. B 86, 195411 (2012).
    [Crossref]
  14. I. S. Nefedov, C. A. Valagiannopoulos, S. M. Hashemi, and E. I. Nefedov, “Total absorption in asymmetric hyperbolic media,” Sci. Rep. 3, 2662 (2013).
    [Crossref]
  15. I. S. Nefedov, C. A. Valagiannopoulos, and L. A. Melnikov, “Perfect absorption in graphene multilayers,” J. Opt. 15, 114003 (2013).
    [Crossref]
  16. X. Wu and C. Fu, “Ultra-broadband perfect absorption with stacked asymmetric hyperbolic metamaterial slabs,” Nanoscale Microscale Thermophys. Eng. 22, 114–123 (2018).
    [Crossref]
  17. X. Wu and C. Fu, “Manipulation of enhanced absorption with tilted hexagonal boron nitride slabs,” J. Quant. Spectrosc. Radiat. Transfer 209, 150–155 (2018).
    [Crossref]
  18. X. Wu, “Perfect absorption in cascaded asymmetric hyperbolic metamaterial slabs,” Superlattices Microstruct. 124, 10–16 (2018).
    [Crossref]
  19. X. Wu, C. Fu, and Z. M. Zhang, “Effect of orientation on the directional and hemispherical emissivity of hyperbolic metamaterials,” Int. J. Heat Mass Transfer 135, 1207–1217 (2019).
    [Crossref]
  20. R. Macêdo, T. Dumelow, R. E. Camley, and R. L. Stamps, “Oriented asymmetric wave propagation and refraction bending in hyperbolic media,” ACS Photon. 5, 5086–5094 (2018).
    [Crossref]
  21. R. Macêdo and R. E. Camley, “Engineering terahertz surface magnon-polaritons in hyperbolic antiferromagnets,” Phys. Rev. B 99, 014437 (2019).
    [Crossref]
  22. S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. J. Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
    [Crossref]
  23. J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
    [Crossref]
  24. T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. M. Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182 (2017).
    [Crossref]
  25. K. Korzeb, M. Gajc, and A. Pawlak, “Compendium of natural hyperbolic materials,” Opt. Express 23, 25406–25424 (2015).
    [Crossref]
  26. J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by nature: from ultraviolet to terahertz,” ACS Photon. 1, 293–303 (2014).
    [Crossref]
  27. D. G. Baranov, J. H. Edgar, T. Hoffman, N. Bassim, and J. D. Caldwell, “Perfect interferenceless absorption at infrared frequencies by a can der Waals crystal,” Phys. Rev. B 92, 20145 (2015).
    [Crossref]
  28. T. G. Folland, T. W. W. Maß, J. R. Matson, J. R. Nolen, S. Liu, K. Watanabe, T. Taniguchi, J. H. Edgar, T. Taubner, and J. D. Caldwell, “Probing hyperbolic polaritons using infrared attenuated total reflectance micro-spectroscopy,” MRS Commun. 8, 1418–1425 (2018).
    [Crossref]
  29. R. Rodrigues da Silva, R. Macêdo, T. Dumelow, J. A. P. da Costa, S. B. Honorato, and A. P. Ayala, “Using phonon resonances as a route to all-angle negative refraction in the far-infrared region: the case of crystal quartz,” Phys. Rev. Lett. 105, 163903 (2010).
    [Crossref]
  30. R. Estevâm da Silva, R. Macêdo, T. Dumelow, J. A. P. da Costa, S. B. Honorato, and A. P. Ayala, “Far-infrared slab lensing and subwavelength imaging in crystal quartz,” Phys. Rev. B 86, 155152 (2012).
    [Crossref]
  31. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948 (2013).
    [Crossref]
  32. S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics (to be published).
    [Crossref]
  33. R. Macêdo, R. R. da Silva, T. Dumelow, and J. A. P. da Costa, “MgF2 as a material exhibiting all-angle negative refraction and subwavelength imaging due to the phonon response in the far infrared,” Opt. Commun. 310, 94–99 (2014).
    [Crossref]
  34. R. Macêdo and T. Dumelow, “Beam shifts on reflection of electromagnetic radiation off anisotropic crystals at optic phonon frequencies,” J. Opt. 15, 014013 (2013).
    [Crossref]
  35. S. Inampudi, J. Cheng, M. M. Salary, and H. Mosallaei, “Unidirectional thermal radiation from a sic metasurface,” J. Opt. Soc. Am. B 35, 39–46 (2018).
    [Crossref]
  36. G. Pawlik, K. Tarnowski, W. Walasik, A. C. Mitus, and I. C. Khoo, “Liquid crystal hyperbolic metamaterial for wide-angle negative and positive refraction and reflection,” Opt. Lett. 39, 1744–1747 (2014).
    [Crossref]

2019 (3)

X. Wu, C. Fu, and Z. M. Zhang, “Effect of orientation on the directional and hemispherical emissivity of hyperbolic metamaterials,” Int. J. Heat Mass Transfer 135, 1207–1217 (2019).
[Crossref]

R. Macêdo and R. E. Camley, “Engineering terahertz surface magnon-polaritons in hyperbolic antiferromagnets,” Phys. Rev. B 99, 014437 (2019).
[Crossref]

Y. Zhang, Q. Du, C. Wang, T. Fakhrul, S. Liu, L. Deng, D. Huang, P. Pintus, J. Bowers, C. A. Ross, J. Hu, and L. Bi, “Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics,” Optica 6, 473–478 (2019).
[Crossref]

2018 (10)

S. Inampudi, J. Cheng, M. M. Salary, and H. Mosallaei, “Unidirectional thermal radiation from a sic metasurface,” J. Opt. Soc. Am. B 35, 39–46 (2018).
[Crossref]

T. G. Folland, T. W. W. Maß, J. R. Matson, J. R. Nolen, S. Liu, K. Watanabe, T. Taniguchi, J. H. Edgar, T. Taubner, and J. D. Caldwell, “Probing hyperbolic polaritons using infrared attenuated total reflectance micro-spectroscopy,” MRS Commun. 8, 1418–1425 (2018).
[Crossref]

R. Macêdo, T. Dumelow, R. E. Camley, and R. L. Stamps, “Oriented asymmetric wave propagation and refraction bending in hyperbolic media,” ACS Photon. 5, 5086–5094 (2018).
[Crossref]

X. Wu and C. Fu, “Ultra-broadband perfect absorption with stacked asymmetric hyperbolic metamaterial slabs,” Nanoscale Microscale Thermophys. Eng. 22, 114–123 (2018).
[Crossref]

X. Wu and C. Fu, “Manipulation of enhanced absorption with tilted hexagonal boron nitride slabs,” J. Quant. Spectrosc. Radiat. Transfer 209, 150–155 (2018).
[Crossref]

X. Wu, “Perfect absorption in cascaded asymmetric hyperbolic metamaterial slabs,” Superlattices Microstruct. 124, 10–16 (2018).
[Crossref]

X. Wu, “High extinction ratio hexagonal boron nitride polarizer,” Optik 175, 290–295 (2018).
[Crossref]

C. Ranacher, C. Consani, A. Tortschanoff, R. Jannesari, M. Bergmeister, T. Grille, and B. Jakoby, “Mid-infrared absorption gas sensing using a silicon strip waveguide,” Sens. Actuators A 277, 117–123 (2018).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97, 035128 (2018).
[Crossref]

X. Wang, A. Díaz-Rubio, V. S. Asadchy, G. Ptitcyn, A. A. Generalov, J. Ala-Laurinaho, and S. A. Tretyakov, “Extreme asymmetry in metasurfaces via evanescent fields engineering: angular-asymmetric absorption,” Phys. Rev. Lett. 121, 256802 (2018).
[Crossref]

2017 (1)

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. M. Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182 (2017).
[Crossref]

2015 (4)

M. Yazdi, M. Albooyeh, R. Alaee, V. Asadchy, N. Komjani, C. Rockstuhl, C. R. Simovski, and S. Tretyakov, “A bianisotropic metasurface with resonant asymmetric absorption,” IEEE Trans. Antennas Propag. 63, 3004–3015 (2015).
[Crossref]

D. G. Baranov, J. H. Edgar, T. Hoffman, N. Bassim, and J. D. Caldwell, “Perfect interferenceless absorption at infrared frequencies by a can der Waals crystal,” Phys. Rev. B 92, 20145 (2015).
[Crossref]

K. Korzeb, M. Gajc, and A. Pawlak, “Compendium of natural hyperbolic materials,” Opt. Express 23, 25406–25424 (2015).
[Crossref]

A. D. Boardman, P. Egan, and M. McCall, “Optic axis-driven new horizons for hyperbolic metamaterials,” EPJ Appl. Metamater. 2, 11 (2015).
[Crossref]

2014 (6)

Y. Xie, X. Fan, J. D. Wilson, R. N. Simons, Y. Chen, and J. Q. Xiao, “A universal electromagnetic energy conversion adapter based on a metamaterial absorber,” Sci. Rep. 4, 6301 (2014).
[Crossref]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. J. Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref]

G. Pawlik, K. Tarnowski, W. Walasik, A. C. Mitus, and I. C. Khoo, “Liquid crystal hyperbolic metamaterial for wide-angle negative and positive refraction and reflection,” Opt. Lett. 39, 1744–1747 (2014).
[Crossref]

R. Macêdo, R. R. da Silva, T. Dumelow, and J. A. P. da Costa, “MgF2 as a material exhibiting all-angle negative refraction and subwavelength imaging due to the phonon response in the far infrared,” Opt. Commun. 310, 94–99 (2014).
[Crossref]

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by nature: from ultraviolet to terahertz,” ACS Photon. 1, 293–303 (2014).
[Crossref]

2013 (5)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948 (2013).
[Crossref]

R. Macêdo and T. Dumelow, “Beam shifts on reflection of electromagnetic radiation off anisotropic crystals at optic phonon frequencies,” J. Opt. 15, 014013 (2013).
[Crossref]

I. S. Nefedov, C. A. Valagiannopoulos, S. M. Hashemi, and E. I. Nefedov, “Total absorption in asymmetric hyperbolic media,” Sci. Rep. 3, 2662 (2013).
[Crossref]

I. S. Nefedov, C. A. Valagiannopoulos, and L. A. Melnikov, “Perfect absorption in graphene multilayers,” J. Opt. 15, 114003 (2013).
[Crossref]

Y. Ra’di, V. S. Asadchy, and S. A. Tretyakov, “Total absorption of electromagnetic waves in ultimately thin layers,” IEEE Trans. Antennas Propag. 61, 4606–4614 (2013).
[Crossref]

2012 (2)

S. M. Hashemi and I. S. Nefedov, “Wideband perfect absorption in arrays of tilted carbon nanotubes,” Phys. Rev. B 86, 195411 (2012).
[Crossref]

R. Estevâm da Silva, R. Macêdo, T. Dumelow, J. A. P. da Costa, S. B. Honorato, and A. P. Ayala, “Far-infrared slab lensing and subwavelength imaging in crystal quartz,” Phys. Rev. B 86, 155152 (2012).
[Crossref]

2010 (1)

R. Rodrigues da Silva, R. Macêdo, T. Dumelow, J. A. P. da Costa, S. B. Honorato, and A. P. Ayala, “Using phonon resonances as a route to all-angle negative refraction in the far-infrared region: the case of crystal quartz,” Phys. Rev. Lett. 105, 163903 (2010).
[Crossref]

1990 (1)

1985 (1)

A. Knoesen, M. Moharam, and T. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals,” Appl. Phys. B 38, 171–178 (1985).
[Crossref]

1973 (1)

Alaee, R.

M. Yazdi, M. Albooyeh, R. Alaee, V. Asadchy, N. Komjani, C. Rockstuhl, C. R. Simovski, and S. Tretyakov, “A bianisotropic metasurface with resonant asymmetric absorption,” IEEE Trans. Antennas Propag. 63, 3004–3015 (2015).
[Crossref]

Ala-Laurinaho, J.

X. Wang, A. Díaz-Rubio, V. S. Asadchy, G. Ptitcyn, A. A. Generalov, J. Ala-Laurinaho, and S. A. Tretyakov, “Extreme asymmetry in metasurfaces via evanescent fields engineering: angular-asymmetric absorption,” Phys. Rev. Lett. 121, 256802 (2018).
[Crossref]

Albooyeh, M.

M. Yazdi, M. Albooyeh, R. Alaee, V. Asadchy, N. Komjani, C. Rockstuhl, C. R. Simovski, and S. Tretyakov, “A bianisotropic metasurface with resonant asymmetric absorption,” IEEE Trans. Antennas Propag. 63, 3004–3015 (2015).
[Crossref]

Asadchy, V.

M. Yazdi, M. Albooyeh, R. Alaee, V. Asadchy, N. Komjani, C. Rockstuhl, C. R. Simovski, and S. Tretyakov, “A bianisotropic metasurface with resonant asymmetric absorption,” IEEE Trans. Antennas Propag. 63, 3004–3015 (2015).
[Crossref]

Asadchy, V. S.

X. Wang, A. Díaz-Rubio, V. S. Asadchy, G. Ptitcyn, A. A. Generalov, J. Ala-Laurinaho, and S. A. Tretyakov, “Extreme asymmetry in metasurfaces via evanescent fields engineering: angular-asymmetric absorption,” Phys. Rev. Lett. 121, 256802 (2018).
[Crossref]

Y. Ra’di, V. S. Asadchy, and S. A. Tretyakov, “Total absorption of electromagnetic waves in ultimately thin layers,” IEEE Trans. Antennas Propag. 61, 4606–4614 (2013).
[Crossref]

Averitt, R. D.

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97, 035128 (2018).
[Crossref]

Avouris, P.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. M. Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182 (2017).
[Crossref]

Ayala, A. P.

R. Estevâm da Silva, R. Macêdo, T. Dumelow, J. A. P. da Costa, S. B. Honorato, and A. P. Ayala, “Far-infrared slab lensing and subwavelength imaging in crystal quartz,” Phys. Rev. B 86, 155152 (2012).
[Crossref]

R. Rodrigues da Silva, R. Macêdo, T. Dumelow, J. A. P. da Costa, S. B. Honorato, and A. P. Ayala, “Using phonon resonances as a route to all-angle negative refraction in the far-infrared region: the case of crystal quartz,” Phys. Rev. Lett. 105, 163903 (2010).
[Crossref]

Baranov, D. G.

D. G. Baranov, J. H. Edgar, T. Hoffman, N. Bassim, and J. D. Caldwell, “Perfect interferenceless absorption at infrared frequencies by a can der Waals crystal,” Phys. Rev. B 92, 20145 (2015).
[Crossref]

Basov, D. N.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. J. Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Bassim, N.

D. G. Baranov, J. H. Edgar, T. Hoffman, N. Bassim, and J. D. Caldwell, “Perfect interferenceless absorption at infrared frequencies by a can der Waals crystal,” Phys. Rev. B 92, 20145 (2015).
[Crossref]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948 (2013).
[Crossref]

Bergmeister, M.

C. Ranacher, C. Consani, A. Tortschanoff, R. Jannesari, M. Bergmeister, T. Grille, and B. Jakoby, “Mid-infrared absorption gas sensing using a silicon strip waveguide,” Sens. Actuators A 277, 117–123 (2018).
[Crossref]

Bi, L.

Boardman, A. D.

A. D. Boardman, P. Egan, and M. McCall, “Optic axis-driven new horizons for hyperbolic metamaterials,” EPJ Appl. Metamater. 2, 11 (2015).
[Crossref]

Bowers, J.

Caldwell, J. D.

T. G. Folland, T. W. W. Maß, J. R. Matson, J. R. Nolen, S. Liu, K. Watanabe, T. Taniguchi, J. H. Edgar, T. Taubner, and J. D. Caldwell, “Probing hyperbolic polaritons using infrared attenuated total reflectance micro-spectroscopy,” MRS Commun. 8, 1418–1425 (2018).
[Crossref]

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. M. Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182 (2017).
[Crossref]

D. G. Baranov, J. H. Edgar, T. Hoffman, N. Bassim, and J. D. Caldwell, “Perfect interferenceless absorption at infrared frequencies by a can der Waals crystal,” Phys. Rev. B 92, 20145 (2015).
[Crossref]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref]

Camley, R. E.

R. Macêdo and R. E. Camley, “Engineering terahertz surface magnon-polaritons in hyperbolic antiferromagnets,” Phys. Rev. B 99, 014437 (2019).
[Crossref]

R. Macêdo, T. Dumelow, R. E. Camley, and R. L. Stamps, “Oriented asymmetric wave propagation and refraction bending in hyperbolic media,” ACS Photon. 5, 5086–5094 (2018).
[Crossref]

Chaves, A.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. M. Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182 (2017).
[Crossref]

Chen, Y.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref]

Y. Xie, X. Fan, J. D. Wilson, R. N. Simons, Y. Chen, and J. Q. Xiao, “A universal electromagnetic energy conversion adapter based on a metamaterial absorber,” Sci. Rep. 4, 6301 (2014).
[Crossref]

Cheng, J.

Consani, C.

C. Ranacher, C. Consani, A. Tortschanoff, R. Jannesari, M. Bergmeister, T. Grille, and B. Jakoby, “Mid-infrared absorption gas sensing using a silicon strip waveguide,” Sens. Actuators A 277, 117–123 (2018).
[Crossref]

da Costa, J. A. P.

R. Macêdo, R. R. da Silva, T. Dumelow, and J. A. P. da Costa, “MgF2 as a material exhibiting all-angle negative refraction and subwavelength imaging due to the phonon response in the far infrared,” Opt. Commun. 310, 94–99 (2014).
[Crossref]

R. Estevâm da Silva, R. Macêdo, T. Dumelow, J. A. P. da Costa, S. B. Honorato, and A. P. Ayala, “Far-infrared slab lensing and subwavelength imaging in crystal quartz,” Phys. Rev. B 86, 155152 (2012).
[Crossref]

R. Rodrigues da Silva, R. Macêdo, T. Dumelow, J. A. P. da Costa, S. B. Honorato, and A. P. Ayala, “Using phonon resonances as a route to all-angle negative refraction in the far-infrared region: the case of crystal quartz,” Phys. Rev. Lett. 105, 163903 (2010).
[Crossref]

da Silva, R. R.

R. Macêdo, R. R. da Silva, T. Dumelow, and J. A. P. da Costa, “MgF2 as a material exhibiting all-angle negative refraction and subwavelength imaging due to the phonon response in the far infrared,” Opt. Commun. 310, 94–99 (2014).
[Crossref]

Dai, S.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. J. Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Deng, L.

Devarapu, G. C. R.

S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics (to be published).
[Crossref]

Díaz-Rubio, A.

X. Wang, A. Díaz-Rubio, V. S. Asadchy, G. Ptitcyn, A. A. Generalov, J. Ala-Laurinaho, and S. A. Tretyakov, “Extreme asymmetry in metasurfaces via evanescent fields engineering: angular-asymmetric absorption,” Phys. Rev. Lett. 121, 256802 (2018).
[Crossref]

Dominguez, G.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. J. Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Du, Q.

Duan, G.

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97, 035128 (2018).
[Crossref]

Dumelow, T.

R. Macêdo, T. Dumelow, R. E. Camley, and R. L. Stamps, “Oriented asymmetric wave propagation and refraction bending in hyperbolic media,” ACS Photon. 5, 5086–5094 (2018).
[Crossref]

R. Macêdo, R. R. da Silva, T. Dumelow, and J. A. P. da Costa, “MgF2 as a material exhibiting all-angle negative refraction and subwavelength imaging due to the phonon response in the far infrared,” Opt. Commun. 310, 94–99 (2014).
[Crossref]

R. Macêdo and T. Dumelow, “Beam shifts on reflection of electromagnetic radiation off anisotropic crystals at optic phonon frequencies,” J. Opt. 15, 014013 (2013).
[Crossref]

R. Estevâm da Silva, R. Macêdo, T. Dumelow, J. A. P. da Costa, S. B. Honorato, and A. P. Ayala, “Far-infrared slab lensing and subwavelength imaging in crystal quartz,” Phys. Rev. B 86, 155152 (2012).
[Crossref]

R. Rodrigues da Silva, R. Macêdo, T. Dumelow, J. A. P. da Costa, S. B. Honorato, and A. P. Ayala, “Using phonon resonances as a route to all-angle negative refraction in the far-infrared region: the case of crystal quartz,” Phys. Rev. Lett. 105, 163903 (2010).
[Crossref]

Edgar, J. H.

T. G. Folland, T. W. W. Maß, J. R. Matson, J. R. Nolen, S. Liu, K. Watanabe, T. Taniguchi, J. H. Edgar, T. Taubner, and J. D. Caldwell, “Probing hyperbolic polaritons using infrared attenuated total reflectance micro-spectroscopy,” MRS Commun. 8, 1418–1425 (2018).
[Crossref]

D. G. Baranov, J. H. Edgar, T. Hoffman, N. Bassim, and J. D. Caldwell, “Perfect interferenceless absorption at infrared frequencies by a can der Waals crystal,” Phys. Rev. B 92, 20145 (2015).
[Crossref]

Egan, P.

A. D. Boardman, P. Egan, and M. McCall, “Optic axis-driven new horizons for hyperbolic metamaterials,” EPJ Appl. Metamater. 2, 11 (2015).
[Crossref]

Ellis, C. T.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref]

Estevâm da Silva, R.

R. Estevâm da Silva, R. Macêdo, T. Dumelow, J. A. P. da Costa, S. B. Honorato, and A. P. Ayala, “Far-infrared slab lensing and subwavelength imaging in crystal quartz,” Phys. Rev. B 86, 155152 (2012).
[Crossref]

Fakhrul, T.

Fan, X.

Y. Xie, X. Fan, J. D. Wilson, R. N. Simons, Y. Chen, and J. Q. Xiao, “A universal electromagnetic energy conversion adapter based on a metamaterial absorber,” Sci. Rep. 4, 6301 (2014).
[Crossref]

Fang, N. X.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. M. Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182 (2017).
[Crossref]

Fei, Z.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. J. Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Fogler, M. M.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. J. Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Folland, T. G.

T. G. Folland, T. W. W. Maß, J. R. Matson, J. R. Nolen, S. Liu, K. Watanabe, T. Taniguchi, J. H. Edgar, T. Taubner, and J. D. Caldwell, “Probing hyperbolic polaritons using infrared attenuated total reflectance micro-spectroscopy,” MRS Commun. 8, 1418–1425 (2018).
[Crossref]

Foteinopoulou, S.

S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics (to be published).
[Crossref]

Francescato, Y.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref]

Fu, C.

X. Wu, C. Fu, and Z. M. Zhang, “Effect of orientation on the directional and hemispherical emissivity of hyperbolic metamaterials,” Int. J. Heat Mass Transfer 135, 1207–1217 (2019).
[Crossref]

X. Wu and C. Fu, “Manipulation of enhanced absorption with tilted hexagonal boron nitride slabs,” J. Quant. Spectrosc. Radiat. Transfer 209, 150–155 (2018).
[Crossref]

X. Wu and C. Fu, “Ultra-broadband perfect absorption with stacked asymmetric hyperbolic metamaterial slabs,” Nanoscale Microscale Thermophys. Eng. 22, 114–123 (2018).
[Crossref]

Gajc, M.

Gannett, W.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. J. Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Gaylord, T.

A. Knoesen, M. Moharam, and T. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals,” Appl. Phys. B 38, 171–178 (1985).
[Crossref]

Generalov, A. A.

X. Wang, A. Díaz-Rubio, V. S. Asadchy, G. Ptitcyn, A. A. Generalov, J. Ala-Laurinaho, and S. A. Tretyakov, “Extreme asymmetry in metasurfaces via evanescent fields engineering: angular-asymmetric absorption,” Phys. Rev. Lett. 121, 256802 (2018).
[Crossref]

Giannini, V.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref]

Giles, A. J.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref]

Grille, T.

C. Ranacher, C. Consani, A. Tortschanoff, R. Jannesari, M. Bergmeister, T. Grille, and B. Jakoby, “Mid-infrared absorption gas sensing using a silicon strip waveguide,” Sens. Actuators A 277, 117–123 (2018).
[Crossref]

Guinea, F.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. M. Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182 (2017).
[Crossref]

Harris, J. H.

Hashemi, S. M.

I. S. Nefedov, C. A. Valagiannopoulos, S. M. Hashemi, and E. I. Nefedov, “Total absorption in asymmetric hyperbolic media,” Sci. Rep. 3, 2662 (2013).
[Crossref]

S. M. Hashemi and I. S. Nefedov, “Wideband perfect absorption in arrays of tilted carbon nanotubes,” Phys. Rev. B 86, 195411 (2012).
[Crossref]

Heinz, T. F.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. M. Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182 (2017).
[Crossref]

Herrero, P. J.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. J. Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Hoffman, T.

D. G. Baranov, J. H. Edgar, T. Hoffman, N. Bassim, and J. D. Caldwell, “Perfect interferenceless absorption at infrared frequencies by a can der Waals crystal,” Phys. Rev. B 92, 20145 (2015).
[Crossref]

Hong, M.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref]

Honorato, S. B.

R. Estevâm da Silva, R. Macêdo, T. Dumelow, J. A. P. da Costa, S. B. Honorato, and A. P. Ayala, “Far-infrared slab lensing and subwavelength imaging in crystal quartz,” Phys. Rev. B 86, 155152 (2012).
[Crossref]

R. Rodrigues da Silva, R. Macêdo, T. Dumelow, J. A. P. da Costa, S. B. Honorato, and A. P. Ayala, “Using phonon resonances as a route to all-angle negative refraction in the far-infrared region: the case of crystal quartz,” Phys. Rev. Lett. 105, 163903 (2010).
[Crossref]

Hu, J.

Huang, D.

Inampudi, S.

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948 (2013).
[Crossref]

Jakoby, B.

C. Ranacher, C. Consani, A. Tortschanoff, R. Jannesari, M. Bergmeister, T. Grille, and B. Jakoby, “Mid-infrared absorption gas sensing using a silicon strip waveguide,” Sens. Actuators A 277, 117–123 (2018).
[Crossref]

Jannesari, R.

C. Ranacher, C. Consani, A. Tortschanoff, R. Jannesari, M. Bergmeister, T. Grille, and B. Jakoby, “Mid-infrared absorption gas sensing using a silicon strip waveguide,” Sens. Actuators A 277, 117–123 (2018).
[Crossref]

Keilmann, F.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. J. Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Khoo, I. C.

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948 (2013).
[Crossref]

Knoesen, A.

A. Knoesen, M. Moharam, and T. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals,” Appl. Phys. B 38, 171–178 (1985).
[Crossref]

Komjani, N.

M. Yazdi, M. Albooyeh, R. Alaee, V. Asadchy, N. Komjani, C. Rockstuhl, C. R. Simovski, and S. Tretyakov, “A bianisotropic metasurface with resonant asymmetric absorption,” IEEE Trans. Antennas Propag. 63, 3004–3015 (2015).
[Crossref]

Koppens, F.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. M. Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182 (2017).
[Crossref]

Korzeb, K.

Kretinin, A. V.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref]

Krishna, S.

S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics (to be published).
[Crossref]

Kumar, A.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. M. Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182 (2017).
[Crossref]

Litchinitser, N. M.

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by nature: from ultraviolet to terahertz,” ACS Photon. 1, 293–303 (2014).
[Crossref]

Liu, M. K.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. J. Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Liu, S.

Y. Zhang, Q. Du, C. Wang, T. Fakhrul, S. Liu, L. Deng, D. Huang, P. Pintus, J. Bowers, C. A. Ross, J. Hu, and L. Bi, “Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics,” Optica 6, 473–478 (2019).
[Crossref]

T. G. Folland, T. W. W. Maß, J. R. Matson, J. R. Nolen, S. Liu, K. Watanabe, T. Taniguchi, J. H. Edgar, T. Taubner, and J. D. Caldwell, “Probing hyperbolic polaritons using infrared attenuated total reflectance micro-spectroscopy,” MRS Commun. 8, 1418–1425 (2018).
[Crossref]

Low, T.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. M. Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182 (2017).
[Crossref]

Ma, Q.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. J. Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Macêdo, R.

R. Macêdo and R. E. Camley, “Engineering terahertz surface magnon-polaritons in hyperbolic antiferromagnets,” Phys. Rev. B 99, 014437 (2019).
[Crossref]

R. Macêdo, T. Dumelow, R. E. Camley, and R. L. Stamps, “Oriented asymmetric wave propagation and refraction bending in hyperbolic media,” ACS Photon. 5, 5086–5094 (2018).
[Crossref]

R. Macêdo, R. R. da Silva, T. Dumelow, and J. A. P. da Costa, “MgF2 as a material exhibiting all-angle negative refraction and subwavelength imaging due to the phonon response in the far infrared,” Opt. Commun. 310, 94–99 (2014).
[Crossref]

R. Macêdo and T. Dumelow, “Beam shifts on reflection of electromagnetic radiation off anisotropic crystals at optic phonon frequencies,” J. Opt. 15, 014013 (2013).
[Crossref]

R. Estevâm da Silva, R. Macêdo, T. Dumelow, J. A. P. da Costa, S. B. Honorato, and A. P. Ayala, “Far-infrared slab lensing and subwavelength imaging in crystal quartz,” Phys. Rev. B 86, 155152 (2012).
[Crossref]

R. Rodrigues da Silva, R. Macêdo, T. Dumelow, J. A. P. da Costa, S. B. Honorato, and A. P. Ayala, “Using phonon resonances as a route to all-angle negative refraction in the far-infrared region: the case of crystal quartz,” Phys. Rev. Lett. 105, 163903 (2010).
[Crossref]

Maier, S. A.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref]

Maß, T. W. W.

T. G. Folland, T. W. W. Maß, J. R. Matson, J. R. Nolen, S. Liu, K. Watanabe, T. Taniguchi, J. H. Edgar, T. Taubner, and J. D. Caldwell, “Probing hyperbolic polaritons using infrared attenuated total reflectance micro-spectroscopy,” MRS Commun. 8, 1418–1425 (2018).
[Crossref]

Matson, J. R.

T. G. Folland, T. W. W. Maß, J. R. Matson, J. R. Nolen, S. Liu, K. Watanabe, T. Taniguchi, J. H. Edgar, T. Taubner, and J. D. Caldwell, “Probing hyperbolic polaritons using infrared attenuated total reflectance micro-spectroscopy,” MRS Commun. 8, 1418–1425 (2018).
[Crossref]

McCall, M.

A. D. Boardman, P. Egan, and M. McCall, “Optic axis-driven new horizons for hyperbolic metamaterials,” EPJ Appl. Metamater. 2, 11 (2015).
[Crossref]

McLeod, A. S.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. J. Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Melnikov, L. A.

I. S. Nefedov, C. A. Valagiannopoulos, and L. A. Melnikov, “Perfect absorption in graphene multilayers,” J. Opt. 15, 114003 (2013).
[Crossref]

Mitus, A. C.

Moharam, M.

A. Knoesen, M. Moharam, and T. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals,” Appl. Phys. B 38, 171–178 (1985).
[Crossref]

Moreno, L. M.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. M. Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182 (2017).
[Crossref]

Mosallaei, H.

Nefedov, E. I.

I. S. Nefedov, C. A. Valagiannopoulos, S. M. Hashemi, and E. I. Nefedov, “Total absorption in asymmetric hyperbolic media,” Sci. Rep. 3, 2662 (2013).
[Crossref]

Nefedov, I. S.

I. S. Nefedov, C. A. Valagiannopoulos, and L. A. Melnikov, “Perfect absorption in graphene multilayers,” J. Opt. 15, 114003 (2013).
[Crossref]

I. S. Nefedov, C. A. Valagiannopoulos, S. M. Hashemi, and E. I. Nefedov, “Total absorption in asymmetric hyperbolic media,” Sci. Rep. 3, 2662 (2013).
[Crossref]

S. M. Hashemi and I. S. Nefedov, “Wideband perfect absorption in arrays of tilted carbon nanotubes,” Phys. Rev. B 86, 195411 (2012).
[Crossref]

Neto, A. H. C.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. J. Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Nolen, J. R.

T. G. Folland, T. W. W. Maß, J. R. Matson, J. R. Nolen, S. Liu, K. Watanabe, T. Taniguchi, J. H. Edgar, T. Taubner, and J. D. Caldwell, “Probing hyperbolic polaritons using infrared attenuated total reflectance micro-spectroscopy,” MRS Commun. 8, 1418–1425 (2018).
[Crossref]

Novoselov, K. S.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref]

Pawlak, A.

Pawlik, G.

Pintus, P.

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948 (2013).
[Crossref]

Ptitcyn, G.

X. Wang, A. Díaz-Rubio, V. S. Asadchy, G. Ptitcyn, A. A. Generalov, J. Ala-Laurinaho, and S. A. Tretyakov, “Extreme asymmetry in metasurfaces via evanescent fields engineering: angular-asymmetric absorption,” Phys. Rev. Lett. 121, 256802 (2018).
[Crossref]

Ra’di, Y.

Y. Ra’di, V. S. Asadchy, and S. A. Tretyakov, “Total absorption of electromagnetic waves in ultimately thin layers,” IEEE Trans. Antennas Propag. 61, 4606–4614 (2013).
[Crossref]

Ranacher, C.

C. Ranacher, C. Consani, A. Tortschanoff, R. Jannesari, M. Bergmeister, T. Grille, and B. Jakoby, “Mid-infrared absorption gas sensing using a silicon strip waveguide,” Sens. Actuators A 277, 117–123 (2018).
[Crossref]

Regan, W.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. J. Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Rockstuhl, C.

M. Yazdi, M. Albooyeh, R. Alaee, V. Asadchy, N. Komjani, C. Rockstuhl, C. R. Simovski, and S. Tretyakov, “A bianisotropic metasurface with resonant asymmetric absorption,” IEEE Trans. Antennas Propag. 63, 3004–3015 (2015).
[Crossref]

Rodin, A. S.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. J. Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Rodrigues da Silva, R.

R. Rodrigues da Silva, R. Macêdo, T. Dumelow, J. A. P. da Costa, S. B. Honorato, and A. P. Ayala, “Using phonon resonances as a route to all-angle negative refraction in the far-infrared region: the case of crystal quartz,” Phys. Rev. Lett. 105, 163903 (2010).
[Crossref]

Ross, C. A.

Russo, D. P. G.

Salary, M. M.

Schalch, J.

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97, 035128 (2018).
[Crossref]

Simons, R. N.

Y. Xie, X. Fan, J. D. Wilson, R. N. Simons, Y. Chen, and J. Q. Xiao, “A universal electromagnetic energy conversion adapter based on a metamaterial absorber,” Sci. Rep. 4, 6301 (2014).
[Crossref]

Simovski, C. R.

M. Yazdi, M. Albooyeh, R. Alaee, V. Asadchy, N. Komjani, C. Rockstuhl, C. R. Simovski, and S. Tretyakov, “A bianisotropic metasurface with resonant asymmetric absorption,” IEEE Trans. Antennas Propag. 63, 3004–3015 (2015).
[Crossref]

Smith, G. B.

Stamps, R. L.

R. Macêdo, T. Dumelow, R. E. Camley, and R. L. Stamps, “Oriented asymmetric wave propagation and refraction bending in hyperbolic media,” ACS Photon. 5, 5086–5094 (2018).
[Crossref]

Subramania, G. S.

S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics (to be published).
[Crossref]

Sun, J.

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by nature: from ultraviolet to terahertz,” ACS Photon. 1, 293–303 (2014).
[Crossref]

Taniguchi, T.

T. G. Folland, T. W. W. Maß, J. R. Matson, J. R. Nolen, S. Liu, K. Watanabe, T. Taniguchi, J. H. Edgar, T. Taubner, and J. D. Caldwell, “Probing hyperbolic polaritons using infrared attenuated total reflectance micro-spectroscopy,” MRS Commun. 8, 1418–1425 (2018).
[Crossref]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. J. Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref]

Tarnowski, K.

Taubner, T.

T. G. Folland, T. W. W. Maß, J. R. Matson, J. R. Nolen, S. Liu, K. Watanabe, T. Taniguchi, J. H. Edgar, T. Taubner, and J. D. Caldwell, “Probing hyperbolic polaritons using infrared attenuated total reflectance micro-spectroscopy,” MRS Commun. 8, 1418–1425 (2018).
[Crossref]

Thiemens, M.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. J. Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Tischler, J. G.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref]

Tortschanoff, A.

C. Ranacher, C. Consani, A. Tortschanoff, R. Jannesari, M. Bergmeister, T. Grille, and B. Jakoby, “Mid-infrared absorption gas sensing using a silicon strip waveguide,” Sens. Actuators A 277, 117–123 (2018).
[Crossref]

Tretyakov, S.

M. Yazdi, M. Albooyeh, R. Alaee, V. Asadchy, N. Komjani, C. Rockstuhl, C. R. Simovski, and S. Tretyakov, “A bianisotropic metasurface with resonant asymmetric absorption,” IEEE Trans. Antennas Propag. 63, 3004–3015 (2015).
[Crossref]

Tretyakov, S. A.

X. Wang, A. Díaz-Rubio, V. S. Asadchy, G. Ptitcyn, A. A. Generalov, J. Ala-Laurinaho, and S. A. Tretyakov, “Extreme asymmetry in metasurfaces via evanescent fields engineering: angular-asymmetric absorption,” Phys. Rev. Lett. 121, 256802 (2018).
[Crossref]

Y. Ra’di, V. S. Asadchy, and S. A. Tretyakov, “Total absorption of electromagnetic waves in ultimately thin layers,” IEEE Trans. Antennas Propag. 61, 4606–4614 (2013).
[Crossref]

Valagiannopoulos, C. A.

I. S. Nefedov, C. A. Valagiannopoulos, S. M. Hashemi, and E. I. Nefedov, “Total absorption in asymmetric hyperbolic media,” Sci. Rep. 3, 2662 (2013).
[Crossref]

I. S. Nefedov, C. A. Valagiannopoulos, and L. A. Melnikov, “Perfect absorption in graphene multilayers,” J. Opt. 15, 114003 (2013).
[Crossref]

Wagner, M.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. J. Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Walasik, W.

Wang, C.

Wang, X.

X. Wang, A. Díaz-Rubio, V. S. Asadchy, G. Ptitcyn, A. A. Generalov, J. Ala-Laurinaho, and S. A. Tretyakov, “Extreme asymmetry in metasurfaces via evanescent fields engineering: angular-asymmetric absorption,” Phys. Rev. Lett. 121, 256802 (2018).
[Crossref]

Wasserman, D.

S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics (to be published).
[Crossref]

Watanabe, K.

T. G. Folland, T. W. W. Maß, J. R. Matson, J. R. Nolen, S. Liu, K. Watanabe, T. Taniguchi, J. H. Edgar, T. Taubner, and J. D. Caldwell, “Probing hyperbolic polaritons using infrared attenuated total reflectance micro-spectroscopy,” MRS Commun. 8, 1418–1425 (2018).
[Crossref]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. J. Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Wilson, J. D.

Y. Xie, X. Fan, J. D. Wilson, R. N. Simons, Y. Chen, and J. Q. Xiao, “A universal electromagnetic energy conversion adapter based on a metamaterial absorber,” Sci. Rep. 4, 6301 (2014).
[Crossref]

Woods, C. R.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref]

Wu, X.

X. Wu, C. Fu, and Z. M. Zhang, “Effect of orientation on the directional and hemispherical emissivity of hyperbolic metamaterials,” Int. J. Heat Mass Transfer 135, 1207–1217 (2019).
[Crossref]

X. Wu, “Perfect absorption in cascaded asymmetric hyperbolic metamaterial slabs,” Superlattices Microstruct. 124, 10–16 (2018).
[Crossref]

X. Wu and C. Fu, “Ultra-broadband perfect absorption with stacked asymmetric hyperbolic metamaterial slabs,” Nanoscale Microscale Thermophys. Eng. 22, 114–123 (2018).
[Crossref]

X. Wu and C. Fu, “Manipulation of enhanced absorption with tilted hexagonal boron nitride slabs,” J. Quant. Spectrosc. Radiat. Transfer 209, 150–155 (2018).
[Crossref]

X. Wu, “High extinction ratio hexagonal boron nitride polarizer,” Optik 175, 290–295 (2018).
[Crossref]

Xiao, J. Q.

Y. Xie, X. Fan, J. D. Wilson, R. N. Simons, Y. Chen, and J. Q. Xiao, “A universal electromagnetic energy conversion adapter based on a metamaterial absorber,” Sci. Rep. 4, 6301 (2014).
[Crossref]

Xie, Y.

Y. Xie, X. Fan, J. D. Wilson, R. N. Simons, Y. Chen, and J. Q. Xiao, “A universal electromagnetic energy conversion adapter based on a metamaterial absorber,” Sci. Rep. 4, 6301 (2014).
[Crossref]

Yazdi, M.

M. Yazdi, M. Albooyeh, R. Alaee, V. Asadchy, N. Komjani, C. Rockstuhl, C. R. Simovski, and S. Tretyakov, “A bianisotropic metasurface with resonant asymmetric absorption,” IEEE Trans. Antennas Propag. 63, 3004–3015 (2015).
[Crossref]

Zettl, A.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. J. Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Zhang, J.

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97, 035128 (2018).
[Crossref]

Zhang, X.

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97, 035128 (2018).
[Crossref]

Zhang, Y.

Zhang, Z. M.

X. Wu, C. Fu, and Z. M. Zhang, “Effect of orientation on the directional and hemispherical emissivity of hyperbolic metamaterials,” Int. J. Heat Mass Transfer 135, 1207–1217 (2019).
[Crossref]

Zhao, X.

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97, 035128 (2018).
[Crossref]

Zhou, J.

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by nature: from ultraviolet to terahertz,” ACS Photon. 1, 293–303 (2014).
[Crossref]

ACS Photon. (2)

R. Macêdo, T. Dumelow, R. E. Camley, and R. L. Stamps, “Oriented asymmetric wave propagation and refraction bending in hyperbolic media,” ACS Photon. 5, 5086–5094 (2018).
[Crossref]

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by nature: from ultraviolet to terahertz,” ACS Photon. 1, 293–303 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

A. Knoesen, M. Moharam, and T. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals,” Appl. Phys. B 38, 171–178 (1985).
[Crossref]

EPJ Appl. Metamater. (1)

A. D. Boardman, P. Egan, and M. McCall, “Optic axis-driven new horizons for hyperbolic metamaterials,” EPJ Appl. Metamater. 2, 11 (2015).
[Crossref]

IEEE Trans. Antennas Propag. (2)

Y. Ra’di, V. S. Asadchy, and S. A. Tretyakov, “Total absorption of electromagnetic waves in ultimately thin layers,” IEEE Trans. Antennas Propag. 61, 4606–4614 (2013).
[Crossref]

M. Yazdi, M. Albooyeh, R. Alaee, V. Asadchy, N. Komjani, C. Rockstuhl, C. R. Simovski, and S. Tretyakov, “A bianisotropic metasurface with resonant asymmetric absorption,” IEEE Trans. Antennas Propag. 63, 3004–3015 (2015).
[Crossref]

Int. J. Heat Mass Transfer (1)

X. Wu, C. Fu, and Z. M. Zhang, “Effect of orientation on the directional and hemispherical emissivity of hyperbolic metamaterials,” Int. J. Heat Mass Transfer 135, 1207–1217 (2019).
[Crossref]

J. Opt. (2)

R. Macêdo and T. Dumelow, “Beam shifts on reflection of electromagnetic radiation off anisotropic crystals at optic phonon frequencies,” J. Opt. 15, 014013 (2013).
[Crossref]

I. S. Nefedov, C. A. Valagiannopoulos, and L. A. Melnikov, “Perfect absorption in graphene multilayers,” J. Opt. 15, 114003 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

X. Wu and C. Fu, “Manipulation of enhanced absorption with tilted hexagonal boron nitride slabs,” J. Quant. Spectrosc. Radiat. Transfer 209, 150–155 (2018).
[Crossref]

MRS Commun. (1)

T. G. Folland, T. W. W. Maß, J. R. Matson, J. R. Nolen, S. Liu, K. Watanabe, T. Taniguchi, J. H. Edgar, T. Taubner, and J. D. Caldwell, “Probing hyperbolic polaritons using infrared attenuated total reflectance micro-spectroscopy,” MRS Commun. 8, 1418–1425 (2018).
[Crossref]

Nanoscale Microscale Thermophys. Eng. (1)

X. Wu and C. Fu, “Ultra-broadband perfect absorption with stacked asymmetric hyperbolic metamaterial slabs,” Nanoscale Microscale Thermophys. Eng. 22, 114–123 (2018).
[Crossref]

Nat. Commun. (1)

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref]

Nat. Mater. (1)

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. M. Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182 (2017).
[Crossref]

Nat. Photonics (1)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948 (2013).
[Crossref]

Opt. Commun. (1)

R. Macêdo, R. R. da Silva, T. Dumelow, and J. A. P. da Costa, “MgF2 as a material exhibiting all-angle negative refraction and subwavelength imaging due to the phonon response in the far infrared,” Opt. Commun. 310, 94–99 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Optica (1)

Optik (1)

X. Wu, “High extinction ratio hexagonal boron nitride polarizer,” Optik 175, 290–295 (2018).
[Crossref]

Phys. Rev. B (5)

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97, 035128 (2018).
[Crossref]

S. M. Hashemi and I. S. Nefedov, “Wideband perfect absorption in arrays of tilted carbon nanotubes,” Phys. Rev. B 86, 195411 (2012).
[Crossref]

R. Estevâm da Silva, R. Macêdo, T. Dumelow, J. A. P. da Costa, S. B. Honorato, and A. P. Ayala, “Far-infrared slab lensing and subwavelength imaging in crystal quartz,” Phys. Rev. B 86, 155152 (2012).
[Crossref]

R. Macêdo and R. E. Camley, “Engineering terahertz surface magnon-polaritons in hyperbolic antiferromagnets,” Phys. Rev. B 99, 014437 (2019).
[Crossref]

D. G. Baranov, J. H. Edgar, T. Hoffman, N. Bassim, and J. D. Caldwell, “Perfect interferenceless absorption at infrared frequencies by a can der Waals crystal,” Phys. Rev. B 92, 20145 (2015).
[Crossref]

Phys. Rev. Lett. (2)

R. Rodrigues da Silva, R. Macêdo, T. Dumelow, J. A. P. da Costa, S. B. Honorato, and A. P. Ayala, “Using phonon resonances as a route to all-angle negative refraction in the far-infrared region: the case of crystal quartz,” Phys. Rev. Lett. 105, 163903 (2010).
[Crossref]

X. Wang, A. Díaz-Rubio, V. S. Asadchy, G. Ptitcyn, A. A. Generalov, J. Ala-Laurinaho, and S. A. Tretyakov, “Extreme asymmetry in metasurfaces via evanescent fields engineering: angular-asymmetric absorption,” Phys. Rev. Lett. 121, 256802 (2018).
[Crossref]

Sci. Rep. (2)

Y. Xie, X. Fan, J. D. Wilson, R. N. Simons, Y. Chen, and J. Q. Xiao, “A universal electromagnetic energy conversion adapter based on a metamaterial absorber,” Sci. Rep. 4, 6301 (2014).
[Crossref]

I. S. Nefedov, C. A. Valagiannopoulos, S. M. Hashemi, and E. I. Nefedov, “Total absorption in asymmetric hyperbolic media,” Sci. Rep. 3, 2662 (2013).
[Crossref]

Science (1)

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. J. Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref]

Sens. Actuators A (1)

C. Ranacher, C. Consani, A. Tortschanoff, R. Jannesari, M. Bergmeister, T. Grille, and B. Jakoby, “Mid-infrared absorption gas sensing using a silicon strip waveguide,” Sens. Actuators A 277, 117–123 (2018).
[Crossref]

Superlattices Microstruct. (1)

X. Wu, “Perfect absorption in cascaded asymmetric hyperbolic metamaterial slabs,” Superlattices Microstruct. 124, 10–16 (2018).
[Crossref]

Other (1)

S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics (to be published).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Real part of the components of the dielectric tensor of crystal quartz along its ordinary (ε) and extraordinary (ε) axes showing the regions where the crystal behaves as either hyperbolic Type I (grey shading) or Type II (yellow shading). (b) Schematics of the incidence of radiation onto a crystal quartz surface. The plane of incidence is in the xz plane with incidence angle denoted as θ. The anisotropy, represented by ε, is originally along z, but it is allowed to rotate in the xz plane. This rotation is controlled by the “bending angle” φ. The imaginary part of kz is given for (c) φ=0, (d) φ=45°, and (e) φ=60°. The green lines are for ω=545cm1, and the red lines are for ω=695cm1. The solid lines are for kz(a), and the dashed lines are for kz(b). Note that these are equivalent to the isofrequency curves usually given for hyperbolic materials (kx versus kz). However, in order to compare with the data that will follow, we have used the relation kx=k0sinθ in the x axis.
Fig. 2.
Fig. 2. Absorption in crystal quartz for various orientations of the anisotropy with respect to the crystal’s surface given by (a)–(c) φ=0, (d)–(f) φ=45°, and (g)–(i) φ=60°. The panels to the left show theoretical absorption maps as a function of both the incident angle θ and frequency of the incident radiation ω. The panels to the right show a comparison between experimental (dashed lines) and theoretical (solid lines) spectra for θ=±30° and θ=±60°, highlighting the orientation-dependent asymmetry. Since the angles of incidence for the measured spectra are manually adjusted within the spectrometer, the experimental lines (dashed) have an estimated ±2° error.
Fig. 3.
Fig. 3. (a) Absorption lines as a function of the incident angle θ calculated at the frequency highlighted in Fig. 2 as B (ω=545cm1) for two bending angles previously discussed (φ=45° and φ=60°). (b) Map showing the behavior of the absorption as a function of both incident angle θ and bending angle φ also at frequency B. Isofrequency curves [dispersion curves of Re(kz)] are shown in (c) for air and quartz at φ=45° and at frequency B—note that the dashed green line shows the standard hyperbolic dispersion of crystal quartz at φ=0 for comparison with the dispersion at φ=45° (solid green line). The directions of the Poynting vectors inside and outside the crystal are also shown as red arrows for θ=±60°. Respective instantaneous Hy field of a p-polarized Gaussian beam passing through a quartz crystal of thickness 25 μm incident at (d) θ=60° and (e) θ=+60°. (f) Absorption lines and (g) absorption map at frequency C are shown for comparison to those given in parts (a) and (b), respectively.
Fig. 4.
Fig. 4. Enhancement of the absorption calculated at ω=470cm1 [frequency marked as A in Fig. 1(a)] in a crystal quartz sample. In (a) the enhancement is given by increasing the bending angle φ for a sample of thicknesses d=25μm. In (b) the asymmetry enhancement is given by decreasing the thickness of the crystal, which is now taken to be d=1μm. (c) More details of the asymmetry as a function of both incidence angle θ and bending angle φ. The imaginary part of the wavevector component kz at this frequency is also given for (d) φ=0, (e) φ=45°, and (f) φ=60°.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

kz(a,b)k0=±εsin2θεε.
kz(a,b)k0=sinθ(εε)sinφcosφ±ξεcos2φ+εsin2φ,
ξ=εε(εcos2φ+εsin2φsin2θ).