Abstract

Tunable semiconductor lasers are often listed in critical technology road maps for future dense-wavelength-division-multiplexing (DWDM) systems and high-performance computing systems, and they are increasingly demanded in long-haul, metropolitan, and access networks. The capability to produce such lasers directly on silicon (Si) could boost the use of Si photonics and facilitate the adoption of optical data transmission even at the chip scale. Moreover, just the use of Si as a cheap and large-diameter substrate for device production is very advantageous, as the fabrication can take advantage of the highly optimized processing techniques and economy of scale enabled by decades of development in Si microelectronics. Here, we report a tunable single-wavelength quantum dot (QD) laser directly grown on Si. The high carrier confinement and a real dot density of QDs provide reduced sensitivity to crystalline defects, which allows for exceptional lasing performance even in lattice-mismatched material systems. The discrete density of states of dots yields unique gain properties that show promise for improved device performance and new functionalities relative to the quantum well counterparts, including high temperature stability, low threshold operation, reduced sidewall recombination, and isolator-free stability. We implement a simple, integrable architecture to achieve over 45 dB side-mode-suppression-ratio without involving regrowth steps or subwavelength grating lithography. Under continuous-wave electrical injection at room temperature, we achieved a 16 nm tuning range with output powers of over 2.7 mW per tuning wavelength. This work represents a step towards using III–V/Si epitaxy to form efficient, easily manufacturable on-chip Si light sources for not only DWDM networks, but also spectroscopy, biosensors, and many other emerging applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon

Daisuke Inoue, Daehwan Jung, Justin Norman, Yating Wan, Nobuhiko Nishiyama, Shigehisa Arai, Arthur C. Gossard, and John E. Bowers
Opt. Express 26(6) 7022-7033 (2018)

Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon

Heming Huang, Jianan Duan, Daehwan Jung, Alan Y. Liu, Zeyu Zhang, Justin Norman, John E. Bowers, and Frédéric Grillot
J. Opt. Soc. Am. B 35(11) 2780-2787 (2018)

Monolithic quantum-dot distributed feedback laser array on silicon

Yi Wang, Siming Chen, Ying Yu, Lidan Zhou, Lin Liu, Chunchuan Yang, Mengya Liao, Mingchu Tang, Zizhuo Liu, Jiang Wu, Wei Li, Ian Ross, Alwyn J. Seeds, Huiyun Liu, and Siyuan Yu
Optica 5(5) 528-533 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Smit, J. van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photon. Rev. 6, 1–13 (2012).
    [Crossref]
  2. J. E. Bowers, D. Huang, D. Jung, J. C. Norman, M. A. Tran, Y. Wan, W. Xie, and Z. Zhang, “Realities and challenges of III-V/Si integration technologies,” in Optical Fiber Communication Conference (2019), pp. Tu3E-1.
  3. P. Dong, K. W. Kim, A. Melikyan, and Y. Baeyens, “Silicon photonics: a scaling technology for communications and interconnects,” in IEEE International Electron Devices Meeting (IEDM) (2018), pp. 23.4.1–23.4.4.
  4. O. Marshall, M. Hsu, Z. Wang, B. Kunert, C. Koos, and D. Van Thourhout, “Heterogeneous integration on silicon photonics,” Proc. IEEE 106, 2258–2269 (2018).
    [Crossref]
  5. S. Dhoore, A. Köninger, R. Meyer, G. Roelkens, and G. Morthier, “Electronically tunable distributed feedback (DFB) laser on silicon,” Laser Photon. Rev. 13, 1800287 (2019).
    [Crossref]
  6. D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6, 745–752 (2019).
    [Crossref]
  7. C. Zhang, S. Zhang, J. D. Peters, and J. E. Bowers, “8 × 8 × 40  Gbps fully integrated silicon photonic network on chip,” Optica 3, 785–786 (2016).
    [Crossref]
  8. R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers,” IEEE Nanotechnol. Mag. 13(2), 17–26 (2019).
    [Crossref]
  9. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
    [Crossref]
  10. Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
    [Crossref]
  11. B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? a critical review on current approaches,” Semicond. Sci. Technol. 33, 93002 (2018).
    [Crossref]
  12. Z. I. Kazi, P. Thilakan, T. Egawa, M. Umeno, and T. Jimbo, “Realization of GaAs/AlGaAs lasers on Si substrates using epitaxial lateral overgrowth by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. 40, 4903–4906 (2001).
    [Crossref]
  13. H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
    [Crossref]
  14. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
    [Crossref]
  15. Q. Feng, W. Wei, B. Zhang, H. Wang, J. Wang, H. Cong, T. Wang, and J. J. Zhang, “O-band and C/L-band IIIV quantum dot lasers monolithically grown on Ge and Si substrate,” Appl. Sci. 9, 385 (2019).
    [Crossref]
  16. Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
    [Crossref]
  17. T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum dot lasers,” in Proceedings of the CLEO (2011), paper PDA_1.
  18. Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
    [Crossref]
  19. J. Kwoen, B. Jang, K. Watanabe, and Y. Arakawa, “High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 27, 2681–2688 (2019).
    [Crossref]
  20. D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
    [Crossref]
  21. Y. Wan, J. Norman, Q. Li, M. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Liu, A. Torres, D. Jung, A. Gossard, E. Hu, K. Lau, and J. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
    [Crossref]
  22. T. Zhou, M. Tang, G. Xiang, X. Fang, X. Liu, B. Xiang, S. Hark, M. Martin, M. Touraton, T. Baron, Y. Lu, S. Chen, H. Liu, and Z. Zhang, “Ultra-low threshold InAs/GaAs quantum dot microdisk lasers on planar on-axis Si (001) substrates,” Optica 6, 430–435 (2019).
    [Crossref]
  23. Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
    [Crossref]
  24. N. V. Kryzhanovskaya, A. E. Zhukov, M. V. Maximov, E. I. Moiseev, I. I. Shostak, A. M. Nadtochiy, Y. V. Kudashova, A. A. Lipovskii, M. M. Kulagina, and S. I. Troshkov, “Room temperature lasing in 1-μm microdisk quantum dot lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 709–713 (2015).
    [Crossref]
  25. Y. Wan, D. Jung, C. Shang, N. Collins, I. MacFarlane, J. Norman, M. Dumont, A. C. Gossard, and J. E. Bowers, “Low-threshold continuous-wave operation of electrically pumped 1.55 μm InAs quantum dash microring lasers,” ACS Photon. 6, 279–285 (2019).
    [Crossref]
  26. Y. Wan, D. Inoue, D. Jung, J. C. Norman, C. Shang, A. C. Gossard, and J. E. Bowers, “Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability,” Photon. Res. 6, 776–781 (2018).
    [Crossref]
  27. Z. Zhang, D. Jung, J. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1–9 (2019).
    [Crossref]
  28. J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
    [Crossref]
  29. D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
    [Crossref]
  30. J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
    [Crossref]
  31. J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 1–11 (2019).
    [Crossref]
  32. K. Li, M. Tang, M. Liao, J. Wu, S. Chen, A. Seeds, and H. Liu, “InAs GaAs quantum dot lasers monolithically integrated on group IV platform,” in IEEE International Electron Devices Meeting (IEDM) (2018), pp. 23–25.
  33. S. Liu, X. Wu, D. Jung, J. C. Norman, M. J. Kennedy, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 41 Tbit/s transmission capacity,” Optica 6, 128–134 (2019).
    [Crossref]
  34. Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Rose, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
    [Crossref]
  35. C. W. Coldren, G. A. Fish, J. S. Barton, L. Johansson, L. A. Coldren, and Y. Akulova, “Tunable semiconductor lasers: a tutorial,” J. Lightwave Technol. 22, 193–202 (2004).
    [Crossref]
  36. T. Ferrotti, B. Blampey, C. Jany, H. Duprez, A. Chantre, F. Boeuf, C. Seassal, and B. B. Bakir, “Co-integrated 1.3  μm hybrid III-V/silicon tunable laser and silicon Mach-Zehnder modulator operating at 25  Gb/s,” Opt. Express 24, 30379–30401 (2016).
    [Crossref]
  37. H. Duprez, A. Descos, T. Ferrotti, C. Sciancalepore, C. Jany, K. Hassan, C. Seassal, S. Menezo, and B. B. Bakir, “1310 nm hybrid InP/InGaAsP on silicon distributed feedback laser with high side-mode suppression ratio,” Opt. Express 23, 8489–8497 (2015).
    [Crossref]
  38. V. Jayaraman, D. A. Cohen, and L. A. Coldren, “Demonstration of broadband tunability in a semiconductor laser using sampled gratings,” Appl. Phys. Lett. 60, 2321–2323 (1992).
    [Crossref]
  39. H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
    [Crossref]
  40. J.-J. He and D. Liu, “Wavelength switchable semiconductor laser using half-wave V-coupled cavities,” Opt. Express 16, 3896–3911 (2008).
    [Crossref]
  41. S. Zhang, J. Meng, S. Guo, L. Wang, and J.-J. He, “Simple and compact V-cavity semiconductor laser with 50×100 GHz wavelength tuning,” Opt. Express, 21, 13564–13571 (2013).
    [Crossref]
  42. D. D’Agostino, D. Lenstra, H. P. M. M. Ambrosius, and M. K. Smit, “Coupled cavity laser based on anti-resonant imaging via multimode interference,” Opt. Lett. 40, 653–656 (2015).
    [Crossref]
  43. J. Meng, X. Xiong, H. Xing, H. Jin, D. Zhong, L. Zou, J. Zhao, and J.-J. He, “Full C-band tunable V-cavity-laser based TOSA and SFP transceiver modules,” IEEE Photon. Technol. Lett. 29, 1035–1038 (2017).
    [Crossref]
  44. S. Cheung, J. Matres, and M. R. Tan, “High-speed, directly-modulated widely tunable 1310 nm coupled cavity laser via multimode interference,” J. Lightwave Technol. 37, 2133–2139 (2019).
    [Crossref]
  45. Y. Chu, Q. Chen, Z. Fan, and J.-J. He, “Tunable V-cavity lasers integrated with a cyclic echelle grating for distributed routing networks,” IEEE Photon. Technol. Lett. 31, 943–946 (2019).
    [Crossref]
  46. L. Wu, X. Liao, Z. Hu, and J.-J. He, “Double half-wave-coupled rectangular ring-FP laser with 35 × 100  GHz wavelength tuning,” IEEE Photon. Technol. Lett. 27, 1076–1079 (2015).
    [Crossref]
  47. S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 545–554 (2009).
    [Crossref]
  48. Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25, 26853–26860 (2017).
    [Crossref]
  49. M. Z. M. Khan, T. K. Ng, C.-S. Lee, P. Bhattacharya, and B. S. Ooi, “Chirped InAs/InP quantum-dash laser with enhanced broad spectrum of stimulated emission,” Appl. Phys. Lett. 102, 091102 (2013).
    [Crossref]
  50. S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
    [Crossref]
  51. W. Wei, H. Deng, and J.-J. He, “GaAs/AlGaAs-based 870-nm-band widely tunable edge-emitting V-cavity laser,” IEEE Photon. J. 5, 1501607 (2013).
    [Crossref]

2019 (13)

S. Dhoore, A. Köninger, R. Meyer, G. Roelkens, and G. Morthier, “Electronically tunable distributed feedback (DFB) laser on silicon,” Laser Photon. Rev. 13, 1800287 (2019).
[Crossref]

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6, 745–752 (2019).
[Crossref]

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers,” IEEE Nanotechnol. Mag. 13(2), 17–26 (2019).
[Crossref]

Q. Feng, W. Wei, B. Zhang, H. Wang, J. Wang, H. Cong, T. Wang, and J. J. Zhang, “O-band and C/L-band IIIV quantum dot lasers monolithically grown on Ge and Si substrate,” Appl. Sci. 9, 385 (2019).
[Crossref]

J. Kwoen, B. Jang, K. Watanabe, and Y. Arakawa, “High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 27, 2681–2688 (2019).
[Crossref]

T. Zhou, M. Tang, G. Xiang, X. Fang, X. Liu, B. Xiang, S. Hark, M. Martin, M. Touraton, T. Baron, Y. Lu, S. Chen, H. Liu, and Z. Zhang, “Ultra-low threshold InAs/GaAs quantum dot microdisk lasers on planar on-axis Si (001) substrates,” Optica 6, 430–435 (2019).
[Crossref]

Y. Wan, D. Jung, C. Shang, N. Collins, I. MacFarlane, J. Norman, M. Dumont, A. C. Gossard, and J. E. Bowers, “Low-threshold continuous-wave operation of electrically pumped 1.55 μm InAs quantum dash microring lasers,” ACS Photon. 6, 279–285 (2019).
[Crossref]

Z. Zhang, D. Jung, J. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1–9 (2019).
[Crossref]

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

S. Liu, X. Wu, D. Jung, J. C. Norman, M. J. Kennedy, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 41 Tbit/s transmission capacity,” Optica 6, 128–134 (2019).
[Crossref]

S. Cheung, J. Matres, and M. R. Tan, “High-speed, directly-modulated widely tunable 1310 nm coupled cavity laser via multimode interference,” J. Lightwave Technol. 37, 2133–2139 (2019).
[Crossref]

Y. Chu, Q. Chen, Z. Fan, and J.-J. He, “Tunable V-cavity lasers integrated with a cyclic echelle grating for distributed routing networks,” IEEE Photon. Technol. Lett. 31, 943–946 (2019).
[Crossref]

2018 (5)

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Rose, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

Y. Wan, D. Inoue, D. Jung, J. C. Norman, C. Shang, A. C. Gossard, and J. E. Bowers, “Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability,” Photon. Res. 6, 776–781 (2018).
[Crossref]

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
[Crossref]

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? a critical review on current approaches,” Semicond. Sci. Technol. 33, 93002 (2018).
[Crossref]

O. Marshall, M. Hsu, Z. Wang, B. Kunert, C. Koos, and D. Van Thourhout, “Heterogeneous integration on silicon photonics,” Proc. IEEE 106, 2258–2269 (2018).
[Crossref]

2017 (6)

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Liu, A. Torres, D. Jung, A. Gossard, E. Hu, K. Lau, and J. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25, 26853–26860 (2017).
[Crossref]

J. Meng, X. Xiong, H. Xing, H. Jin, D. Zhong, L. Zou, J. Zhao, and J.-J. He, “Full C-band tunable V-cavity-laser based TOSA and SFP transceiver modules,” IEEE Photon. Technol. Lett. 29, 1035–1038 (2017).
[Crossref]

2016 (6)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

T. Ferrotti, B. Blampey, C. Jany, H. Duprez, A. Chantre, F. Boeuf, C. Seassal, and B. B. Bakir, “Co-integrated 1.3  μm hybrid III-V/silicon tunable laser and silicon Mach-Zehnder modulator operating at 25  Gb/s,” Opt. Express 24, 30379–30401 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

C. Zhang, S. Zhang, J. D. Peters, and J. E. Bowers, “8 × 8 × 40  Gbps fully integrated silicon photonic network on chip,” Optica 3, 785–786 (2016).
[Crossref]

2015 (5)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

N. V. Kryzhanovskaya, A. E. Zhukov, M. V. Maximov, E. I. Moiseev, I. I. Shostak, A. M. Nadtochiy, Y. V. Kudashova, A. A. Lipovskii, M. M. Kulagina, and S. I. Troshkov, “Room temperature lasing in 1-μm microdisk quantum dot lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 709–713 (2015).
[Crossref]

H. Duprez, A. Descos, T. Ferrotti, C. Sciancalepore, C. Jany, K. Hassan, C. Seassal, S. Menezo, and B. B. Bakir, “1310 nm hybrid InP/InGaAsP on silicon distributed feedback laser with high side-mode suppression ratio,” Opt. Express 23, 8489–8497 (2015).
[Crossref]

D. D’Agostino, D. Lenstra, H. P. M. M. Ambrosius, and M. K. Smit, “Coupled cavity laser based on anti-resonant imaging via multimode interference,” Opt. Lett. 40, 653–656 (2015).
[Crossref]

L. Wu, X. Liao, Z. Hu, and J.-J. He, “Double half-wave-coupled rectangular ring-FP laser with 35 × 100  GHz wavelength tuning,” IEEE Photon. Technol. Lett. 27, 1076–1079 (2015).
[Crossref]

2013 (3)

W. Wei, H. Deng, and J.-J. He, “GaAs/AlGaAs-based 870-nm-band widely tunable edge-emitting V-cavity laser,” IEEE Photon. J. 5, 1501607 (2013).
[Crossref]

M. Z. M. Khan, T. K. Ng, C.-S. Lee, P. Bhattacharya, and B. S. Ooi, “Chirped InAs/InP quantum-dash laser with enhanced broad spectrum of stimulated emission,” Appl. Phys. Lett. 102, 091102 (2013).
[Crossref]

S. Zhang, J. Meng, S. Guo, L. Wang, and J.-J. He, “Simple and compact V-cavity semiconductor laser with 50×100 GHz wavelength tuning,” Opt. Express, 21, 13564–13571 (2013).
[Crossref]

2012 (1)

M. Smit, J. van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photon. Rev. 6, 1–13 (2012).
[Crossref]

2011 (1)

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

2009 (1)

S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 545–554 (2009).
[Crossref]

2008 (1)

2006 (1)

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

2004 (1)

2001 (1)

Z. I. Kazi, P. Thilakan, T. Egawa, M. Umeno, and T. Jimbo, “Realization of GaAs/AlGaAs lasers on Si substrates using epitaxial lateral overgrowth by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. 40, 4903–4906 (2001).
[Crossref]

1996 (1)

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

1992 (1)

V. Jayaraman, D. A. Cohen, and L. A. Coldren, “Demonstration of broadband tunability in a semiconductor laser using sampled gratings,” Appl. Phys. Lett. 60, 2321–2323 (1992).
[Crossref]

Abbasi, A.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Akulova, Y.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers,” IEEE Nanotechnol. Mag. 13(2), 17–26 (2019).
[Crossref]

C. W. Coldren, G. A. Fish, J. S. Barton, L. Johansson, L. A. Coldren, and Y. Akulova, “Tunable semiconductor lasers: a tutorial,” J. Lightwave Technol. 22, 193–202 (2004).
[Crossref]

Ambrosius, H. P. M. M.

Arakawa, Y.

J. Kwoen, B. Jang, K. Watanabe, and Y. Arakawa, “High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 27, 2681–2688 (2019).
[Crossref]

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum dot lasers,” in Proceedings of the CLEO (2011), paper PDA_1.

Baets, R.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Baeyens, Y.

P. Dong, K. W. Kim, A. Melikyan, and Y. Baeyens, “Silicon photonics: a scaling technology for communications and interconnects,” in IEEE International Electron Devices Meeting (IEDM) (2018), pp. 23.4.1–23.4.4.

Bakir, B. B.

Baron, T.

Barton, J. S.

Baryshniskova, M.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? a critical review on current approaches,” Semicond. Sci. Technol. 33, 93002 (2018).
[Crossref]

Bauwelinck, J.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Bhattacharya, P.

M. Z. M. Khan, T. K. Ng, C.-S. Lee, P. Bhattacharya, and B. S. Ooi, “Chirped InAs/InP quantum-dash laser with enhanced broad spectrum of stimulated emission,” Appl. Phys. Lett. 102, 091102 (2013).
[Crossref]

Blampey, B.

Boeuf, F.

Bowers, J.

Bowers, J. E.

S. Liu, X. Wu, D. Jung, J. C. Norman, M. J. Kennedy, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 41 Tbit/s transmission capacity,” Optica 6, 128–134 (2019).
[Crossref]

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6, 745–752 (2019).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers,” IEEE Nanotechnol. Mag. 13(2), 17–26 (2019).
[Crossref]

Y. Wan, D. Jung, C. Shang, N. Collins, I. MacFarlane, J. Norman, M. Dumont, A. C. Gossard, and J. E. Bowers, “Low-threshold continuous-wave operation of electrically pumped 1.55 μm InAs quantum dash microring lasers,” ACS Photon. 6, 279–285 (2019).
[Crossref]

Z. Zhang, D. Jung, J. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1–9 (2019).
[Crossref]

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
[Crossref]

Y. Wan, D. Inoue, D. Jung, J. C. Norman, C. Shang, A. C. Gossard, and J. E. Bowers, “Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability,” Photon. Res. 6, 776–781 (2018).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25, 26853–26860 (2017).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

C. Zhang, S. Zhang, J. D. Peters, and J. E. Bowers, “8 × 8 × 40  Gbps fully integrated silicon photonic network on chip,” Optica 3, 785–786 (2016).
[Crossref]

J. E. Bowers, D. Huang, D. Jung, J. C. Norman, M. A. Tran, Y. Wan, W. Xie, and Z. Zhang, “Realities and challenges of III-V/Si integration technologies,” in Optical Fiber Communication Conference (2019), pp. Tu3E-1.

Cataluna, M. A.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Chantre, A.

Chen, Q.

Y. Chu, Q. Chen, Z. Fan, and J.-J. He, “Tunable V-cavity lasers integrated with a cyclic echelle grating for distributed routing networks,” IEEE Photon. Technol. Lett. 31, 943–946 (2019).
[Crossref]

Chen, S.

T. Zhou, M. Tang, G. Xiang, X. Fang, X. Liu, B. Xiang, S. Hark, M. Martin, M. Touraton, T. Baron, Y. Lu, S. Chen, H. Liu, and Z. Zhang, “Ultra-low threshold InAs/GaAs quantum dot microdisk lasers on planar on-axis Si (001) substrates,” Optica 6, 430–435 (2019).
[Crossref]

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Rose, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

K. Li, M. Tang, M. Liao, J. Wu, S. Chen, A. Seeds, and H. Liu, “InAs GaAs quantum dot lasers monolithically integrated on group IV platform,” in IEEE International Electron Devices Meeting (IEDM) (2018), pp. 23–25.

Cheung, S.

Chow, W. W.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

Z. Zhang, D. Jung, J. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1–9 (2019).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

Chu, Y.

Y. Chu, Q. Chen, Z. Fan, and J.-J. He, “Tunable V-cavity lasers integrated with a cyclic echelle grating for distributed routing networks,” IEEE Photon. Technol. Lett. 31, 943–946 (2019).
[Crossref]

Cohen, D. A.

V. Jayaraman, D. A. Cohen, and L. A. Coldren, “Demonstration of broadband tunability in a semiconductor laser using sampled gratings,” Appl. Phys. Lett. 60, 2321–2323 (1992).
[Crossref]

Coldren, C. W.

Coldren, L. A.

C. W. Coldren, G. A. Fish, J. S. Barton, L. Johansson, L. A. Coldren, and Y. Akulova, “Tunable semiconductor lasers: a tutorial,” J. Lightwave Technol. 22, 193–202 (2004).
[Crossref]

V. Jayaraman, D. A. Cohen, and L. A. Coldren, “Demonstration of broadband tunability in a semiconductor laser using sampled gratings,” Appl. Phys. Lett. 60, 2321–2323 (1992).
[Crossref]

Collins, N.

Y. Wan, D. Jung, C. Shang, N. Collins, I. MacFarlane, J. Norman, M. Dumont, A. C. Gossard, and J. E. Bowers, “Low-threshold continuous-wave operation of electrically pumped 1.55 μm InAs quantum dash microring lasers,” ACS Photon. 6, 279–285 (2019).
[Crossref]

Cong, H.

Q. Feng, W. Wei, B. Zhang, H. Wang, J. Wang, H. Cong, T. Wang, and J. J. Zhang, “O-band and C/L-band IIIV quantum dot lasers monolithically grown on Ge and Si substrate,” Appl. Sci. 9, 385 (2019).
[Crossref]

D’Agostino, D.

Dave, U.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

De Groote, A.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Deng, H.

W. Wei, H. Deng, and J.-J. He, “GaAs/AlGaAs-based 870-nm-band widely tunable edge-emitting V-cavity laser,” IEEE Photon. J. 5, 1501607 (2013).
[Crossref]

Descos, A.

Dhoore, S.

S. Dhoore, A. Köninger, R. Meyer, G. Roelkens, and G. Morthier, “Electronically tunable distributed feedback (DFB) laser on silicon,” Laser Photon. Rev. 13, 1800287 (2019).
[Crossref]

Dong, B.

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

Dong, P.

P. Dong, K. W. Kim, A. Melikyan, and Y. Baeyens, “Silicon photonics: a scaling technology for communications and interconnects,” in IEEE International Electron Devices Meeting (IEDM) (2018), pp. 23.4.1–23.4.4.

Doussiere, P.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers,” IEEE Nanotechnol. Mag. 13(2), 17–26 (2019).
[Crossref]

Driscoll, J. B.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers,” IEEE Nanotechnol. Mag. 13(2), 17–26 (2019).
[Crossref]

Duan, J.

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

Dumont, M.

Y. Wan, D. Jung, C. Shang, N. Collins, I. MacFarlane, J. Norman, M. Dumont, A. C. Gossard, and J. E. Bowers, “Low-threshold continuous-wave operation of electrically pumped 1.55 μm InAs quantum dash microring lasers,” ACS Photon. 6, 279–285 (2019).
[Crossref]

Duprez, H.

Egawa, T.

Z. I. Kazi, P. Thilakan, T. Egawa, M. Umeno, and T. Jimbo, “Realization of GaAs/AlGaAs lasers on Si substrates using epitaxial lateral overgrowth by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. 40, 4903–4906 (2001).
[Crossref]

Elliott, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Fan, Z.

Y. Chu, Q. Chen, Z. Fan, and J.-J. He, “Tunable V-cavity lasers integrated with a cyclic echelle grating for distributed routing networks,” IEEE Photon. Technol. Lett. 31, 943–946 (2019).
[Crossref]

Fang, X.

Feng, Q.

Q. Feng, W. Wei, B. Zhang, H. Wang, J. Wang, H. Cong, T. Wang, and J. J. Zhang, “O-band and C/L-band IIIV quantum dot lasers monolithically grown on Ge and Si substrate,” Appl. Sci. 9, 385 (2019).
[Crossref]

Ferrotti, T.

Fish, G. A.

Flynn, M. B.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Gossard, A.

Gossard, A. C.

S. Liu, X. Wu, D. Jung, J. C. Norman, M. J. Kennedy, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 41 Tbit/s transmission capacity,” Optica 6, 128–134 (2019).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

Y. Wan, D. Jung, C. Shang, N. Collins, I. MacFarlane, J. Norman, M. Dumont, A. C. Gossard, and J. E. Bowers, “Low-threshold continuous-wave operation of electrically pumped 1.55 μm InAs quantum dash microring lasers,” ACS Photon. 6, 279–285 (2019).
[Crossref]

Y. Wan, D. Inoue, D. Jung, J. C. Norman, C. Shang, A. C. Gossard, and J. E. Bowers, “Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability,” Photon. Res. 6, 776–781 (2018).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25, 26853–26860 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

Grillot, F.

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

Guo, J.

Guo, S.

Hark, S.

Hassan, K.

He, J.-J.

Y. Chu, Q. Chen, Z. Fan, and J.-J. He, “Tunable V-cavity lasers integrated with a cyclic echelle grating for distributed routing networks,” IEEE Photon. Technol. Lett. 31, 943–946 (2019).
[Crossref]

J. Meng, X. Xiong, H. Xing, H. Jin, D. Zhong, L. Zou, J. Zhao, and J.-J. He, “Full C-band tunable V-cavity-laser based TOSA and SFP transceiver modules,” IEEE Photon. Technol. Lett. 29, 1035–1038 (2017).
[Crossref]

L. Wu, X. Liao, Z. Hu, and J.-J. He, “Double half-wave-coupled rectangular ring-FP laser with 35 × 100  GHz wavelength tuning,” IEEE Photon. Technol. Lett. 27, 1076–1079 (2015).
[Crossref]

W. Wei, H. Deng, and J.-J. He, “GaAs/AlGaAs-based 870-nm-band widely tunable edge-emitting V-cavity laser,” IEEE Photon. J. 5, 1501607 (2013).
[Crossref]

S. Zhang, J. Meng, S. Guo, L. Wang, and J.-J. He, “Simple and compact V-cavity semiconductor laser with 50×100 GHz wavelength tuning,” Opt. Express, 21, 13564–13571 (2013).
[Crossref]

J.-J. He and D. Liu, “Wavelength switchable semiconductor laser using half-wave V-coupled cavities,” Opt. Express 16, 3896–3911 (2008).
[Crossref]

Hens, Z.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Herrick, R.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Herrick, R. W.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

Hill, M.

M. Smit, J. van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photon. Rev. 6, 1–13 (2012).
[Crossref]

Hogg, R.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Hsu, M.

O. Marshall, M. Hsu, Z. Wang, B. Kunert, C. Koos, and D. Van Thourhout, “Heterogeneous integration on silicon photonics,” Proc. IEEE 106, 2258–2269 (2018).
[Crossref]

Hu, E.

Y. Wan, J. Norman, Q. Li, M. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Liu, A. Torres, D. Jung, A. Gossard, E. Hu, K. Lau, and J. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

Hu, Z.

L. Wu, X. Liao, Z. Hu, and J.-J. He, “Double half-wave-coupled rectangular ring-FP laser with 35 × 100  GHz wavelength tuning,” IEEE Photon. Technol. Lett. 27, 1076–1079 (2015).
[Crossref]

Huang, D.

Huang, H.

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

Inoue, D.

Ishii, H.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

Jan, C.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Jang, B.

Jany, C.

Jayaraman, V.

V. Jayaraman, D. A. Cohen, and L. A. Coldren, “Demonstration of broadband tunability in a semiconductor laser using sampled gratings,” Appl. Phys. Lett. 60, 2321–2323 (1992).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Jimbo, T.

Z. I. Kazi, P. Thilakan, T. Egawa, M. Umeno, and T. Jimbo, “Realization of GaAs/AlGaAs lasers on Si substrates using epitaxial lateral overgrowth by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. 40, 4903–4906 (2001).
[Crossref]

Jin, H.

J. Meng, X. Xiong, H. Xing, H. Jin, D. Zhong, L. Zou, J. Zhao, and J.-J. He, “Full C-band tunable V-cavity-laser based TOSA and SFP transceiver modules,” IEEE Photon. Technol. Lett. 29, 1035–1038 (2017).
[Crossref]

Johansson, L.

Jones, R.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers,” IEEE Nanotechnol. Mag. 13(2), 17–26 (2019).
[Crossref]

Jung, D.

Z. Zhang, D. Jung, J. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1–9 (2019).
[Crossref]

Y. Wan, D. Jung, C. Shang, N. Collins, I. MacFarlane, J. Norman, M. Dumont, A. C. Gossard, and J. E. Bowers, “Low-threshold continuous-wave operation of electrically pumped 1.55 μm InAs quantum dash microring lasers,” ACS Photon. 6, 279–285 (2019).
[Crossref]

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

S. Liu, X. Wu, D. Jung, J. C. Norman, M. J. Kennedy, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 41 Tbit/s transmission capacity,” Optica 6, 128–134 (2019).
[Crossref]

Y. Wan, D. Inoue, D. Jung, J. C. Norman, C. Shang, A. C. Gossard, and J. E. Bowers, “Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability,” Photon. Res. 6, 776–781 (2018).
[Crossref]

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25, 26853–26860 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Liu, A. Torres, D. Jung, A. Gossard, E. Hu, K. Lau, and J. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

J. E. Bowers, D. Huang, D. Jung, J. C. Norman, M. A. Tran, Y. Wan, W. Xie, and Z. Zhang, “Realities and challenges of III-V/Si integration technologies,” in Optical Fiber Communication Conference (2019), pp. Tu3E-1.

Kageyama, T.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum dot lasers,” in Proceedings of the CLEO (2011), paper PDA_1.

Kano, F.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

Kazi, Z. I.

Z. I. Kazi, P. Thilakan, T. Egawa, M. Umeno, and T. Jimbo, “Realization of GaAs/AlGaAs lasers on Si substrates using epitaxial lateral overgrowth by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. 40, 4903–4906 (2001).
[Crossref]

Kennedy, M.

Kennedy, M. J.

S. Liu, X. Wu, D. Jung, J. C. Norman, M. J. Kennedy, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 41 Tbit/s transmission capacity,” Optica 6, 128–134 (2019).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25, 26853–26860 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Khan, M. Z. M.

M. Z. M. Khan, T. K. Ng, C.-S. Lee, P. Bhattacharya, and B. S. Ooi, “Chirped InAs/InP quantum-dash laser with enhanced broad spectrum of stimulated emission,” Appl. Phys. Lett. 102, 091102 (2013).
[Crossref]

Kim, K. W.

P. Dong, K. W. Kim, A. Melikyan, and Y. Baeyens, “Silicon photonics: a scaling technology for communications and interconnects,” in IEEE International Electron Devices Meeting (IEDM) (2018), pp. 23.4.1–23.4.4.

Komljenovic, T.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers,” IEEE Nanotechnol. Mag. 13(2), 17–26 (2019).
[Crossref]

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6, 745–752 (2019).
[Crossref]

Kondo, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

Köninger, A.

S. Dhoore, A. Köninger, R. Meyer, G. Roelkens, and G. Morthier, “Electronically tunable distributed feedback (DFB) laser on silicon,” Laser Photon. Rev. 13, 1800287 (2019).
[Crossref]

Koos, C.

O. Marshall, M. Hsu, Z. Wang, B. Kunert, C. Koos, and D. Van Thourhout, “Heterogeneous integration on silicon photonics,” Proc. IEEE 106, 2258–2269 (2018).
[Crossref]

Kotlyar, M. V.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Krauss, T. F.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Kryzhanovskaya, N. V.

N. V. Kryzhanovskaya, A. E. Zhukov, M. V. Maximov, E. I. Moiseev, I. I. Shostak, A. M. Nadtochiy, Y. V. Kudashova, A. A. Lipovskii, M. M. Kulagina, and S. I. Troshkov, “Room temperature lasing in 1-μm microdisk quantum dot lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 709–713 (2015).
[Crossref]

Kudashova, Y. V.

N. V. Kryzhanovskaya, A. E. Zhukov, M. V. Maximov, E. I. Moiseev, I. I. Shostak, A. M. Nadtochiy, Y. V. Kudashova, A. A. Lipovskii, M. M. Kulagina, and S. I. Troshkov, “Room temperature lasing in 1-μm microdisk quantum dot lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 709–713 (2015).
[Crossref]

Kulagina, M. M.

N. V. Kryzhanovskaya, A. E. Zhukov, M. V. Maximov, E. I. Moiseev, I. I. Shostak, A. M. Nadtochiy, Y. V. Kudashova, A. A. Lipovskii, M. M. Kulagina, and S. I. Troshkov, “Room temperature lasing in 1-μm microdisk quantum dot lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 709–713 (2015).
[Crossref]

Kumari, S.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Kunert, B.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? a critical review on current approaches,” Semicond. Sci. Technol. 33, 93002 (2018).
[Crossref]

O. Marshall, M. Hsu, Z. Wang, B. Kunert, C. Koos, and D. Van Thourhout, “Heterogeneous integration on silicon photonics,” Proc. IEEE 106, 2258–2269 (2018).
[Crossref]

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Kuyken, B.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Kwoen, J.

Langer, R.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? a critical review on current approaches,” Semicond. Sci. Technol. 33, 93002 (2018).
[Crossref]

Lau, K.

Lau, K. M.

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25, 26853–26860 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

Lee, C.-S.

M. Z. M. Khan, T. K. Ng, C.-S. Lee, P. Bhattacharya, and B. S. Ooi, “Chirped InAs/InP quantum-dash laser with enhanced broad spectrum of stimulated emission,” Appl. Phys. Lett. 102, 091102 (2013).
[Crossref]

Lenstra, D.

Li, K.

K. Li, M. Tang, M. Liao, J. Wu, S. Chen, A. Seeds, and H. Liu, “InAs GaAs quantum dot lasers monolithically integrated on group IV platform,” in IEEE International Electron Devices Meeting (IEDM) (2018), pp. 23–25.

Li, Q.

Li, W.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Rose, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liang, D.

Liao, M.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Rose, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

K. Li, M. Tang, M. Liao, J. Wu, S. Chen, A. Seeds, and H. Liu, “InAs GaAs quantum dot lasers monolithically integrated on group IV platform,” in IEEE International Electron Devices Meeting (IEDM) (2018), pp. 23–25.

Liao, X.

L. Wu, X. Liao, Z. Hu, and J.-J. He, “Double half-wave-coupled rectangular ring-FP laser with 35 × 100  GHz wavelength tuning,” IEEE Photon. Technol. Lett. 27, 1076–1079 (2015).
[Crossref]

Lin, W.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers,” IEEE Nanotechnol. Mag. 13(2), 17–26 (2019).
[Crossref]

Lipovskii, A. A.

N. V. Kryzhanovskaya, A. E. Zhukov, M. V. Maximov, E. I. Moiseev, I. I. Shostak, A. M. Nadtochiy, Y. V. Kudashova, A. A. Lipovskii, M. M. Kulagina, and S. I. Troshkov, “Room temperature lasing in 1-μm microdisk quantum dot lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 709–713 (2015).
[Crossref]

Liu, A.

Liu, A. Y.

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

Liu, D.

Liu, H.

T. Zhou, M. Tang, G. Xiang, X. Fang, X. Liu, B. Xiang, S. Hark, M. Martin, M. Touraton, T. Baron, Y. Lu, S. Chen, H. Liu, and Z. Zhang, “Ultra-low threshold InAs/GaAs quantum dot microdisk lasers on planar on-axis Si (001) substrates,” Optica 6, 430–435 (2019).
[Crossref]

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Rose, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

K. Li, M. Tang, M. Liao, J. Wu, S. Chen, A. Seeds, and H. Liu, “InAs GaAs quantum dot lasers monolithically integrated on group IV platform,” in IEEE International Electron Devices Meeting (IEDM) (2018), pp. 23–25.

Liu, L.

Liu, S.

S. Liu, X. Wu, D. Jung, J. C. Norman, M. J. Kennedy, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 41 Tbit/s transmission capacity,” Optica 6, 128–134 (2019).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

Liu, X.

Liu, Z.

Lu, Y.

MacFarlane, I.

Y. Wan, D. Jung, C. Shang, N. Collins, I. MacFarlane, J. Norman, M. Dumont, A. C. Gossard, and J. E. Bowers, “Low-threshold continuous-wave operation of electrically pumped 1.55 μm InAs quantum dash microring lasers,” ACS Photon. 6, 279–285 (2019).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25, 26853–26860 (2017).
[Crossref]

Maeda, Y.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum dot lasers,” in Proceedings of the CLEO (2011), paper PDA_1.

Malik, A.

Marshall, O.

O. Marshall, M. Hsu, Z. Wang, B. Kunert, C. Koos, and D. Van Thourhout, “Heterogeneous integration on silicon photonics,” Proc. IEEE 106, 2258–2269 (2018).
[Crossref]

Martin, M.

Matres, J.

Matsuo, S.

S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 545–554 (2009).
[Crossref]

Maximov, M. V.

N. V. Kryzhanovskaya, A. E. Zhukov, M. V. Maximov, E. I. Moiseev, I. I. Shostak, A. M. Nadtochiy, Y. V. Kudashova, A. A. Lipovskii, M. M. Kulagina, and S. I. Troshkov, “Room temperature lasing in 1-μm microdisk quantum dot lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 709–713 (2015).
[Crossref]

Melikyan, A.

P. Dong, K. W. Kim, A. Melikyan, and Y. Baeyens, “Silicon photonics: a scaling technology for communications and interconnects,” in IEEE International Electron Devices Meeting (IEDM) (2018), pp. 23.4.1–23.4.4.

Menezo, S.

Meng, J.

J. Meng, X. Xiong, H. Xing, H. Jin, D. Zhong, L. Zou, J. Zhao, and J.-J. He, “Full C-band tunable V-cavity-laser based TOSA and SFP transceiver modules,” IEEE Photon. Technol. Lett. 29, 1035–1038 (2017).
[Crossref]

S. Zhang, J. Meng, S. Guo, L. Wang, and J.-J. He, “Simple and compact V-cavity semiconductor laser with 50×100 GHz wavelength tuning,” Opt. Express, 21, 13564–13571 (2013).
[Crossref]

Merckling, C.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Meyer, R.

S. Dhoore, A. Köninger, R. Meyer, G. Roelkens, and G. Morthier, “Electronically tunable distributed feedback (DFB) laser on silicon,” Laser Photon. Rev. 13, 1800287 (2019).
[Crossref]

Michel, J.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Mochida, R.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum dot lasers,” in Proceedings of the CLEO (2011), paper PDA_1.

Moiseev, E. I.

N. V. Kryzhanovskaya, A. E. Zhukov, M. V. Maximov, E. I. Moiseev, I. I. Shostak, A. M. Nadtochiy, Y. V. Kudashova, A. A. Lipovskii, M. M. Kulagina, and S. I. Troshkov, “Room temperature lasing in 1-μm microdisk quantum dot lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 709–713 (2015).
[Crossref]

Mols, Y.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? a critical review on current approaches,” Semicond. Sci. Technol. 33, 93002 (2018).
[Crossref]

Moore, S. A.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Morthier, G.

S. Dhoore, A. Köninger, R. Meyer, G. Roelkens, and G. Morthier, “Electronically tunable distributed feedback (DFB) laser on silicon,” Laser Photon. Rev. 13, 1800287 (2019).
[Crossref]

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Morton, P. A.

Nadtochiy, A. M.

N. V. Kryzhanovskaya, A. E. Zhukov, M. V. Maximov, E. I. Moiseev, I. I. Shostak, A. M. Nadtochiy, Y. V. Kudashova, A. A. Lipovskii, M. M. Kulagina, and S. I. Troshkov, “Room temperature lasing in 1-μm microdisk quantum dot lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 709–713 (2015).
[Crossref]

Ng, T. K.

M. Z. M. Khan, T. K. Ng, C.-S. Lee, P. Bhattacharya, and B. S. Ooi, “Chirped InAs/InP quantum-dash laser with enhanced broad spectrum of stimulated emission,” Appl. Phys. Lett. 102, 091102 (2013).
[Crossref]

Nishi, K.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum dot lasers,” in Proceedings of the CLEO (2011), paper PDA_1.

Norman, J.

Y. Wan, D. Jung, C. Shang, N. Collins, I. MacFarlane, J. Norman, M. Dumont, A. C. Gossard, and J. E. Bowers, “Low-threshold continuous-wave operation of electrically pumped 1.55 μm InAs quantum dash microring lasers,” ACS Photon. 6, 279–285 (2019).
[Crossref]

Z. Zhang, D. Jung, J. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1–9 (2019).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25, 26853–26860 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Liu, A. Torres, D. Jung, A. Gossard, E. Hu, K. Lau, and J. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Norman, J. C.

S. Liu, X. Wu, D. Jung, J. C. Norman, M. J. Kennedy, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 41 Tbit/s transmission capacity,” Optica 6, 128–134 (2019).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
[Crossref]

Y. Wan, D. Inoue, D. Jung, J. C. Norman, C. Shang, A. C. Gossard, and J. E. Bowers, “Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability,” Photon. Res. 6, 776–781 (2018).
[Crossref]

J. E. Bowers, D. Huang, D. Jung, J. C. Norman, M. A. Tran, Y. Wan, W. Xie, and Z. Zhang, “Realities and challenges of III-V/Si integration technologies,” in Optical Fiber Communication Conference (2019), pp. Tu3E-1.

O’Faolain, L.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Ooi, B. S.

M. Z. M. Khan, T. K. Ng, C.-S. Lee, P. Bhattacharya, and B. S. Ooi, “Chirped InAs/InP quantum-dash laser with enhanced broad spectrum of stimulated emission,” Appl. Phys. Lett. 102, 091102 (2013).
[Crossref]

Pantouvaki, M.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Patel, P.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Peters, J.

Peters, J. D.

Pozzi, F.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Roelkens, G.

S. Dhoore, A. Köninger, R. Meyer, G. Roelkens, and G. Morthier, “Electronically tunable distributed feedback (DFB) laser on silicon,” Laser Photon. Rev. 13, 1800287 (2019).
[Crossref]

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Rose, I.

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Schulze, A.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? a critical review on current approaches,” Semicond. Sci. Technol. 33, 93002 (2018).
[Crossref]

Sciancalepore, C.

Seassal, C.

Seeds, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

K. Li, M. Tang, M. Liao, J. Wu, S. Chen, A. Seeds, and H. Liu, “InAs GaAs quantum dot lasers monolithically integrated on group IV platform,” in IEEE International Electron Devices Meeting (IEDM) (2018), pp. 23–25.

Seeds, A. J.

Segawa, T.

S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 545–554 (2009).
[Crossref]

Shang, C.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

Y. Wan, D. Jung, C. Shang, N. Collins, I. MacFarlane, J. Norman, M. Dumont, A. C. Gossard, and J. E. Bowers, “Low-threshold continuous-wave operation of electrically pumped 1.55 μm InAs quantum dash microring lasers,” ACS Photon. 6, 279–285 (2019).
[Crossref]

Y. Wan, D. Inoue, D. Jung, J. C. Norman, C. Shang, A. C. Gossard, and J. E. Bowers, “Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability,” Photon. Res. 6, 776–781 (2018).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25, 26853–26860 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Shi, Y.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Shin, B.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Shostak, I. I.

N. V. Kryzhanovskaya, A. E. Zhukov, M. V. Maximov, E. I. Moiseev, I. I. Shostak, A. M. Nadtochiy, Y. V. Kudashova, A. A. Lipovskii, M. M. Kulagina, and S. I. Troshkov, “Room temperature lasing in 1-μm microdisk quantum dot lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 709–713 (2015).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Smit, M.

M. Smit, J. van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photon. Rev. 6, 1–13 (2012).
[Crossref]

Smit, M. K.

Smowton, P.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sugawara, M.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum dot lasers,” in Proceedings of the CLEO (2011), paper PDA_1.

Takemasa, K.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum dot lasers,” in Proceedings of the CLEO (2011), paper PDA_1.

Tan, M. R.

Tanaka, Y.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum dot lasers,” in Proceedings of the CLEO (2011), paper PDA_1.

Tang, M.

T. Zhou, M. Tang, G. Xiang, X. Fang, X. Liu, B. Xiang, S. Hark, M. Martin, M. Touraton, T. Baron, Y. Lu, S. Chen, H. Liu, and Z. Zhang, “Ultra-low threshold InAs/GaAs quantum dot microdisk lasers on planar on-axis Si (001) substrates,” Optica 6, 430–435 (2019).
[Crossref]

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Rose, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

K. Li, M. Tang, M. Liao, J. Wu, S. Chen, A. Seeds, and H. Liu, “InAs GaAs quantum dot lasers monolithically integrated on group IV platform,” in IEEE International Electron Devices Meeting (IEDM) (2018), pp. 23–25.

Tanobe, H.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

Thilakan, P.

Z. I. Kazi, P. Thilakan, T. Egawa, M. Umeno, and T. Jimbo, “Realization of GaAs/AlGaAs lasers on Si substrates using epitaxial lateral overgrowth by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. 40, 4903–4906 (2001).
[Crossref]

Tian, B.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Tohmori, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

Torres, A.

Touraton, M.

Tran, M. A.

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6, 745–752 (2019).
[Crossref]

J. E. Bowers, D. Huang, D. Jung, J. C. Norman, M. A. Tran, Y. Wan, W. Xie, and Z. Zhang, “Realities and challenges of III-V/Si integration technologies,” in Optical Fiber Communication Conference (2019), pp. Tu3E-1.

Troshkov, S. I.

N. V. Kryzhanovskaya, A. E. Zhukov, M. V. Maximov, E. I. Moiseev, I. I. Shostak, A. M. Nadtochiy, Y. V. Kudashova, A. A. Lipovskii, M. M. Kulagina, and S. I. Troshkov, “Room temperature lasing in 1-μm microdisk quantum dot lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 709–713 (2015).
[Crossref]

Tsang, H. K.

Turnlund, K.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Tutu, F.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Umeno, M.

Z. I. Kazi, P. Thilakan, T. Egawa, M. Umeno, and T. Jimbo, “Realization of GaAs/AlGaAs lasers on Si substrates using epitaxial lateral overgrowth by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. 40, 4903–4906 (2001).
[Crossref]

Van Campenhout, J.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

van der Tol, J.

M. Smit, J. van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photon. Rev. 6, 1–13 (2012).
[Crossref]

Van Gasse, K.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Van Thourhout, D.

O. Marshall, M. Hsu, Z. Wang, B. Kunert, C. Koos, and D. Van Thourhout, “Heterogeneous integration on silicon photonics,” Proc. IEEE 106, 2258–2269 (2018).
[Crossref]

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Verbist, J.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Waldron, N.

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? a critical review on current approaches,” Semicond. Sci. Technol. 33, 93002 (2018).
[Crossref]

Wan, Y.

Y. Wan, D. Jung, C. Shang, N. Collins, I. MacFarlane, J. Norman, M. Dumont, A. C. Gossard, and J. E. Bowers, “Low-threshold continuous-wave operation of electrically pumped 1.55 μm InAs quantum dash microring lasers,” ACS Photon. 6, 279–285 (2019).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
[Crossref]

Y. Wan, D. Inoue, D. Jung, J. C. Norman, C. Shang, A. C. Gossard, and J. E. Bowers, “Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability,” Photon. Res. 6, 776–781 (2018).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25, 26853–26860 (2017).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Liu, A. Torres, D. Jung, A. Gossard, E. Hu, K. Lau, and J. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

J. E. Bowers, D. Huang, D. Jung, J. C. Norman, M. A. Tran, Y. Wan, W. Xie, and Z. Zhang, “Realities and challenges of III-V/Si integration technologies,” in Optical Fiber Communication Conference (2019), pp. Tu3E-1.

Wang, H.

Q. Feng, W. Wei, B. Zhang, H. Wang, J. Wang, H. Cong, T. Wang, and J. J. Zhang, “O-band and C/L-band IIIV quantum dot lasers monolithically grown on Ge and Si substrate,” Appl. Sci. 9, 385 (2019).
[Crossref]

Wang, J.

Q. Feng, W. Wei, B. Zhang, H. Wang, J. Wang, H. Cong, T. Wang, and J. J. Zhang, “O-band and C/L-band IIIV quantum dot lasers monolithically grown on Ge and Si substrate,” Appl. Sci. 9, 385 (2019).
[Crossref]

Wang, L.

Wang, R.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Wang, T.

Q. Feng, W. Wei, B. Zhang, H. Wang, J. Wang, H. Cong, T. Wang, and J. J. Zhang, “O-band and C/L-band IIIV quantum dot lasers monolithically grown on Ge and Si substrate,” Appl. Sci. 9, 385 (2019).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Wang, Y.

Wang, Z.

O. Marshall, M. Hsu, Z. Wang, B. Kunert, C. Koos, and D. Van Thourhout, “Heterogeneous integration on silicon photonics,” Proc. IEEE 106, 2258–2269 (2018).
[Crossref]

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Watanabe, K.

Wei, W.

Q. Feng, W. Wei, B. Zhang, H. Wang, J. Wang, H. Cong, T. Wang, and J. J. Zhang, “O-band and C/L-band IIIV quantum dot lasers monolithically grown on Ge and Si substrate,” Appl. Sci. 9, 385 (2019).
[Crossref]

W. Wei, H. Deng, and J.-J. He, “GaAs/AlGaAs-based 870-nm-band widely tunable edge-emitting V-cavity laser,” IEEE Photon. J. 5, 1501607 (2013).
[Crossref]

Wu, J.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Rose, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

K. Li, M. Tang, M. Liao, J. Wu, S. Chen, A. Seeds, and H. Liu, “InAs GaAs quantum dot lasers monolithically integrated on group IV platform,” in IEEE International Electron Devices Meeting (IEDM) (2018), pp. 23–25.

Wu, L.

L. Wu, X. Liao, Z. Hu, and J.-J. He, “Double half-wave-coupled rectangular ring-FP laser with 35 × 100  GHz wavelength tuning,” IEEE Photon. Technol. Lett. 27, 1076–1079 (2015).
[Crossref]

Wu, X.

Xiang, B.

Xiang, G.

Xie, W.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

J. E. Bowers, D. Huang, D. Jung, J. C. Norman, M. A. Tran, Y. Wan, W. Xie, and Z. Zhang, “Realities and challenges of III-V/Si integration technologies,” in Optical Fiber Communication Conference (2019), pp. Tu3E-1.

Xing, H.

J. Meng, X. Xiong, H. Xing, H. Jin, D. Zhong, L. Zou, J. Zhao, and J.-J. He, “Full C-band tunable V-cavity-laser based TOSA and SFP transceiver modules,” IEEE Photon. Technol. Lett. 29, 1035–1038 (2017).
[Crossref]

Xiong, X.

J. Meng, X. Xiong, H. Xing, H. Jin, D. Zhong, L. Zou, J. Zhao, and J.-J. He, “Full C-band tunable V-cavity-laser based TOSA and SFP transceiver modules,” IEEE Photon. Technol. Lett. 29, 1035–1038 (2017).
[Crossref]

Yamaguchi, M.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum dot lasers,” in Proceedings of the CLEO (2011), paper PDA_1.

Yamamoto, T.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum dot lasers,” in Proceedings of the CLEO (2011), paper PDA_1.

Yang, C.

Yin, B.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Yin, X.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Yoshikuni, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

Yu, H.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers,” IEEE Nanotechnol. Mag. 13(2), 17–26 (2019).
[Crossref]

Yu, S.

Yu, Y.

Zhang, B.

Q. Feng, W. Wei, B. Zhang, H. Wang, J. Wang, H. Cong, T. Wang, and J. J. Zhang, “O-band and C/L-band IIIV quantum dot lasers monolithically grown on Ge and Si substrate,” Appl. Sci. 9, 385 (2019).
[Crossref]

Zhang, C.

Zhang, J.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Zhang, J. J.

Q. Feng, W. Wei, B. Zhang, H. Wang, J. Wang, H. Cong, T. Wang, and J. J. Zhang, “O-band and C/L-band IIIV quantum dot lasers monolithically grown on Ge and Si substrate,” Appl. Sci. 9, 385 (2019).
[Crossref]

Zhang, S.

Zhang, Z.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

Z. Zhang, D. Jung, J. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1–9 (2019).
[Crossref]

T. Zhou, M. Tang, G. Xiang, X. Fang, X. Liu, B. Xiang, S. Hark, M. Martin, M. Touraton, T. Baron, Y. Lu, S. Chen, H. Liu, and Z. Zhang, “Ultra-low threshold InAs/GaAs quantum dot microdisk lasers on planar on-axis Si (001) substrates,” Optica 6, 430–435 (2019).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Liu, A. Torres, D. Jung, A. Gossard, E. Hu, K. Lau, and J. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

J. E. Bowers, D. Huang, D. Jung, J. C. Norman, M. A. Tran, Y. Wan, W. Xie, and Z. Zhang, “Realities and challenges of III-V/Si integration technologies,” in Optical Fiber Communication Conference (2019), pp. Tu3E-1.

Zhao, J.

J. Meng, X. Xiong, H. Xing, H. Jin, D. Zhong, L. Zou, J. Zhao, and J.-J. He, “Full C-band tunable V-cavity-laser based TOSA and SFP transceiver modules,” IEEE Photon. Technol. Lett. 29, 1035–1038 (2017).
[Crossref]

Zhong, D.

J. Meng, X. Xiong, H. Xing, H. Jin, D. Zhong, L. Zou, J. Zhao, and J.-J. He, “Full C-band tunable V-cavity-laser based TOSA and SFP transceiver modules,” IEEE Photon. Technol. Lett. 29, 1035–1038 (2017).
[Crossref]

Zhou, L.

Zhou, T.

Zhou, Z.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Zhu, Y.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Zhukov, A. E.

N. V. Kryzhanovskaya, A. E. Zhukov, M. V. Maximov, E. I. Moiseev, I. I. Shostak, A. M. Nadtochiy, Y. V. Kudashova, A. A. Lipovskii, M. M. Kulagina, and S. I. Troshkov, “Room temperature lasing in 1-μm microdisk quantum dot lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 709–713 (2015).
[Crossref]

Zou, L.

J. Meng, X. Xiong, H. Xing, H. Jin, D. Zhong, L. Zou, J. Zhao, and J.-J. He, “Full C-band tunable V-cavity-laser based TOSA and SFP transceiver modules,” IEEE Photon. Technol. Lett. 29, 1035–1038 (2017).
[Crossref]

ACS Photon. (2)

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Y. Wan, D. Jung, C. Shang, N. Collins, I. MacFarlane, J. Norman, M. Dumont, A. C. Gossard, and J. E. Bowers, “Low-threshold continuous-wave operation of electrically pumped 1.55 μm InAs quantum dash microring lasers,” ACS Photon. 6, 279–285 (2019).
[Crossref]

APL Photon. (1)

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
[Crossref]

Appl. Phys. Lett. (5)

V. Jayaraman, D. A. Cohen, and L. A. Coldren, “Demonstration of broadband tunability in a semiconductor laser using sampled gratings,” Appl. Phys. Lett. 60, 2321–2323 (1992).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

M. Z. M. Khan, T. K. Ng, C.-S. Lee, P. Bhattacharya, and B. S. Ooi, “Chirped InAs/InP quantum-dash laser with enhanced broad spectrum of stimulated emission,” Appl. Phys. Lett. 102, 091102 (2013).
[Crossref]

Appl. Sci. (1)

Q. Feng, W. Wei, B. Zhang, H. Wang, J. Wang, H. Cong, T. Wang, and J. J. Zhang, “O-band and C/L-band IIIV quantum dot lasers monolithically grown on Ge and Si substrate,” Appl. Sci. 9, 385 (2019).
[Crossref]

IEEE J. Quantum Electron. (2)

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

Z. Zhang, D. Jung, J. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1–9 (2019).
[Crossref]

S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 545–554 (2009).
[Crossref]

N. V. Kryzhanovskaya, A. E. Zhukov, M. V. Maximov, E. I. Moiseev, I. I. Shostak, A. M. Nadtochiy, Y. V. Kudashova, A. A. Lipovskii, M. M. Kulagina, and S. I. Troshkov, “Room temperature lasing in 1-μm microdisk quantum dot lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 709–713 (2015).
[Crossref]

IEEE Nanotechnol. Mag. (1)

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers,” IEEE Nanotechnol. Mag. 13(2), 17–26 (2019).
[Crossref]

IEEE Photon. J. (1)

W. Wei, H. Deng, and J.-J. He, “GaAs/AlGaAs-based 870-nm-band widely tunable edge-emitting V-cavity laser,” IEEE Photon. J. 5, 1501607 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (5)

J. Meng, X. Xiong, H. Xing, H. Jin, D. Zhong, L. Zou, J. Zhao, and J.-J. He, “Full C-band tunable V-cavity-laser based TOSA and SFP transceiver modules,” IEEE Photon. Technol. Lett. 29, 1035–1038 (2017).
[Crossref]

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

Y. Chu, Q. Chen, Z. Fan, and J.-J. He, “Tunable V-cavity lasers integrated with a cyclic echelle grating for distributed routing networks,” IEEE Photon. Technol. Lett. 31, 943–946 (2019).
[Crossref]

L. Wu, X. Liao, Z. Hu, and J.-J. He, “Double half-wave-coupled rectangular ring-FP laser with 35 × 100  GHz wavelength tuning,” IEEE Photon. Technol. Lett. 27, 1076–1079 (2015).
[Crossref]

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

J. Lightwave Technol. (2)

Jpn. J. Appl. Phys. (1)

Z. I. Kazi, P. Thilakan, T. Egawa, M. Umeno, and T. Jimbo, “Realization of GaAs/AlGaAs lasers on Si substrates using epitaxial lateral overgrowth by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. 40, 4903–4906 (2001).
[Crossref]

Laser Photon. Rev. (3)

S. Dhoore, A. Köninger, R. Meyer, G. Roelkens, and G. Morthier, “Electronically tunable distributed feedback (DFB) laser on silicon,” Laser Photon. Rev. 13, 1800287 (2019).
[Crossref]

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

M. Smit, J. van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photon. Rev. 6, 1–13 (2012).
[Crossref]

Light Sci. Appl. (1)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Nat. Photonics (2)

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Optica (6)

Photon. Res. (1)

Proc. IEEE (1)

O. Marshall, M. Hsu, Z. Wang, B. Kunert, C. Koos, and D. Van Thourhout, “Heterogeneous integration on silicon photonics,” Proc. IEEE 106, 2258–2269 (2018).
[Crossref]

Semicond. Sci. Technol. (1)

B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, and R. Langer, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? a critical review on current approaches,” Semicond. Sci. Technol. 33, 93002 (2018).
[Crossref]

Other (4)

J. E. Bowers, D. Huang, D. Jung, J. C. Norman, M. A. Tran, Y. Wan, W. Xie, and Z. Zhang, “Realities and challenges of III-V/Si integration technologies,” in Optical Fiber Communication Conference (2019), pp. Tu3E-1.

P. Dong, K. W. Kim, A. Melikyan, and Y. Baeyens, “Silicon photonics: a scaling technology for communications and interconnects,” in IEEE International Electron Devices Meeting (IEDM) (2018), pp. 23.4.1–23.4.4.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum dot lasers,” in Proceedings of the CLEO (2011), paper PDA_1.

K. Li, M. Tang, M. Liao, J. Wu, S. Chen, A. Seeds, and H. Liu, “InAs GaAs quantum dot lasers monolithically integrated on group IV platform,” in IEEE International Electron Devices Meeting (IEDM) (2018), pp. 23–25.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic image and (b) top view SEM image of the tunable laser; (c) cross-sectional SEM of the laser architecture; (d) schematic image of the half-wave coupler with coupling element and various design parameters; (e) cross-sectional SEM of the half-wave coupler.
Fig. 2.
Fig. 2. (a) Schematic diagram illustrating the tuning principle of the tunable laser comprising two all-active ring resonators coupled to a common FP cavity; (b) calculated coupled cavity FSRcavity as a function of path length difference between the ring cavities for different values of the perimeter of R1. The orange spot refers to the design point with a cavity difference of 3.4% and a tuning range of 21 nm.
Fig. 3.
Fig. 3. (a) Amplitude and (b) phase of the normalized cross-coupling coefficient as a function of the coupler length and gap when Lr1=583μm, Lr2=563μm. The area with white dashes refers to the designed region.
Fig. 4.
Fig. 4. High excitation (4 mW) and low excitation (0.7 mW) PL spectra of the as-grown QDs at room temperature. Inset, epitaxial layer structure of the tunable laser.
Fig. 5.
Fig. 5. (a) LIV curve by varying current on the half-wave coupler while keeping other sections constant; (b) single-mode lasing with SMSR 45dB.
Fig. 6.
Fig. 6. Superimposed tuning spectra with 11-channel wavelength switching and a minimum SMSR of 45 dB. Inset, wavelength redshift of the main mode as a function of the tuning current of Ir1.
Fig. 7.
Fig. 7. Superimposed tuning spectra with 37-channel wavelength switching and minimum SMSR of 30 dB; (b) wavelength redshift of the main mode as a function of the tuning current of Ir1.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

FSRring=cngLr,
FSRcavity=FSRR1·FSRR2FSRR1FSRR2,
χ=|C21|2|C11|2+|C21|2=|C12|2|C12|2+|C22|2.