Abstract

Optical imaging deep inside scattering media remains a fundamental problem in bioimaging. While wavefront shaping has been shown to allow focusing of coherent light at depth, achieving it non-invasively remains a challenge. Various feedback mechanisms, in particular acoustic or nonlinear fluorescence-based, have been put forward for this purpose. Noninvasive focusing in depth on fluorescent objects with linear excitation is, however, still unresolved. Here we report a simple method for focusing inside a scattering medium in an epidetection geometry with a linear signal: optimizing the spatial variance of low-contrast speckle patterns emitted by a set of fluorescent sources. Experimentally, we demonstrate robust and efficient focusing of scattered light on a single source and show that this variance optimization method is formally equivalent to previous optimization strategies based on two-photon fluorescence. Our technique should generalize to a large variety of incoherent contrast mechanisms and holds interesting prospects for deep bioimaging.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Focusing light inside scattering media with magnetic-particle-guided wavefront shaping

Haowen Ruan, Tom Haber, Yan Liu, Joshua Brake, Jinho Kim, Jacob M. Berlin, and Changhuei Yang
Optica 4(11) 1337-1343 (2017)

Blind focusing through strongly scattering media using wavefront shaping with nonlinear feedback

Gerwin Osnabrugge, Lyubov V. Amitonova, and Ivo M. Vellekoop
Opt. Express 27(8) 11673-11688 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976).
    [Crossref]
  2. S. Rotter and S. Gigan, “Light fields in complex media: mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89, 015005 (2017).
    [Crossref]
  3. I. M. Vellekoop and A. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [Crossref]
  4. S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
    [Crossref]
  5. I. M. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).
    [Crossref]
  6. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
    [Crossref]
  7. C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010).
    [Crossref]
  8. I. M. Vellekoop, E. Van Putten, A. Lagendijk, and A. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16, 67–80 (2008).
    [Crossref]
  9. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011).
    [Crossref]
  10. J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. USA 109, 8434–8439 (2012).
    [Crossref]
  11. O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1, 170–174 (2014).
    [Crossref]
  12. R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
    [Crossref]
  13. J. W. Lichtman and J.-A. Conchello, “Fluorescence microscopy,” Nat. Methods 2, 910–919 (2005).
    [Crossref]
  14. D. J. Webb and C. M. Brown, “Epi-fluorescence microscopy,” in Cell Imaging Techniques (Springer, 2012), pp. 29–59.
  15. G. Ghielmetti and C. M. Aegerter, “Direct imaging of fluorescent structures behind turbid layers,” Opt. Express 22, 1981–1989 (2014).
    [Crossref]
  16. M. Hofer, C. Soeller, S. Brasselet, and J. Bertolotti, “Wide field fluorescence epi-microscopy behind a scattering medium enabled by speckle correlations,” Opt. Express 26, 9866–9881 (2018).
    [Crossref]
  17. G. Stern and O. Katz, “Noninvasive focusing through scattering layers using speckle correlations,” Opt. Lett. 44, 143–146 (2019).
    [Crossref]
  18. A. Daniel, D. Oron, and Y. Silberberg, “Light focusing through scattering media via linear fluorescence variance maximization, and its application for fluorescence imaging,” Opt. Express 27, 21778–21786 (2019).
    [Crossref]
  19. D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20, 4840–4849 (2012).
    [Crossref]
  20. C. Moretti and S. Gigan, “Readout of fluorescence functional signals through highly scattering tissue,” arXiv:1906.02604 (2019).

2019 (2)

2018 (1)

2017 (1)

S. Rotter and S. Gigan, “Light fields in complex media: mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89, 015005 (2017).
[Crossref]

2015 (1)

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[Crossref]

2014 (2)

2012 (2)

D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20, 4840–4849 (2012).
[Crossref]

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. USA 109, 8434–8439 (2012).
[Crossref]

2011 (1)

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011).
[Crossref]

2010 (3)

C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010).
[Crossref]

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).
[Crossref]

2008 (2)

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[Crossref]

I. M. Vellekoop, E. Van Putten, A. Lagendijk, and A. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16, 67–80 (2008).
[Crossref]

2007 (1)

2005 (1)

J. W. Lichtman and J.-A. Conchello, “Fluorescence microscopy,” Nat. Methods 2, 910–919 (2005).
[Crossref]

1976 (1)

Aegerter, C. M.

Bertolotti, J.

Boccara, A.

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Brasselet, S.

Bromberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011).
[Crossref]

Brown, A. N.

Brown, C. M.

D. J. Webb and C. M. Brown, “Epi-fluorescence microscopy,” in Cell Imaging Techniques (Springer, 2012), pp. 29–59.

Caravaca-Aguirre, A. M.

Carminati, R.

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Conchello, J.-A.

J. W. Lichtman and J.-A. Conchello, “Fluorescence microscopy,” Nat. Methods 2, 910–919 (2005).
[Crossref]

Conkey, D. B.

Cui, M.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. USA 109, 8434–8439 (2012).
[Crossref]

Daniel, A.

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[Crossref]

Fink, M.

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Germain, R. N.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. USA 109, 8434–8439 (2012).
[Crossref]

Ghielmetti, G.

Gigan, S.

S. Rotter and S. Gigan, “Light fields in complex media: mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89, 015005 (2017).
[Crossref]

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

C. Moretti and S. Gigan, “Readout of fluorescence functional signals through highly scattering tissue,” arXiv:1906.02604 (2019).

Goodman, J. W.

Grange, R.

Guan, Y.

Hofer, M.

Horstmeyer, R.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[Crossref]

Hsieh, C.-L.

Katz, O.

Lagendijk, A.

I. M. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).
[Crossref]

I. M. Vellekoop, E. Van Putten, A. Lagendijk, and A. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16, 67–80 (2008).
[Crossref]

Laporte, G.

Lerosey, G.

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Lichtman, J. W.

J. W. Lichtman and J.-A. Conchello, “Fluorescence microscopy,” Nat. Methods 2, 910–919 (2005).
[Crossref]

Moretti, C.

C. Moretti and S. Gigan, “Readout of fluorescence functional signals through highly scattering tissue,” arXiv:1906.02604 (2019).

Mosk, A.

Oron, D.

Piestun, R.

Popoff, S.

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Psaltis, D.

C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[Crossref]

Pu, Y.

Rotter, S.

S. Rotter and S. Gigan, “Light fields in complex media: mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89, 015005 (2017).
[Crossref]

Ruan, H.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[Crossref]

Silberberg, Y.

Small, E.

O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1, 170–174 (2014).
[Crossref]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011).
[Crossref]

Soeller, C.

Stern, G.

Tang, J.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. USA 109, 8434–8439 (2012).
[Crossref]

Van Putten, E.

Vellekoop, I. M.

Webb, D. J.

D. J. Webb and C. M. Brown, “Epi-fluorescence microscopy,” in Cell Imaging Techniques (Springer, 2012), pp. 29–59.

Yang, C.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[Crossref]

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[Crossref]

J. Opt. Soc. Am. (1)

Nat. Methods (1)

J. W. Lichtman and J.-A. Conchello, “Fluorescence microscopy,” Nat. Methods 2, 910–919 (2005).
[Crossref]

Nat. Photonics (4)

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011).
[Crossref]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Optica (1)

Phys. Rev. Lett. (1)

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. USA 109, 8434–8439 (2012).
[Crossref]

Rev. Mod. Phys. (1)

S. Rotter and S. Gigan, “Light fields in complex media: mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89, 015005 (2017).
[Crossref]

Other (2)

D. J. Webb and C. M. Brown, “Epi-fluorescence microscopy,” in Cell Imaging Techniques (Springer, 2012), pp. 29–59.

C. Moretti and S. Gigan, “Readout of fluorescence functional signals through highly scattering tissue,” arXiv:1906.02604 (2019).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplementary Material

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Scheme of principle. (A). A sparse set of fluorescent sources is excited with a speckle illumination (B, simulation) and emits linear fluorescence. The resulting epidetected 2D signal is a low-contrast speckle pattern (C, simulation). Its spatial standard deviation, σ ( I fluo ) = Var ( I fluo ) , is used as a metric to run the optimization. SLM, spatial light modulator; DM, dichroic mirror; Scat., scattering medium.
Fig. 2.
Fig. 2. Experimental setup. (A). Fluorescence microscopy through three layers of parafilm in epidetection. DM, dichroic mirror; TL, tube lens; F, filter. The fluorescent speckle (shown in C) is epidetected on CAM1. Its spatial standard deviation is the feedback of our optimization algorithm. A second camera placed in transmission, CAM2, not only monitors the illumination speckle in the plane of the beads (B) but also allows one to register a bright-field image of the beads (B inset). Note that CAM2 is not needed for the optimization but acts as a control camera.
Fig. 3.
Fig. 3. Examples of light focusing throughout five different optimization procedures and through three parafilm layers. Spatial variance optimization of the fluorescence (graph C) leads to a focus on one of the 12 beads. (A) corresponds to fluorescent speckles registered on CAM1 at iteration 1, 500, and 1500. The top image in (B) represents the final focus obtained for the first optimization (Opt. #1). Two other spatial foci on other beads are also represented (box B, bottom images) for different optimization initial conditions. (D), (E), and (F) represent, respectively, the evolution of the total intensity, the contrast of the full image, and the contrast of the central region of the diffuse spot.
Fig. 4.
Fig. 4. Target localization. (A). For each of the five realizations shown previously, we determine the centroid of the final epidetected fluorescent speckles (CAM1). These values are superimposed with the position of the beads on which light is focused on (B) retrieved in bright-field illumination in transmission (CAM2). (C) shows good agreement, demonstrating the ability to locate the beads qualitatively within a few microns, relative to each other.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Var ( I fluo ( x , y , Φ ) ) A sin ( 2 Φ + θ A ) + B sin ( Φ + θ B ) + C ,