Abstract

The resonance energy and the transition rate of atoms, molecules, and solids were understood as their intrinsic properties in classical electromagnetism. It was later realized that these quantities are linked to the radiative coupling between the transition dipole and photon modes. Such effects can be greatly amplified in macroscopic many-body systems from virtual photon exchange between dipoles, but are often masked by inhomogeneity and pure dephasing, especially in solids. Here, we observe in both absorption and emission spectroscopy the renormalization of the exciton resonance and the radiative decay rate in transition metal dichalcogenides monolayers due to their radiative interactions. Tuning the photon mode density near the monolayer, we demonstrate control of cooperative Lamb shift, radiative decay, and valley polarization of the excitons as well as control of the charged exciton emission. Our work establishes a technologically accessible and robust experimental system for engineering cooperative matter–light interactions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

27 November 2019: A correction was made to the disclosures section.


OSA Recommended Articles
Nanophotonics with 2D transition metal dichalcogenides [Invited]

Alex Krasnok, Sergey Lepeshov, and Andrea Alú
Opt. Express 26(12) 15972-15994 (2018)

Valley selective optical control of excitons in 2D semiconductors using a chiral metasurface [Invited]

S. Guddala, R. Bushati, M. Li, A. B. Khanikaev, and V. M. Menon
Opt. Mater. Express 9(2) 536-543 (2019)

Electrically tunable valley polarization and valley coherence in monolayer WSe2 embedded in a van der Waals heterostructure [Invited]

Chitraleema Chakraborty, Arunabh Mukherjee, Liangyu Qiu, and A. Nick Vamivakas
Opt. Mater. Express 9(3) 1479-1487 (2019)

References

  • View by:
  • |
  • |
  • |

  1. W. E. Lamb and R. C. Retherford, “Fine structure of the hydrogen atom by a microwave method,” Phys. Rev. 72, 241–243 (1947).
    [Crossref]
  2. R. Friedberg, S. R. Hartmann, and J. T. Manassah, “Frequency shifts in emission and absorption by resonant systems ot two-level atoms,” Phys. Rep. 7, 101–179 (1973).
    [Crossref]
  3. U. Dorner and P. Zoller, “Laser-driven atoms in half-cavities,” Phys. Rev. A 66, 023816 (2002).
    [Crossref]
  4. M. Gross and S. Haroche, “Superradiance: an essay on the theory of collective spontaneous emission,” Phys. Rep. 93, 301–396 (1982).
    [Crossref]
  5. R. J. Bettles, S. A. Gardiner, and C. S. Adams, “Enhanced optical cross section via collective coupling of atomic dipoles in a 2D array,” Phys. Rev. Lett. 116, 103602 (2016).
    [Crossref]
  6. E. Shahmoon, D. S. Wild, M. D. Lukin, and S. F. Yelin, “Cooperative resonances in light scattering from two-dimensional atomic arrays,” Phys. Rev. Lett. 118, 113601 (2017).
    [Crossref]
  7. G. Facchinetti, S. D. Jenkins, and J. Ruostekoski, “Storing light with subradiant correlations in arrays of atoms,” Phys. Rev. Lett. 117, 243601 (2016).
    [Crossref]
  8. S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111, 147401 (2013).
    [Crossref]
  9. J. Keaveney, A. Sargsyan, U. Krohn, I. G. Hughes, D. Sarkisyan, and C. S. Adams, “Cooperative Lamb shift in an atomic vapor layer of nanometer thickness,” Phys. Rev. Lett. 108, 173601 (2012).
    [Crossref]
  10. L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon, “Transmission of near-resonant light through a dense slab of cold atoms,” Phys. Rev. A 96, 053629 (2017).
    [Crossref]
  11. J. Javanainen, J. Ruostekoski, Y. Li, and S.-M. Yoo, “Shifts of a resonance line in a dense atomic sample,” Phys. Rev. Lett. 112, 113603 (2014).
    [Crossref]
  12. Z. Meir, O. Schwartz, E. Shahmoon, D. Oron, and R. Ozeri, “Cooperative Lamb shift in a mesoscopic atomic array,” Phys. Rev. Lett. 113, 193002 (2014).
    [Crossref]
  13. T. Peyrot, Y. R. P. Sortais, A. Browaeys, A. Sargsyan, D. Sarkisyan, J. Keaveney, I. G. Hughes, and C. S. Adams, “Collective Lamb shift of a nanoscale atomic vapor layer within a sapphire cavity,” Phys. Rev. Lett. 120, 243401 (2018).
    [Crossref]
  14. R. Röhlsberger, K. Schlage, B. Sahoo, S. Couet, and R. Rüffer, “Collective Lamb shift in single-photon superradiance,” Science 328, 1248–1251 (2010).
    [Crossref]
  15. A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
    [Crossref]
  16. G. Frucci, S. Huppert, A. Vasanelli, B. Dailly, Y. Todorov, G. Beaudoin, I. Sagnes, and C. Sirtori, “Cooperative Lamb shift and superradiance in an optoelectronic device,” New J. Phys. 19, 043006 (2017).
    [Crossref]
  17. Y. C. Lee and K. C. Liu, “Superradiance of excitons,” J. Phys. C 14, L281–L285 (1981).
    [Crossref]
  18. K. C. Liu and Y. C. Lee, “Radiative decay of Wannier excitons in thin crystal films,” Phys. A 102, 131–144 (1980).
    [Crossref]
  19. G. Björk, S. Pau, J. Jacobson, and Y. Yamamoto, “Wannier exciton superradiance in a quantum-well microcavity,” Phys. Rev. B 50, 17336–17348 (1994).
    [Crossref]
  20. G. T. Noe, J.-H. Kim, J. Lee, Y. Wang, A. K. Wójcik, S. A. McGill, D. H. Reitze, A. A. Belyanin, and J. Kono, “Giant superfluorescent bursts from a semiconductor magneto-plasma,” Nat. Phys. 8, 219–224 (2012).
    [Crossref]
  21. P. Back, S. Zeytinoglu, A. Ijaz, M. Kroner, and A. Imamoğlu, “Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe2,” Phys. Rev. Lett. 120, 037401 (2018).
    [Crossref]
  22. G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120, 037402 (2018).
    [Crossref]
  23. S. Zeytinoğlu, C. Roth, S. Huber, and A. Imamoğlu, “Atomically thin semiconductors as nonlinear mirrors,” Phys. Rev. A 96, 031801 (2017).
    [Crossref]
  24. D. S. Wild, E. Shahmoon, S. F. Yelin, and M. D. Lukin, “Quantum nonlinear optics in atomically thin materials,” Phys. Rev. Lett. 121, 123606 (2018).
    [Crossref]
  25. I.-C. Hoi, A. F. Kockum, L. Tornberg, A. Pourkabirian, G. Johansson, P. Delsing, and C. M. Wilson, “Probing the quantum vacuum with an artificial atom in front of a mirror,” Nat. Phys. 11, 1045–1049 (2015).
    [Crossref]
  26. C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
    [Crossref]
  27. J. Kim, D. Yang, S. Oh, and K. An, “Coherent single-atom superradiance,” Science 359, 662–666 (2018).
    [Crossref]
  28. J. Horng, E. Martin, Y.-H. Chou, E. Courtade, T. Chang, C.-Y. Hsu, M.-H. Wentzel, H. Ruth, T. Lu, S. Cundiff, F. Wang, and H. Deng, “Perfect absorption by an atomically thin crystal,” arXiv:1908.00884 (2019).
  29. C. Rogers, D. Gray, N. Bogdanowicz, T. Taniguchi, K. Watanabe, and H. Mabuchi, “Coherent control of two-dimensional excitons,” arXiv:1902.05036 (2019).
  30. G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
    [Crossref]
  31. P. Forn-Díaz, C. W. Warren, C. W. S. Chang, A. M. Vadiraj, and C. M. Wilson, “On-demand microwave generator of shaped single photons,” Phys. Rev. Appl. 8, 054015 (2017).
    [Crossref]
  32. Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton-polaritons in a monolayer semiconductor,” Nat. Photonics 11, 431–435 (2017).
    [Crossref]
  33. S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
    [Crossref]
  34. S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, A. Catanzaro, F. Withers, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley coherent exciton-polaritons in a monolayer semiconductor,” Nat. Commun. 9, 4797 (2018).
    [Crossref]

2018 (6)

T. Peyrot, Y. R. P. Sortais, A. Browaeys, A. Sargsyan, D. Sarkisyan, J. Keaveney, I. G. Hughes, and C. S. Adams, “Collective Lamb shift of a nanoscale atomic vapor layer within a sapphire cavity,” Phys. Rev. Lett. 120, 243401 (2018).
[Crossref]

P. Back, S. Zeytinoglu, A. Ijaz, M. Kroner, and A. Imamoğlu, “Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe2,” Phys. Rev. Lett. 120, 037401 (2018).
[Crossref]

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120, 037402 (2018).
[Crossref]

D. S. Wild, E. Shahmoon, S. F. Yelin, and M. D. Lukin, “Quantum nonlinear optics in atomically thin materials,” Phys. Rev. Lett. 121, 123606 (2018).
[Crossref]

J. Kim, D. Yang, S. Oh, and K. An, “Coherent single-atom superradiance,” Science 359, 662–666 (2018).
[Crossref]

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, A. Catanzaro, F. Withers, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley coherent exciton-polaritons in a monolayer semiconductor,” Nat. Commun. 9, 4797 (2018).
[Crossref]

2017 (7)

P. Forn-Díaz, C. W. Warren, C. W. S. Chang, A. M. Vadiraj, and C. M. Wilson, “On-demand microwave generator of shaped single photons,” Phys. Rev. Appl. 8, 054015 (2017).
[Crossref]

Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton-polaritons in a monolayer semiconductor,” Nat. Photonics 11, 431–435 (2017).
[Crossref]

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

S. Zeytinoğlu, C. Roth, S. Huber, and A. Imamoğlu, “Atomically thin semiconductors as nonlinear mirrors,” Phys. Rev. A 96, 031801 (2017).
[Crossref]

L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon, “Transmission of near-resonant light through a dense slab of cold atoms,” Phys. Rev. A 96, 053629 (2017).
[Crossref]

G. Frucci, S. Huppert, A. Vasanelli, B. Dailly, Y. Todorov, G. Beaudoin, I. Sagnes, and C. Sirtori, “Cooperative Lamb shift and superradiance in an optoelectronic device,” New J. Phys. 19, 043006 (2017).
[Crossref]

E. Shahmoon, D. S. Wild, M. D. Lukin, and S. F. Yelin, “Cooperative resonances in light scattering from two-dimensional atomic arrays,” Phys. Rev. Lett. 118, 113601 (2017).
[Crossref]

2016 (2)

G. Facchinetti, S. D. Jenkins, and J. Ruostekoski, “Storing light with subradiant correlations in arrays of atoms,” Phys. Rev. Lett. 117, 243601 (2016).
[Crossref]

R. J. Bettles, S. A. Gardiner, and C. S. Adams, “Enhanced optical cross section via collective coupling of atomic dipoles in a 2D array,” Phys. Rev. Lett. 116, 103602 (2016).
[Crossref]

2015 (3)

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

I.-C. Hoi, A. F. Kockum, L. Tornberg, A. Pourkabirian, G. Johansson, P. Delsing, and C. M. Wilson, “Probing the quantum vacuum with an artificial atom in front of a mirror,” Nat. Phys. 11, 1045–1049 (2015).
[Crossref]

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

2014 (2)

J. Javanainen, J. Ruostekoski, Y. Li, and S.-M. Yoo, “Shifts of a resonance line in a dense atomic sample,” Phys. Rev. Lett. 112, 113603 (2014).
[Crossref]

Z. Meir, O. Schwartz, E. Shahmoon, D. Oron, and R. Ozeri, “Cooperative Lamb shift in a mesoscopic atomic array,” Phys. Rev. Lett. 113, 193002 (2014).
[Crossref]

2013 (2)

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111, 147401 (2013).
[Crossref]

2012 (2)

J. Keaveney, A. Sargsyan, U. Krohn, I. G. Hughes, D. Sarkisyan, and C. S. Adams, “Cooperative Lamb shift in an atomic vapor layer of nanometer thickness,” Phys. Rev. Lett. 108, 173601 (2012).
[Crossref]

G. T. Noe, J.-H. Kim, J. Lee, Y. Wang, A. K. Wójcik, S. A. McGill, D. H. Reitze, A. A. Belyanin, and J. Kono, “Giant superfluorescent bursts from a semiconductor magneto-plasma,” Nat. Phys. 8, 219–224 (2012).
[Crossref]

2010 (1)

R. Röhlsberger, K. Schlage, B. Sahoo, S. Couet, and R. Rüffer, “Collective Lamb shift in single-photon superradiance,” Science 328, 1248–1251 (2010).
[Crossref]

2002 (1)

U. Dorner and P. Zoller, “Laser-driven atoms in half-cavities,” Phys. Rev. A 66, 023816 (2002).
[Crossref]

1994 (1)

G. Björk, S. Pau, J. Jacobson, and Y. Yamamoto, “Wannier exciton superradiance in a quantum-well microcavity,” Phys. Rev. B 50, 17336–17348 (1994).
[Crossref]

1982 (1)

M. Gross and S. Haroche, “Superradiance: an essay on the theory of collective spontaneous emission,” Phys. Rep. 93, 301–396 (1982).
[Crossref]

1981 (1)

Y. C. Lee and K. C. Liu, “Superradiance of excitons,” J. Phys. C 14, L281–L285 (1981).
[Crossref]

1980 (1)

K. C. Liu and Y. C. Lee, “Radiative decay of Wannier excitons in thin crystal films,” Phys. A 102, 131–144 (1980).
[Crossref]

1973 (1)

R. Friedberg, S. R. Hartmann, and J. T. Manassah, “Frequency shifts in emission and absorption by resonant systems ot two-level atoms,” Phys. Rep. 7, 101–179 (1973).
[Crossref]

1947 (1)

W. E. Lamb and R. C. Retherford, “Fine structure of the hydrogen atom by a microwave method,” Phys. Rev. 72, 241–243 (1947).
[Crossref]

Adams, C. S.

T. Peyrot, Y. R. P. Sortais, A. Browaeys, A. Sargsyan, D. Sarkisyan, J. Keaveney, I. G. Hughes, and C. S. Adams, “Collective Lamb shift of a nanoscale atomic vapor layer within a sapphire cavity,” Phys. Rev. Lett. 120, 243401 (2018).
[Crossref]

R. J. Bettles, S. A. Gardiner, and C. S. Adams, “Enhanced optical cross section via collective coupling of atomic dipoles in a 2D array,” Phys. Rev. Lett. 116, 103602 (2016).
[Crossref]

J. Keaveney, A. Sargsyan, U. Krohn, I. G. Hughes, D. Sarkisyan, and C. S. Adams, “Cooperative Lamb shift in an atomic vapor layer of nanometer thickness,” Phys. Rev. Lett. 108, 173601 (2012).
[Crossref]

Aidelsburger, M.

L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon, “Transmission of near-resonant light through a dense slab of cold atoms,” Phys. Rev. A 96, 053629 (2017).
[Crossref]

An, K.

J. Kim, D. Yang, S. Oh, and K. An, “Coherent single-atom superradiance,” Science 359, 662–666 (2018).
[Crossref]

Back, P.

P. Back, S. Zeytinoglu, A. Ijaz, M. Kroner, and A. Imamoğlu, “Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe2,” Phys. Rev. Lett. 120, 037401 (2018).
[Crossref]

Beaudoin, G.

G. Frucci, S. Huppert, A. Vasanelli, B. Dailly, Y. Todorov, G. Beaudoin, I. Sagnes, and C. Sirtori, “Cooperative Lamb shift and superradiance in an optoelectronic device,” New J. Phys. 19, 043006 (2017).
[Crossref]

Belyanin, A. A.

G. T. Noe, J.-H. Kim, J. Lee, Y. Wang, A. K. Wójcik, S. A. McGill, D. H. Reitze, A. A. Belyanin, and J. Kono, “Giant superfluorescent bursts from a semiconductor magneto-plasma,” Nat. Phys. 8, 219–224 (2012).
[Crossref]

Berghäuser, G.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Bettles, R. J.

R. J. Bettles, S. A. Gardiner, and C. S. Adams, “Enhanced optical cross section via collective coupling of atomic dipoles in a 2D array,” Phys. Rev. Lett. 116, 103602 (2016).
[Crossref]

Beugnon, J.

L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon, “Transmission of near-resonant light through a dense slab of cold atoms,” Phys. Rev. A 96, 053629 (2017).
[Crossref]

Bienaimé, T.

L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon, “Transmission of near-resonant light through a dense slab of cold atoms,” Phys. Rev. A 96, 053629 (2017).
[Crossref]

Björk, G.

G. Björk, S. Pau, J. Jacobson, and Y. Yamamoto, “Wannier exciton superradiance in a quantum-well microcavity,” Phys. Rev. B 50, 17336–17348 (1994).
[Crossref]

Blais, A.

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

Bogdanowicz, N.

C. Rogers, D. Gray, N. Bogdanowicz, T. Taniguchi, K. Watanabe, and H. Mabuchi, “Coherent control of two-dimensional excitons,” arXiv:1902.05036 (2019).

Browaeys, A.

T. Peyrot, Y. R. P. Sortais, A. Browaeys, A. Sargsyan, D. Sarkisyan, J. Keaveney, I. G. Hughes, and C. S. Adams, “Collective Lamb shift of a nanoscale atomic vapor layer within a sapphire cavity,” Phys. Rev. Lett. 120, 243401 (2018).
[Crossref]

Burkard, G.

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

Cain, J. D.

Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton-polaritons in a monolayer semiconductor,” Nat. Photonics 11, 431–435 (2017).
[Crossref]

Catanzaro, A.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, A. Catanzaro, F. Withers, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley coherent exciton-polaritons in a monolayer semiconductor,” Nat. Commun. 9, 4797 (2018).
[Crossref]

Chang, C. W. S.

P. Forn-Díaz, C. W. Warren, C. W. S. Chang, A. M. Vadiraj, and C. M. Wilson, “On-demand microwave generator of shaped single photons,” Phys. Rev. Appl. 8, 054015 (2017).
[Crossref]

Chang, T.

J. Horng, E. Martin, Y.-H. Chou, E. Courtade, T. Chang, C.-Y. Hsu, M.-H. Wentzel, H. Ruth, T. Lu, S. Cundiff, F. Wang, and H. Deng, “Perfect absorption by an atomically thin crystal,” arXiv:1908.00884 (2019).

Chen, C.-H.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Chen, Y.-J.

Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton-polaritons in a monolayer semiconductor,” Nat. Photonics 11, 431–435 (2017).
[Crossref]

Chou, Y.-H.

J. Horng, E. Martin, Y.-H. Chou, E. Courtade, T. Chang, C.-Y. Hsu, M.-H. Wentzel, H. Ruth, T. Lu, S. Cundiff, F. Wang, and H. Deng, “Perfect absorption by an atomically thin crystal,” arXiv:1908.00884 (2019).

Clark, G.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Corman, L.

L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon, “Transmission of near-resonant light through a dense slab of cold atoms,” Phys. Rev. A 96, 053629 (2017).
[Crossref]

Couet, S.

R. Röhlsberger, K. Schlage, B. Sahoo, S. Couet, and R. Rüffer, “Collective Lamb shift in single-photon superradiance,” Science 328, 1248–1251 (2010).
[Crossref]

Courtade, E.

J. Horng, E. Martin, Y.-H. Chou, E. Courtade, T. Chang, C.-Y. Hsu, M.-H. Wentzel, H. Ruth, T. Lu, S. Cundiff, F. Wang, and H. Deng, “Perfect absorption by an atomically thin crystal,” arXiv:1908.00884 (2019).

Cundiff, S.

J. Horng, E. Martin, Y.-H. Chou, E. Courtade, T. Chang, C.-Y. Hsu, M.-H. Wentzel, H. Ruth, T. Lu, S. Cundiff, F. Wang, and H. Deng, “Perfect absorption by an atomically thin crystal,” arXiv:1908.00884 (2019).

Dailly, B.

G. Frucci, S. Huppert, A. Vasanelli, B. Dailly, Y. Todorov, G. Beaudoin, I. Sagnes, and C. Sirtori, “Cooperative Lamb shift and superradiance in an optoelectronic device,” New J. Phys. 19, 043006 (2017).
[Crossref]

Dalibard, J.

L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon, “Transmission of near-resonant light through a dense slab of cold atoms,” Phys. Rev. A 96, 053629 (2017).
[Crossref]

De Greve, K.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120, 037402 (2018).
[Crossref]

Delsing, P.

I.-C. Hoi, A. F. Kockum, L. Tornberg, A. Pourkabirian, G. Johansson, P. Delsing, and C. M. Wilson, “Probing the quantum vacuum with an artificial atom in front of a mirror,” Nat. Phys. 11, 1045–1049 (2015).
[Crossref]

Deng, H.

J. Horng, E. Martin, Y.-H. Chou, E. Courtade, T. Chang, C.-Y. Hsu, M.-H. Wentzel, H. Ruth, T. Lu, S. Cundiff, F. Wang, and H. Deng, “Perfect absorption by an atomically thin crystal,” arXiv:1908.00884 (2019).

Dorner, U.

U. Dorner and P. Zoller, “Laser-driven atoms in half-cavities,” Phys. Rev. A 66, 023816 (2002).
[Crossref]

Dravid, V. P.

Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton-polaritons in a monolayer semiconductor,” Nat. Photonics 11, 431–435 (2017).
[Crossref]

Dufferwiel, S.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, A. Catanzaro, F. Withers, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley coherent exciton-polaritons in a monolayer semiconductor,” Nat. Commun. 9, 4797 (2018).
[Crossref]

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

Eckart, S.

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

Eggert, S.

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

Facchinetti, G.

G. Facchinetti, S. D. Jenkins, and J. Ruostekoski, “Storing light with subradiant correlations in arrays of atoms,” Phys. Rev. Lett. 117, 243601 (2016).
[Crossref]

Fedorov, A.

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

Forn-Díaz, P.

P. Forn-Díaz, C. W. Warren, C. W. S. Chang, A. M. Vadiraj, and C. M. Wilson, “On-demand microwave generator of shaped single photons,” Phys. Rev. Appl. 8, 054015 (2017).
[Crossref]

Friedberg, R.

R. Friedberg, S. R. Hartmann, and J. T. Manassah, “Frequency shifts in emission and absorption by resonant systems ot two-level atoms,” Phys. Rep. 7, 101–179 (1973).
[Crossref]

Frucci, G.

G. Frucci, S. Huppert, A. Vasanelli, B. Dailly, Y. Todorov, G. Beaudoin, I. Sagnes, and C. Sirtori, “Cooperative Lamb shift and superradiance in an optoelectronic device,” New J. Phys. 19, 043006 (2017).
[Crossref]

Gardiner, S. A.

R. J. Bettles, S. A. Gardiner, and C. S. Adams, “Enhanced optical cross section via collective coupling of atomic dipoles in a 2D array,” Phys. Rev. Lett. 116, 103602 (2016).
[Crossref]

Gray, D.

C. Rogers, D. Gray, N. Bogdanowicz, T. Taniguchi, K. Watanabe, and H. Mabuchi, “Coherent control of two-dimensional excitons,” arXiv:1902.05036 (2019).

Gross, M.

M. Gross and S. Haroche, “Superradiance: an essay on the theory of collective spontaneous emission,” Phys. Rep. 93, 301–396 (1982).
[Crossref]

Hao, K.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Haroche, S.

M. Gross and S. Haroche, “Superradiance: an essay on the theory of collective spontaneous emission,” Phys. Rep. 93, 301–396 (1982).
[Crossref]

Hartmann, S. R.

R. Friedberg, S. R. Hartmann, and J. T. Manassah, “Frequency shifts in emission and absorption by resonant systems ot two-level atoms,” Phys. Rep. 7, 101–179 (1973).
[Crossref]

High, A. A.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120, 037402 (2018).
[Crossref]

Hoi, I.-C.

I.-C. Hoi, A. F. Kockum, L. Tornberg, A. Pourkabirian, G. Johansson, P. Delsing, and C. M. Wilson, “Probing the quantum vacuum with an artificial atom in front of a mirror,” Nat. Phys. 11, 1045–1049 (2015).
[Crossref]

Horng, J.

J. Horng, E. Martin, Y.-H. Chou, E. Courtade, T. Chang, C.-Y. Hsu, M.-H. Wentzel, H. Ruth, T. Lu, S. Cundiff, F. Wang, and H. Deng, “Perfect absorption by an atomically thin crystal,” arXiv:1908.00884 (2019).

Hsu, C.-Y.

J. Horng, E. Martin, Y.-H. Chou, E. Courtade, T. Chang, C.-Y. Hsu, M.-H. Wentzel, H. Ruth, T. Lu, S. Cundiff, F. Wang, and H. Deng, “Perfect absorption by an atomically thin crystal,” arXiv:1908.00884 (2019).

Huber, S.

S. Zeytinoğlu, C. Roth, S. Huber, and A. Imamoğlu, “Atomically thin semiconductors as nonlinear mirrors,” Phys. Rev. A 96, 031801 (2017).
[Crossref]

Hughes, I. G.

T. Peyrot, Y. R. P. Sortais, A. Browaeys, A. Sargsyan, D. Sarkisyan, J. Keaveney, I. G. Hughes, and C. S. Adams, “Collective Lamb shift of a nanoscale atomic vapor layer within a sapphire cavity,” Phys. Rev. Lett. 120, 243401 (2018).
[Crossref]

J. Keaveney, A. Sargsyan, U. Krohn, I. G. Hughes, D. Sarkisyan, and C. S. Adams, “Cooperative Lamb shift in an atomic vapor layer of nanometer thickness,” Phys. Rev. Lett. 108, 173601 (2012).
[Crossref]

Huppert, S.

G. Frucci, S. Huppert, A. Vasanelli, B. Dailly, Y. Todorov, G. Beaudoin, I. Sagnes, and C. Sirtori, “Cooperative Lamb shift and superradiance in an optoelectronic device,” New J. Phys. 19, 043006 (2017).
[Crossref]

Ijaz, A.

P. Back, S. Zeytinoglu, A. Ijaz, M. Kroner, and A. Imamoğlu, “Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe2,” Phys. Rev. Lett. 120, 037401 (2018).
[Crossref]

Imamoglu, A.

P. Back, S. Zeytinoglu, A. Ijaz, M. Kroner, and A. Imamoğlu, “Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe2,” Phys. Rev. Lett. 120, 037401 (2018).
[Crossref]

S. Zeytinoğlu, C. Roth, S. Huber, and A. Imamoğlu, “Atomically thin semiconductors as nonlinear mirrors,” Phys. Rev. A 96, 031801 (2017).
[Crossref]

Jacobson, J.

G. Björk, S. Pau, J. Jacobson, and Y. Yamamoto, “Wannier exciton superradiance in a quantum-well microcavity,” Phys. Rev. B 50, 17336–17348 (1994).
[Crossref]

Jauregui, L. A.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120, 037402 (2018).
[Crossref]

Javanainen, J.

J. Javanainen, J. Ruostekoski, Y. Li, and S.-M. Yoo, “Shifts of a resonance line in a dense atomic sample,” Phys. Rev. Lett. 112, 113603 (2014).
[Crossref]

Jenkins, S. D.

G. Facchinetti, S. D. Jenkins, and J. Ruostekoski, “Storing light with subradiant correlations in arrays of atoms,” Phys. Rev. Lett. 117, 243601 (2016).
[Crossref]

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111, 147401 (2013).
[Crossref]

Johansson, G.

I.-C. Hoi, A. F. Kockum, L. Tornberg, A. Pourkabirian, G. Johansson, P. Delsing, and C. M. Wilson, “Probing the quantum vacuum with an artificial atom in front of a mirror,” Nat. Phys. 11, 1045–1049 (2015).
[Crossref]

Kavir Dass, C.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Keaveney, J.

T. Peyrot, Y. R. P. Sortais, A. Browaeys, A. Sargsyan, D. Sarkisyan, J. Keaveney, I. G. Hughes, and C. S. Adams, “Collective Lamb shift of a nanoscale atomic vapor layer within a sapphire cavity,” Phys. Rev. Lett. 120, 243401 (2018).
[Crossref]

J. Keaveney, A. Sargsyan, U. Krohn, I. G. Hughes, D. Sarkisyan, and C. S. Adams, “Cooperative Lamb shift in an atomic vapor layer of nanometer thickness,” Phys. Rev. Lett. 108, 173601 (2012).
[Crossref]

Kim, J.

J. Kim, D. Yang, S. Oh, and K. An, “Coherent single-atom superradiance,” Science 359, 662–666 (2018).
[Crossref]

Kim, J.-H.

G. T. Noe, J.-H. Kim, J. Lee, Y. Wang, A. K. Wójcik, S. A. McGill, D. H. Reitze, A. A. Belyanin, and J. Kono, “Giant superfluorescent bursts from a semiconductor magneto-plasma,” Nat. Phys. 8, 219–224 (2012).
[Crossref]

Kim, P.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120, 037402 (2018).
[Crossref]

Knorr, A.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Kockum, A. F.

I.-C. Hoi, A. F. Kockum, L. Tornberg, A. Pourkabirian, G. Johansson, P. Delsing, and C. M. Wilson, “Probing the quantum vacuum with an artificial atom in front of a mirror,” Nat. Phys. 11, 1045–1049 (2015).
[Crossref]

Kono, J.

G. T. Noe, J.-H. Kim, J. Lee, Y. Wang, A. K. Wójcik, S. A. McGill, D. H. Reitze, A. A. Belyanin, and J. Kono, “Giant superfluorescent bursts from a semiconductor magneto-plasma,” Nat. Phys. 8, 219–224 (2012).
[Crossref]

Krauspe, P.

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

Krizhanovskii, D. N.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, A. Catanzaro, F. Withers, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley coherent exciton-polaritons in a monolayer semiconductor,” Nat. Commun. 9, 4797 (2018).
[Crossref]

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

Krohn, U.

J. Keaveney, A. Sargsyan, U. Krohn, I. G. Hughes, D. Sarkisyan, and C. S. Adams, “Cooperative Lamb shift in an atomic vapor layer of nanometer thickness,” Phys. Rev. Lett. 108, 173601 (2012).
[Crossref]

Kroner, M.

P. Back, S. Zeytinoglu, A. Ijaz, M. Kroner, and A. Imamoğlu, “Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe2,” Phys. Rev. Lett. 120, 037401 (2018).
[Crossref]

Lalumière, K.

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

Lamb, W. E.

W. E. Lamb and R. C. Retherford, “Fine structure of the hydrogen atom by a microwave method,” Phys. Rev. 72, 241–243 (1947).
[Crossref]

Lee, J.

G. T. Noe, J.-H. Kim, J. Lee, Y. Wang, A. K. Wójcik, S. A. McGill, D. H. Reitze, A. A. Belyanin, and J. Kono, “Giant superfluorescent bursts from a semiconductor magneto-plasma,” Nat. Phys. 8, 219–224 (2012).
[Crossref]

Lee, Y. C.

Y. C. Lee and K. C. Liu, “Superradiance of excitons,” J. Phys. C 14, L281–L285 (1981).
[Crossref]

K. C. Liu and Y. C. Lee, “Radiative decay of Wannier excitons in thin crystal films,” Phys. A 102, 131–144 (1980).
[Crossref]

Leitenstorfer, A.

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

Li, L.-J.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Li, X.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Li, Y.

J. Javanainen, J. Ruostekoski, Y. Li, and S.-M. Yoo, “Shifts of a resonance line in a dense atomic sample,” Phys. Rev. Lett. 112, 113603 (2014).
[Crossref]

Liu, K. C.

Y. C. Lee and K. C. Liu, “Superradiance of excitons,” J. Phys. C 14, L281–L285 (1981).
[Crossref]

K. C. Liu and Y. C. Lee, “Radiative decay of Wannier excitons in thin crystal films,” Phys. A 102, 131–144 (1980).
[Crossref]

Lu, T.

J. Horng, E. Martin, Y.-H. Chou, E. Courtade, T. Chang, C.-Y. Hsu, M.-H. Wentzel, H. Ruth, T. Lu, S. Cundiff, F. Wang, and H. Deng, “Perfect absorption by an atomically thin crystal,” arXiv:1908.00884 (2019).

Lukin, M. D.

D. S. Wild, E. Shahmoon, S. F. Yelin, and M. D. Lukin, “Quantum nonlinear optics in atomically thin materials,” Phys. Rev. Lett. 121, 123606 (2018).
[Crossref]

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120, 037402 (2018).
[Crossref]

E. Shahmoon, D. S. Wild, M. D. Lukin, and S. F. Yelin, “Cooperative resonances in light scattering from two-dimensional atomic arrays,” Phys. Rev. Lett. 118, 113601 (2017).
[Crossref]

Lyons, T. P.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, A. Catanzaro, F. Withers, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley coherent exciton-polaritons in a monolayer semiconductor,” Nat. Commun. 9, 4797 (2018).
[Crossref]

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

Mabuchi, H.

C. Rogers, D. Gray, N. Bogdanowicz, T. Taniguchi, K. Watanabe, and H. Mabuchi, “Coherent control of two-dimensional excitons,” arXiv:1902.05036 (2019).

Malic, E.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Malpuech, G.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, A. Catanzaro, F. Withers, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley coherent exciton-polaritons in a monolayer semiconductor,” Nat. Commun. 9, 4797 (2018).
[Crossref]

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

Manassah, J. T.

R. Friedberg, S. R. Hartmann, and J. T. Manassah, “Frequency shifts in emission and absorption by resonant systems ot two-level atoms,” Phys. Rep. 7, 101–179 (1973).
[Crossref]

Martin, E.

J. Horng, E. Martin, Y.-H. Chou, E. Courtade, T. Chang, C.-Y. Hsu, M.-H. Wentzel, H. Ruth, T. Lu, S. Cundiff, F. Wang, and H. Deng, “Perfect absorption by an atomically thin crystal,” arXiv:1908.00884 (2019).

McGill, S. A.

G. T. Noe, J.-H. Kim, J. Lee, Y. Wang, A. K. Wójcik, S. A. McGill, D. H. Reitze, A. A. Belyanin, and J. Kono, “Giant superfluorescent bursts from a semiconductor magneto-plasma,” Nat. Phys. 8, 219–224 (2012).
[Crossref]

Meir, Z.

Z. Meir, O. Schwartz, E. Shahmoon, D. Oron, and R. Ozeri, “Cooperative Lamb shift in a mesoscopic atomic array,” Phys. Rev. Lett. 113, 193002 (2014).
[Crossref]

Moody, G.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Moskalenko, A. S.

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

Nascimbène, S.

L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon, “Transmission of near-resonant light through a dense slab of cold atoms,” Phys. Rev. A 96, 053629 (2017).
[Crossref]

Noe, G. T.

G. T. Noe, J.-H. Kim, J. Lee, Y. Wang, A. K. Wójcik, S. A. McGill, D. H. Reitze, A. A. Belyanin, and J. Kono, “Giant superfluorescent bursts from a semiconductor magneto-plasma,” Nat. Phys. 8, 219–224 (2012).
[Crossref]

Novoselov, K. S.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, A. Catanzaro, F. Withers, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley coherent exciton-polaritons in a monolayer semiconductor,” Nat. Commun. 9, 4797 (2018).
[Crossref]

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

Oh, S.

J. Kim, D. Yang, S. Oh, and K. An, “Coherent single-atom superradiance,” Science 359, 662–666 (2018).
[Crossref]

Oron, D.

Z. Meir, O. Schwartz, E. Shahmoon, D. Oron, and R. Ozeri, “Cooperative Lamb shift in a mesoscopic atomic array,” Phys. Rev. Lett. 113, 193002 (2014).
[Crossref]

Ozeri, R.

Z. Meir, O. Schwartz, E. Shahmoon, D. Oron, and R. Ozeri, “Cooperative Lamb shift in a mesoscopic atomic array,” Phys. Rev. Lett. 113, 193002 (2014).
[Crossref]

Park, H.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120, 037402 (2018).
[Crossref]

Pau, S.

G. Björk, S. Pau, J. Jacobson, and Y. Yamamoto, “Wannier exciton superradiance in a quantum-well microcavity,” Phys. Rev. B 50, 17336–17348 (1994).
[Crossref]

Peyrot, T.

T. Peyrot, Y. R. P. Sortais, A. Browaeys, A. Sargsyan, D. Sarkisyan, J. Keaveney, I. G. Hughes, and C. S. Adams, “Collective Lamb shift of a nanoscale atomic vapor layer within a sapphire cavity,” Phys. Rev. Lett. 120, 243401 (2018).
[Crossref]

Pourkabirian, A.

I.-C. Hoi, A. F. Kockum, L. Tornberg, A. Pourkabirian, G. Johansson, P. Delsing, and C. M. Wilson, “Probing the quantum vacuum with an artificial atom in front of a mirror,” Nat. Phys. 11, 1045–1049 (2015).
[Crossref]

Reitze, D. H.

G. T. Noe, J.-H. Kim, J. Lee, Y. Wang, A. K. Wójcik, S. A. McGill, D. H. Reitze, A. A. Belyanin, and J. Kono, “Giant superfluorescent bursts from a semiconductor magneto-plasma,” Nat. Phys. 8, 219–224 (2012).
[Crossref]

Retherford, R. C.

W. E. Lamb and R. C. Retherford, “Fine structure of the hydrogen atom by a microwave method,” Phys. Rev. 72, 241–243 (1947).
[Crossref]

Riek, C.

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

Rogers, C.

C. Rogers, D. Gray, N. Bogdanowicz, T. Taniguchi, K. Watanabe, and H. Mabuchi, “Coherent control of two-dimensional excitons,” arXiv:1902.05036 (2019).

Röhlsberger, R.

R. Röhlsberger, K. Schlage, B. Sahoo, S. Couet, and R. Rüffer, “Collective Lamb shift in single-photon superradiance,” Science 328, 1248–1251 (2010).
[Crossref]

Roth, C.

S. Zeytinoğlu, C. Roth, S. Huber, and A. Imamoğlu, “Atomically thin semiconductors as nonlinear mirrors,” Phys. Rev. A 96, 031801 (2017).
[Crossref]

Rüffer, R.

R. Röhlsberger, K. Schlage, B. Sahoo, S. Couet, and R. Rüffer, “Collective Lamb shift in single-photon superradiance,” Science 328, 1248–1251 (2010).
[Crossref]

Ruostekoski, J.

G. Facchinetti, S. D. Jenkins, and J. Ruostekoski, “Storing light with subradiant correlations in arrays of atoms,” Phys. Rev. Lett. 117, 243601 (2016).
[Crossref]

J. Javanainen, J. Ruostekoski, Y. Li, and S.-M. Yoo, “Shifts of a resonance line in a dense atomic sample,” Phys. Rev. Lett. 112, 113603 (2014).
[Crossref]

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111, 147401 (2013).
[Crossref]

Ruth, H.

J. Horng, E. Martin, Y.-H. Chou, E. Courtade, T. Chang, C.-Y. Hsu, M.-H. Wentzel, H. Ruth, T. Lu, S. Cundiff, F. Wang, and H. Deng, “Perfect absorption by an atomically thin crystal,” arXiv:1908.00884 (2019).

Sagnes, I.

G. Frucci, S. Huppert, A. Vasanelli, B. Dailly, Y. Todorov, G. Beaudoin, I. Sagnes, and C. Sirtori, “Cooperative Lamb shift and superradiance in an optoelectronic device,” New J. Phys. 19, 043006 (2017).
[Crossref]

Sahoo, B.

R. Röhlsberger, K. Schlage, B. Sahoo, S. Couet, and R. Rüffer, “Collective Lamb shift in single-photon superradiance,” Science 328, 1248–1251 (2010).
[Crossref]

Saint-Jalm, R.

L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon, “Transmission of near-resonant light through a dense slab of cold atoms,” Phys. Rev. A 96, 053629 (2017).
[Crossref]

Sanders, B. C.

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

Sargsyan, A.

T. Peyrot, Y. R. P. Sortais, A. Browaeys, A. Sargsyan, D. Sarkisyan, J. Keaveney, I. G. Hughes, and C. S. Adams, “Collective Lamb shift of a nanoscale atomic vapor layer within a sapphire cavity,” Phys. Rev. Lett. 120, 243401 (2018).
[Crossref]

J. Keaveney, A. Sargsyan, U. Krohn, I. G. Hughes, D. Sarkisyan, and C. S. Adams, “Cooperative Lamb shift in an atomic vapor layer of nanometer thickness,” Phys. Rev. Lett. 108, 173601 (2012).
[Crossref]

Sarkisyan, D.

T. Peyrot, Y. R. P. Sortais, A. Browaeys, A. Sargsyan, D. Sarkisyan, J. Keaveney, I. G. Hughes, and C. S. Adams, “Collective Lamb shift of a nanoscale atomic vapor layer within a sapphire cavity,” Phys. Rev. Lett. 120, 243401 (2018).
[Crossref]

J. Keaveney, A. Sargsyan, U. Krohn, I. G. Hughes, D. Sarkisyan, and C. S. Adams, “Cooperative Lamb shift in an atomic vapor layer of nanometer thickness,” Phys. Rev. Lett. 108, 173601 (2012).
[Crossref]

Schlage, K.

R. Röhlsberger, K. Schlage, B. Sahoo, S. Couet, and R. Rüffer, “Collective Lamb shift in single-photon superradiance,” Science 328, 1248–1251 (2010).
[Crossref]

Schmidt, J. F.

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

Schwartz, O.

Z. Meir, O. Schwartz, E. Shahmoon, D. Oron, and R. Ozeri, “Cooperative Lamb shift in a mesoscopic atomic array,” Phys. Rev. Lett. 113, 193002 (2014).
[Crossref]

Schwarz, S.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

Scuri, G.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120, 037402 (2018).
[Crossref]

Seletskiy, D. V.

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

Shahmoon, E.

D. S. Wild, E. Shahmoon, S. F. Yelin, and M. D. Lukin, “Quantum nonlinear optics in atomically thin materials,” Phys. Rev. Lett. 121, 123606 (2018).
[Crossref]

E. Shahmoon, D. S. Wild, M. D. Lukin, and S. F. Yelin, “Cooperative resonances in light scattering from two-dimensional atomic arrays,” Phys. Rev. Lett. 118, 113601 (2017).
[Crossref]

Z. Meir, O. Schwartz, E. Shahmoon, D. Oron, and R. Ozeri, “Cooperative Lamb shift in a mesoscopic atomic array,” Phys. Rev. Lett. 113, 193002 (2014).
[Crossref]

Shu, C.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120, 037402 (2018).
[Crossref]

Singh, A.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Sirtori, C.

G. Frucci, S. Huppert, A. Vasanelli, B. Dailly, Y. Todorov, G. Beaudoin, I. Sagnes, and C. Sirtori, “Cooperative Lamb shift and superradiance in an optoelectronic device,” New J. Phys. 19, 043006 (2017).
[Crossref]

Skolnick, M. S.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, A. Catanzaro, F. Withers, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley coherent exciton-polaritons in a monolayer semiconductor,” Nat. Commun. 9, 4797 (2018).
[Crossref]

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

Smith, J. M.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, A. Catanzaro, F. Withers, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley coherent exciton-polaritons in a monolayer semiconductor,” Nat. Commun. 9, 4797 (2018).
[Crossref]

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

Solnyshkov, D. D.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, A. Catanzaro, F. Withers, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley coherent exciton-polaritons in a monolayer semiconductor,” Nat. Commun. 9, 4797 (2018).
[Crossref]

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

Sortais, Y. R. P.

T. Peyrot, Y. R. P. Sortais, A. Browaeys, A. Sargsyan, D. Sarkisyan, J. Keaveney, I. G. Hughes, and C. S. Adams, “Collective Lamb shift of a nanoscale atomic vapor layer within a sapphire cavity,” Phys. Rev. Lett. 120, 243401 (2018).
[Crossref]

Stanev, T. K.

Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton-polaritons in a monolayer semiconductor,” Nat. Photonics 11, 431–435 (2017).
[Crossref]

Stern, N. P.

Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton-polaritons in a monolayer semiconductor,” Nat. Photonics 11, 431–435 (2017).
[Crossref]

Taniguchi, T.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120, 037402 (2018).
[Crossref]

C. Rogers, D. Gray, N. Bogdanowicz, T. Taniguchi, K. Watanabe, and H. Mabuchi, “Coherent control of two-dimensional excitons,” arXiv:1902.05036 (2019).

Tartakovskii, A. I.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, A. Catanzaro, F. Withers, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley coherent exciton-polaritons in a monolayer semiconductor,” Nat. Commun. 9, 4797 (2018).
[Crossref]

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

Todorov, Y.

G. Frucci, S. Huppert, A. Vasanelli, B. Dailly, Y. Todorov, G. Beaudoin, I. Sagnes, and C. Sirtori, “Cooperative Lamb shift and superradiance in an optoelectronic device,” New J. Phys. 19, 043006 (2017).
[Crossref]

Tornberg, L.

I.-C. Hoi, A. F. Kockum, L. Tornberg, A. Pourkabirian, G. Johansson, P. Delsing, and C. M. Wilson, “Probing the quantum vacuum with an artificial atom in front of a mirror,” Nat. Phys. 11, 1045–1049 (2015).
[Crossref]

Tran, K.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Trichet, A. A. P.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, A. Catanzaro, F. Withers, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley coherent exciton-polaritons in a monolayer semiconductor,” Nat. Commun. 9, 4797 (2018).
[Crossref]

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

Vadiraj, A. M.

P. Forn-Díaz, C. W. Warren, C. W. S. Chang, A. M. Vadiraj, and C. M. Wilson, “On-demand microwave generator of shaped single photons,” Phys. Rev. Appl. 8, 054015 (2017).
[Crossref]

van Loo, A. F.

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

Vasanelli, A.

G. Frucci, S. Huppert, A. Vasanelli, B. Dailly, Y. Todorov, G. Beaudoin, I. Sagnes, and C. Sirtori, “Cooperative Lamb shift and superradiance in an optoelectronic device,” New J. Phys. 19, 043006 (2017).
[Crossref]

Ville, J. L.

L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon, “Transmission of near-resonant light through a dense slab of cold atoms,” Phys. Rev. A 96, 053629 (2017).
[Crossref]

Wallraff, A.

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

Wang, F.

J. Horng, E. Martin, Y.-H. Chou, E. Courtade, T. Chang, C.-Y. Hsu, M.-H. Wentzel, H. Ruth, T. Lu, S. Cundiff, F. Wang, and H. Deng, “Perfect absorption by an atomically thin crystal,” arXiv:1908.00884 (2019).

Wang, Y.

G. T. Noe, J.-H. Kim, J. Lee, Y. Wang, A. K. Wójcik, S. A. McGill, D. H. Reitze, A. A. Belyanin, and J. Kono, “Giant superfluorescent bursts from a semiconductor magneto-plasma,” Nat. Phys. 8, 219–224 (2012).
[Crossref]

Warren, C. W.

P. Forn-Díaz, C. W. Warren, C. W. S. Chang, A. M. Vadiraj, and C. M. Wilson, “On-demand microwave generator of shaped single photons,” Phys. Rev. Appl. 8, 054015 (2017).
[Crossref]

Watanabe, K.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120, 037402 (2018).
[Crossref]

C. Rogers, D. Gray, N. Bogdanowicz, T. Taniguchi, K. Watanabe, and H. Mabuchi, “Coherent control of two-dimensional excitons,” arXiv:1902.05036 (2019).

Wentzel, M.-H.

J. Horng, E. Martin, Y.-H. Chou, E. Courtade, T. Chang, C.-Y. Hsu, M.-H. Wentzel, H. Ruth, T. Lu, S. Cundiff, F. Wang, and H. Deng, “Perfect absorption by an atomically thin crystal,” arXiv:1908.00884 (2019).

Wild, D. S.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120, 037402 (2018).
[Crossref]

D. S. Wild, E. Shahmoon, S. F. Yelin, and M. D. Lukin, “Quantum nonlinear optics in atomically thin materials,” Phys. Rev. Lett. 121, 123606 (2018).
[Crossref]

E. Shahmoon, D. S. Wild, M. D. Lukin, and S. F. Yelin, “Cooperative resonances in light scattering from two-dimensional atomic arrays,” Phys. Rev. Lett. 118, 113601 (2017).
[Crossref]

Wilson, C. M.

P. Forn-Díaz, C. W. Warren, C. W. S. Chang, A. M. Vadiraj, and C. M. Wilson, “On-demand microwave generator of shaped single photons,” Phys. Rev. Appl. 8, 054015 (2017).
[Crossref]

I.-C. Hoi, A. F. Kockum, L. Tornberg, A. Pourkabirian, G. Johansson, P. Delsing, and C. M. Wilson, “Probing the quantum vacuum with an artificial atom in front of a mirror,” Nat. Phys. 11, 1045–1049 (2015).
[Crossref]

Withers, F.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, A. Catanzaro, F. Withers, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley coherent exciton-polaritons in a monolayer semiconductor,” Nat. Commun. 9, 4797 (2018).
[Crossref]

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

Wójcik, A. K.

G. T. Noe, J.-H. Kim, J. Lee, Y. Wang, A. K. Wójcik, S. A. McGill, D. H. Reitze, A. A. Belyanin, and J. Kono, “Giant superfluorescent bursts from a semiconductor magneto-plasma,” Nat. Phys. 8, 219–224 (2012).
[Crossref]

Xu, X.

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

Yamamoto, Y.

G. Björk, S. Pau, J. Jacobson, and Y. Yamamoto, “Wannier exciton superradiance in a quantum-well microcavity,” Phys. Rev. B 50, 17336–17348 (1994).
[Crossref]

Yang, D.

J. Kim, D. Yang, S. Oh, and K. An, “Coherent single-atom superradiance,” Science 359, 662–666 (2018).
[Crossref]

Yelin, S. F.

D. S. Wild, E. Shahmoon, S. F. Yelin, and M. D. Lukin, “Quantum nonlinear optics in atomically thin materials,” Phys. Rev. Lett. 121, 123606 (2018).
[Crossref]

E. Shahmoon, D. S. Wild, M. D. Lukin, and S. F. Yelin, “Cooperative resonances in light scattering from two-dimensional atomic arrays,” Phys. Rev. Lett. 118, 113601 (2017).
[Crossref]

Yoo, S.-M.

J. Javanainen, J. Ruostekoski, Y. Li, and S.-M. Yoo, “Shifts of a resonance line in a dense atomic sample,” Phys. Rev. Lett. 112, 113603 (2014).
[Crossref]

Zeytinoglu, S.

P. Back, S. Zeytinoglu, A. Ijaz, M. Kroner, and A. Imamoğlu, “Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe2,” Phys. Rev. Lett. 120, 037401 (2018).
[Crossref]

S. Zeytinoğlu, C. Roth, S. Huber, and A. Imamoğlu, “Atomically thin semiconductors as nonlinear mirrors,” Phys. Rev. A 96, 031801 (2017).
[Crossref]

Zhou, Y.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120, 037402 (2018).
[Crossref]

Zoller, P.

U. Dorner and P. Zoller, “Laser-driven atoms in half-cavities,” Phys. Rev. A 66, 023816 (2002).
[Crossref]

J. Phys. C (1)

Y. C. Lee and K. C. Liu, “Superradiance of excitons,” J. Phys. C 14, L281–L285 (1981).
[Crossref]

Nat. Commun. (2)

G. Moody, C. Kavir Dass, K. Hao, C.-H. Chen, L.-J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, “Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides,” Nat. Commun. 6, 8315 (2015).
[Crossref]

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, A. Catanzaro, F. Withers, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley coherent exciton-polaritons in a monolayer semiconductor,” Nat. Commun. 9, 4797 (2018).
[Crossref]

Nat. Photonics (2)

Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton-polaritons in a monolayer semiconductor,” Nat. Photonics 11, 431–435 (2017).
[Crossref]

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

Nat. Phys. (2)

I.-C. Hoi, A. F. Kockum, L. Tornberg, A. Pourkabirian, G. Johansson, P. Delsing, and C. M. Wilson, “Probing the quantum vacuum with an artificial atom in front of a mirror,” Nat. Phys. 11, 1045–1049 (2015).
[Crossref]

G. T. Noe, J.-H. Kim, J. Lee, Y. Wang, A. K. Wójcik, S. A. McGill, D. H. Reitze, A. A. Belyanin, and J. Kono, “Giant superfluorescent bursts from a semiconductor magneto-plasma,” Nat. Phys. 8, 219–224 (2012).
[Crossref]

New J. Phys. (1)

G. Frucci, S. Huppert, A. Vasanelli, B. Dailly, Y. Todorov, G. Beaudoin, I. Sagnes, and C. Sirtori, “Cooperative Lamb shift and superradiance in an optoelectronic device,” New J. Phys. 19, 043006 (2017).
[Crossref]

Phys. A (1)

K. C. Liu and Y. C. Lee, “Radiative decay of Wannier excitons in thin crystal films,” Phys. A 102, 131–144 (1980).
[Crossref]

Phys. Rep. (2)

R. Friedberg, S. R. Hartmann, and J. T. Manassah, “Frequency shifts in emission and absorption by resonant systems ot two-level atoms,” Phys. Rep. 7, 101–179 (1973).
[Crossref]

M. Gross and S. Haroche, “Superradiance: an essay on the theory of collective spontaneous emission,” Phys. Rep. 93, 301–396 (1982).
[Crossref]

Phys. Rev. (1)

W. E. Lamb and R. C. Retherford, “Fine structure of the hydrogen atom by a microwave method,” Phys. Rev. 72, 241–243 (1947).
[Crossref]

Phys. Rev. A (3)

U. Dorner and P. Zoller, “Laser-driven atoms in half-cavities,” Phys. Rev. A 66, 023816 (2002).
[Crossref]

L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon, “Transmission of near-resonant light through a dense slab of cold atoms,” Phys. Rev. A 96, 053629 (2017).
[Crossref]

S. Zeytinoğlu, C. Roth, S. Huber, and A. Imamoğlu, “Atomically thin semiconductors as nonlinear mirrors,” Phys. Rev. A 96, 031801 (2017).
[Crossref]

Phys. Rev. Appl. (1)

P. Forn-Díaz, C. W. Warren, C. W. S. Chang, A. M. Vadiraj, and C. M. Wilson, “On-demand microwave generator of shaped single photons,” Phys. Rev. Appl. 8, 054015 (2017).
[Crossref]

Phys. Rev. B (1)

G. Björk, S. Pau, J. Jacobson, and Y. Yamamoto, “Wannier exciton superradiance in a quantum-well microcavity,” Phys. Rev. B 50, 17336–17348 (1994).
[Crossref]

Phys. Rev. Lett. (11)

P. Back, S. Zeytinoglu, A. Ijaz, M. Kroner, and A. Imamoğlu, “Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe2,” Phys. Rev. Lett. 120, 037401 (2018).
[Crossref]

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120, 037402 (2018).
[Crossref]

J. Javanainen, J. Ruostekoski, Y. Li, and S.-M. Yoo, “Shifts of a resonance line in a dense atomic sample,” Phys. Rev. Lett. 112, 113603 (2014).
[Crossref]

Z. Meir, O. Schwartz, E. Shahmoon, D. Oron, and R. Ozeri, “Cooperative Lamb shift in a mesoscopic atomic array,” Phys. Rev. Lett. 113, 193002 (2014).
[Crossref]

T. Peyrot, Y. R. P. Sortais, A. Browaeys, A. Sargsyan, D. Sarkisyan, J. Keaveney, I. G. Hughes, and C. S. Adams, “Collective Lamb shift of a nanoscale atomic vapor layer within a sapphire cavity,” Phys. Rev. Lett. 120, 243401 (2018).
[Crossref]

R. J. Bettles, S. A. Gardiner, and C. S. Adams, “Enhanced optical cross section via collective coupling of atomic dipoles in a 2D array,” Phys. Rev. Lett. 116, 103602 (2016).
[Crossref]

E. Shahmoon, D. S. Wild, M. D. Lukin, and S. F. Yelin, “Cooperative resonances in light scattering from two-dimensional atomic arrays,” Phys. Rev. Lett. 118, 113601 (2017).
[Crossref]

G. Facchinetti, S. D. Jenkins, and J. Ruostekoski, “Storing light with subradiant correlations in arrays of atoms,” Phys. Rev. Lett. 117, 243601 (2016).
[Crossref]

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111, 147401 (2013).
[Crossref]

J. Keaveney, A. Sargsyan, U. Krohn, I. G. Hughes, D. Sarkisyan, and C. S. Adams, “Cooperative Lamb shift in an atomic vapor layer of nanometer thickness,” Phys. Rev. Lett. 108, 173601 (2012).
[Crossref]

D. S. Wild, E. Shahmoon, S. F. Yelin, and M. D. Lukin, “Quantum nonlinear optics in atomically thin materials,” Phys. Rev. Lett. 121, 123606 (2018).
[Crossref]

Science (4)

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

J. Kim, D. Yang, S. Oh, and K. An, “Coherent single-atom superradiance,” Science 359, 662–666 (2018).
[Crossref]

R. Röhlsberger, K. Schlage, B. Sahoo, S. Couet, and R. Rüffer, “Collective Lamb shift in single-photon superradiance,” Science 328, 1248–1251 (2010).
[Crossref]

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

Other (2)

J. Horng, E. Martin, Y.-H. Chou, E. Courtade, T. Chang, C.-Y. Hsu, M.-H. Wentzel, H. Ruth, T. Lu, S. Cundiff, F. Wang, and H. Deng, “Perfect absorption by an atomically thin crystal,” arXiv:1908.00884 (2019).

C. Rogers, D. Gray, N. Bogdanowicz, T. Taniguchi, K. Watanabe, and H. Mabuchi, “Coherent control of two-dimensional excitons,” arXiv:1902.05036 (2019).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplement 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Modifying the mode profile of an electromagnetic wave at a two-dimensional semiconductor using a mirror. (a) A monolayer MoSe 2 is placed in front of a mirror with a tunable distance L. Depending on the mirror distance L, the monolayer samples different local electric field due to the standing wave imposed by the mirror boundary condition. Altering the radiative coupling leads to renormalization of exciton resonance energy and radiative decay rate. (b) Another approach to understand the system is to consider the exciton in the MoSe 2 monolayer interacting with its mirror image through dipole–dipole interactions. Due to the macroscopic dipole moment from two-dimensional excitons, the renormalization effect can be significant.
Fig. 2.
Fig. 2. Effects of radiative coupling on the exciton transition measured via absorption spectroscopy. (a) Measured reflection contrast of a MoSe 2 monolayer in front of a distributed Bragg reflector as a function of photon energy and monolayer–mirror distance L. The absorption dip around 1660 meV corresponds to the A-exciton resonance. (b) Several spectra from (a) showing the shift and broadening of the exciton absorption when the monolayer is moved from a node to an anti-node of the field. (c) Mirror-position dependence of the depth (top panel), linewidth (middle panel), and resonance energy (bottom panel) of the A-exciton absorption dip. The anti-node positions are identified by the maximum absorption depth ( 99 % ), while the node positions are identified by the minimum absorption depth ( 4 % ) and marked by the dashed lines. The modulation of the radiative coupling leads to modulations of both the linewidth and the cooperative Lamb shift, which are fit but sinusoidal functions with a π / 2 relative phase shift (blue and red dashed curves, respectively).
Fig. 3.
Fig. 3. Effects of radiative coupling on the photoluminescence (PL) properties of a MoSe 2 monolayer. (a) Measured PL spectra of a MoSe 2 monolayer in front of a mirror as the monolayer is moved from an anti-node (black line) to a node (blue line) of the modified local electric field. The emission peaks around 1660 and 1630 meV correspond to the A-exciton and trion resonances, respectively. (b) Normalized PL spectra at an anti-node and a node, showing different linewidths. (c) Mirror-position dependence of the intensity, linewidth, and resonance energy of the A-exciton PL, showing modulations following the modified photon mode profile. The PL resonance energy also shows the cooperative Lamb shift. The vertical dashed lines mark the nodes of the vacuum field identified from absorption spectra. The green arrows indicate where the absorption of the 532 nm excitation laser is suppressed.
Fig. 4.
Fig. 4. Controlling the trion emission of 2D materials via radiative coupling modulation. (a) Two MoSe 2 emission spectra measured at the same position on the monolayer with a fixed doping. (b) The exciton and trion emission intensities (top) and their ratio (bottom) as a function of the monolayer–mirror distance, showing enhancement and suppression of the exciton relative to the trion emission with varying distances.
Fig. 5.
Fig. 5. Controlling the valley properties of 2D materials via radiative coupling modulation. (a) Helicity-resolved PL spectra of monolayer WSe 2 at the field anti-node (left) and node (right) in front of a mirror, and without a mirror (middle). (b) Degree of circular polarization (DOCP) versus the mirror position. It changes from 25% to 40%, showing the effect of radiative coupling on the valley dynamics of TMDCs. The blue dashed line indicates the DOCP when mirror is no present.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H = ω 0 b b + d k ω k a k a k i g d k sin ( k L ) ( a k b + a k b ) ,
X ( t ) = X ( 0 ) exp [ i E ˜ 0 t / ] exp [ γ ˜ 2 t ] ,
E ˜ 0 = E 0 γ 2 sin ( 2 k L ) ,
γ ˜ = 2 γ cos 2 ( k L ) .
DOCP = I + I I + + I = γ ˜ γ ˜ + 2 η ,