Abstract

We demonstrate that rapidly switched high-Q metasurfaces enable spectral regions of negative optical extinction.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Negative refractive index metasurface in the 2.0-THz band

Takehito Suzuki and Satoshi Kondoh
Opt. Mater. Express 8(7) 1916-1925 (2018)

High-performance metasurface polarizers with extinction ratios exceeding 12000

Hiroyuki Kurosawa, Bongseok Choi, Yoshimasa Sugimoto, and Masanobu Iwanaga
Opt. Express 25(4) 4446-4455 (2017)

Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces

Zhancheng Li, Wenwei Liu, Hua Cheng, Shuqi Chen, and Jianguo Tian
Opt. Lett. 41(13) 3142-3145 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Minkov, Y. Shi, and S. Fan, APL Photon. 2, 076101 (2017).
    [Crossref]
  2. S. F. Preble, Q. Xu, and M. Lipson, Nat. Photonics 1, 293 (2007).
    [Crossref]
  3. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, Opt. Express 15, 17458 (2007).
    [Crossref]
  4. M. W. McCutcheon, A. G. Pattantyus-Abraham, G. W. Rieger, and J. F. Young, Opt. Express 15, 11472 (2007).
    [Crossref]
  5. T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, Phys. Rev. Lett. 102, 043907 (2009).
    [Crossref]
  6. A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, Nat. Commun. 10, 3122 (2019).
    [Crossref]
  7. K. Lee, J. Son, B. Kang, J. Park, F. Rotermund, and B. Min, Nat. Photonics 12, 765 (2018).
    [Crossref]
  8. M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, Nat. Commun. 10, 1345 (2019).
    [Crossref]
  9. A. M. Shaltout, V. M. Shalaev, and M. L. Brongersma, Science 364, eaat3100 (2019).
    [Crossref]
  10. M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, Nat. Photonics 11, 543 (2017).
    [Crossref]

2019 (3)

A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, Nat. Commun. 10, 3122 (2019).
[Crossref]

M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, Nat. Commun. 10, 1345 (2019).
[Crossref]

A. M. Shaltout, V. M. Shalaev, and M. L. Brongersma, Science 364, eaat3100 (2019).
[Crossref]

2018 (1)

K. Lee, J. Son, B. Kang, J. Park, F. Rotermund, and B. Min, Nat. Photonics 12, 765 (2018).
[Crossref]

2017 (2)

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, Nat. Photonics 11, 543 (2017).
[Crossref]

M. Minkov, Y. Shi, and S. Fan, APL Photon. 2, 076101 (2017).
[Crossref]

2009 (1)

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, Phys. Rev. Lett. 102, 043907 (2009).
[Crossref]

2007 (3)

Brongersma, M. L.

A. M. Shaltout, V. M. Shalaev, and M. L. Brongersma, Science 364, eaat3100 (2019).
[Crossref]

Chowdhury, E.

M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, Nat. Commun. 10, 1345 (2019).
[Crossref]

Dutt, A.

A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, Nat. Commun. 10, 3122 (2019).
[Crossref]

Fan, S.

A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, Nat. Commun. 10, 3122 (2019).
[Crossref]

M. Minkov, Y. Shi, and S. Fan, APL Photon. 2, 076101 (2017).
[Crossref]

Fan, Z.

M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, Nat. Commun. 10, 1345 (2019).
[Crossref]

Kang, B.

K. Lee, J. Son, B. Kang, J. Park, F. Rotermund, and B. Min, Nat. Photonics 12, 765 (2018).
[Crossref]

Kivshar, Y. S.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, Nat. Photonics 11, 543 (2017).
[Crossref]

Kuramochi, E.

Lee, K.

K. Lee, J. Son, B. Kang, J. Park, F. Rotermund, and B. Min, Nat. Photonics 12, 765 (2018).
[Crossref]

Limonov, M. F.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, Nat. Photonics 11, 543 (2017).
[Crossref]

Lin, Q.

A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, Nat. Commun. 10, 3122 (2019).
[Crossref]

Lipson, M.

S. F. Preble, Q. Xu, and M. Lipson, Nat. Photonics 1, 293 (2007).
[Crossref]

McCutcheon, M. W.

Miller, D. A. B.

A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, Nat. Commun. 10, 3122 (2019).
[Crossref]

Min, B.

K. Lee, J. Son, B. Kang, J. Park, F. Rotermund, and B. Min, Nat. Photonics 12, 765 (2018).
[Crossref]

Minkov, M.

A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, Nat. Commun. 10, 3122 (2019).
[Crossref]

M. Minkov, Y. Shi, and S. Fan, APL Photon. 2, 076101 (2017).
[Crossref]

Mitsugi, S.

Morita, M.

Notomi, M.

Park, J.

K. Lee, J. Son, B. Kang, J. Park, F. Rotermund, and B. Min, Nat. Photonics 12, 765 (2018).
[Crossref]

Pattantyus-Abraham, A. G.

Poddubny, A. N.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, Nat. Photonics 11, 543 (2017).
[Crossref]

Preble, S. F.

S. F. Preble, Q. Xu, and M. Lipson, Nat. Photonics 1, 293 (2007).
[Crossref]

Rieger, G. W.

Rotermund, F.

K. Lee, J. Son, B. Kang, J. Park, F. Rotermund, and B. Min, Nat. Photonics 12, 765 (2018).
[Crossref]

Rybin, M. V.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, Nat. Photonics 11, 543 (2017).
[Crossref]

Shalaev, V. M.

A. M. Shaltout, V. M. Shalaev, and M. L. Brongersma, Science 364, eaat3100 (2019).
[Crossref]

Shaltout, A. M.

A. M. Shaltout, V. M. Shalaev, and M. L. Brongersma, Science 364, eaat3100 (2019).
[Crossref]

Shcherbakov, M. R.

M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, Nat. Commun. 10, 1345 (2019).
[Crossref]

Shi, Y.

M. Minkov, Y. Shi, and S. Fan, APL Photon. 2, 076101 (2017).
[Crossref]

Shinya, A.

Shvets, G.

M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, Nat. Commun. 10, 1345 (2019).
[Crossref]

Son, J.

K. Lee, J. Son, B. Kang, J. Park, F. Rotermund, and B. Min, Nat. Photonics 12, 765 (2018).
[Crossref]

Talisa, N.

M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, Nat. Commun. 10, 1345 (2019).
[Crossref]

Tanabe, T.

Taniyama, H.

Werner, K.

M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, Nat. Commun. 10, 1345 (2019).
[Crossref]

Xu, Q.

S. F. Preble, Q. Xu, and M. Lipson, Nat. Photonics 1, 293 (2007).
[Crossref]

Young, J. F.

Yuan, L.

A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, Nat. Commun. 10, 3122 (2019).
[Crossref]

APL Photon. (1)

M. Minkov, Y. Shi, and S. Fan, APL Photon. 2, 076101 (2017).
[Crossref]

Nat. Commun. (2)

A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, Nat. Commun. 10, 3122 (2019).
[Crossref]

M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, Nat. Commun. 10, 1345 (2019).
[Crossref]

Nat. Photonics (3)

K. Lee, J. Son, B. Kang, J. Park, F. Rotermund, and B. Min, Nat. Photonics 12, 765 (2018).
[Crossref]

S. F. Preble, Q. Xu, and M. Lipson, Nat. Photonics 1, 293 (2007).
[Crossref]

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, Nat. Photonics 11, 543 (2017).
[Crossref]

Opt. Express (2)

Phys. Rev. Lett. (1)

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, Phys. Rev. Lett. 102, 043907 (2009).
[Crossref]

Science (1)

A. M. Shaltout, V. M. Shalaev, and M. L. Brongersma, Science 364, eaat3100 (2019).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1. Theory of negative light extinction by a TVM. (a) Evolution of the mode before and after the abrupt Q -switching at t = τ from Q i = 100 to Q f = 5 ( η = 0.05 ). (b) Extinction spectra for τ = 200 fs (solid line) and (dashed line). Redistribution of spectral components manifests in several regions of E < 0 . Shaded area: spectrum of the incident pulse s + ( λ ) . (c) Conditions for negative extinction: Q -switching must be fast (horizontal axis) and deep (vertical axis); τ has been optimized to minimize E . The arrow indicates the parameters from panels (a) and (b), and the dot shows the experimental parameters.
Fig. 2.
Fig. 2. Experimental realization of negative optical extinction using semiconductor TVMs. (a) Scanning electron microscopy image of the (a-Ge)-based TVM. The a-Ge layer thickness is 200 nm. (b) Transmittance of the unperturbed resonant TVM: experimental data (dots) and a Fano-resonance fit (solid line). (c) Experimental schematic: a TVM interacting with a MIR probe is Q -switched by a NIR pump via electron-hole generation. Extinction spectra of the MIR radiation are detected by a spectrometer as a function of delay between the NIR and MIR pulses. (d) Experimental measurements of E ( λ , τ ) for different pump–probe delay times τ . (e) Selected extinction spectra for τ = 0.32 ps (red), τ = 0.52 ps (green), τ = 0.72 ps (blue), and τ = 1.92 ps (black dashed). Pump and probe parameters: durations τ probe = τ pump = 35 fs , wavelengths λ probe λ 0 and λ pump = 0.78 μm , fluences F probe = 1 μJ / cm 2 and F pump = 150 μJ / cm 2 ; both beams were polarized along the short sides of the metasurface rectangles.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

a ˙ ( t ) + i ω 0 a ( t ) + [ γ r + γ n r ( t ) ] a ( t ) = γ r s + ( t ) ,
s ( t ) = s + ( t ) γ r a ( t ) ,