Abstract

Ultrafast lasers are becoming increasingly widespread in science and industry alike. Fiber-based ultrafast laser sources are especially attractive because of their compactness, alignment-free setups, and potentially low cost. However, confining short pulses within a fiber core leads to high intensities, which drives a host of nonlinear effects. While these phenomena and their interactions greatly complicate the design of such systems, they can also provide opportunities for engineering new capabilities. Here, we report a new fiber amplification regime distinguished by the use of a dynamically evolving gain spectrum as a degree of freedom: as a pulse experiences nonlinear spectral broadening, absorption and amplification actively reshape both the pulse and the gain spectrum itself. The dynamic co-evolution of the field and excited-state populations supports pulses that can broaden spectrally by almost two orders of magnitude and well beyond the gain bandwidth, while remaining cleanly compressible to their sub-50-fs transform limit. Theory and experiments provide evidence that a nonlinear attractor underlies the management of the nonlinearity by the gain. Further research into these mutual, pulse-inversion propagation dynamics may address open scientific questions and pave the way toward simple, compact fiber sources that produce high-energy, sub-30-fs pulses.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond fiber CPA system based on picosecond master oscillator and power amplifier with CCC fiber

J. Želudevičius, R. Danilevičius, K. Viskontas, N. Rusteika, and K. Regelskis
Opt. Express 21(5) 5338-5345 (2013)

Optimization of high performance ultrafast fiber laser systems to >10 GW peak power

D. N. Schimpf, J. Limpert, and A. Tünnermann
J. Opt. Soc. Am. B 27(10) 2051-2060 (2010)

Parabolic and hyper-Gaussian similaritons in fiber amplifiers and lasers with gain saturation

Vladimir I. Kruglov, Claude Aguergaray, and John D. Harvey
Opt. Express 20(8) 8741-8754 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. Zhao, X. Hu, and Y. Wang, “Femtosecond-pulse fiber based amplification techniques and their applications,” IEEE J. Sel. Top. Quantum Electron. 20, 512–524 (2014).
    [Crossref]
  2. M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
    [Crossref]
  3. M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
    [Crossref]
  4. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
    [Crossref]
  5. S. Zhou, L. Kuznetsova, A. Chong, and F. W. Wise, “Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers,” Opt. Express 13, 4869–4877 (2005).
    [Crossref]
  6. S. Demmler, J. Rothhardt, S. Hädrich, M. Krebs, A. Hage, J. Limpert, and A. Tünnermann, “Generation of high photon flux coherent soft x-ray radiation with few-cycle pulses,” Opt. Lett. 38, 5051–5054 (2013).
    [Crossref]
  7. C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
    [Crossref]
  8. Y. Zaouter, D. N. Papadopoulos, M. Hanna, J. Boullet, L. Huang, C. Aguergaray, F. Druon, E. Mottay, P. Georges, and E. Cormier, “Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers,” Opt. Lett. 33, 107–109 (2008).
    [Crossref]
  9. W. Liu, D. N. Schimpf, T. Eidam, J. Limpert, A. Tünnermann, F. X. Kärtner, and G. Chang, “Pre-chirp managed nonlinear amplification in fibers delivering 100  W, 60  fs pulses,” Opt. Lett. 40, 151–154 (2015).
    [Crossref]
  10. H.-W. Chen, J. Lim, S.-W. Huang, D. N. Schimpf, F. X. Kärtner, and G. Chang, “Optimization of femtosecond Yb-doped fiber amplifiers for high-quality pulse compression,” Opt. Express 20, 28672–28682 (2012).
    [Crossref]
  11. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave-breaking-free pulses in nonlinear-optical fibers,” J. Opt. Soc. Am. B 10, 1185–1190 (1993).
    [Crossref]
  12. V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, “Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,” Opt. Lett. 25, 1753–1755 (2000).
    [Crossref]
  13. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
    [Crossref]
  14. Y. Liu, W. Li, D. Luo, D. Bai, C. Wang, and H. Zeng, “Generation of 33  fs 935  W average power pulses from a third-order dispersion managed self-similar fiber amplifier,” Opt. Express 24, 10939–10945 (2016).
    [Crossref]
  15. H. Song, B. Liu, Y. Li, Y. Song, H. He, L. Chai, M. Hu, and C. Wang, “Practical 24-fs, 1-μJ, 1-MHz Yb-fiber laser amplification system,” Opt. Express 25, 7559–7566 (2017).
    [Crossref]
  16. V. I. Kruglov and J. D. Harvey, “Asymptotically exact parabolic solutions of the generalized nonlinear Schrödinger equation with varying parameters,” J. Opt. Soc. Am. B 23, 2541–2550 (2006).
    [Crossref]
  17. D. B. Soh, J. Nilsson, and A. B. Grudinin, “Efficient femtosecond pulse generation using a parabolic amplifier combined with a pulse compressor II Finite gain-bandwidth effect,” J. Opt. Soc. Am. B 23, 10–19 (2006).
    [Crossref]
  18. P. Elahi, S. Yılmaz, Ö. Akçaalan, H. Kalaycıoğlu, B. Öktem, C. Sęenel, F. Ö. Ilday, and K. Eken, “Doping management for high-power fiber lasers: 100 W, few-picosecond pulse generation from an all-fiber-integrated amplifier,” Opt. Lett. 37, 3042–3044 (2012).
    [Crossref]
  19. P. Elahi, S. Yılmaz, Y. B. Eldeniz, and F. Ö. Ilday, “Generation of picosecond pulses directly from a 100  W, burst-mode, doping-managed Yb-doped fiber amplifier,” Opt. Lett. 39, 236–239 (2014).
    [Crossref]
  20. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
    [Crossref]
  21. R. Lindberg, P. Zeil, M. Malmström, F. Laurell, and V. Pasiskevicius, “Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers,” Sci. Rep. 6, 34742 (2016).
    [Crossref]
  22. A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, “Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,” Opt. Commun. 206, 171–177 (2002).
    [Crossref]
  23. D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave breaking in nonlinear-optical fibers,” J. Opt. Soc. Am. B 9, 1358–1361 (1992).
    [Crossref]
  24. B. P. Nelson, D. Cotter, K. J. Blow, and N. J. Doran, “Large nonlinear pulse broadening in long lengths of monomode fibre,” Opt. Commun. 48, 292–294 (1983).
    [Crossref]
  25. O. E. Martinez, J. P. Gordon, and R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. A 1, 1003–1006 (1984).
    [Crossref]
  26. V. I. Kruglov, C. Aguergaray, and J. D. Harvey, “Parabolic and hyper-Gaussian similaritons in fiber amplifiers and lasers with gain saturation,” Opt. Express 20, 8741–8754 (2012).
    [Crossref]
  27. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
    [Crossref]
  28. Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–984 (1997).
    [Crossref]
  29. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B 11, 2206–2215 (1994).
    [Crossref]
  30. Y. P. Shapira, V. Smulakovsky, and M. Horowitz, “Experimental demonstration of nonlinear pulse propagation in a fiber Bragg grating written in a fiber amplifier,” Opt. Lett. 41, 5–8 (2016).
    [Crossref]
  31. R. Kashyap, “Principles of optical fiber grating sensors,” in Fiber Bragg Gratings (Elsevier, 2010), pp. 441–502.
  32. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [Crossref]
  33. F. Rana, H. L. T. Lee, R. J. Ram, M. E. Grein, L. A. Jiang, E. P. Ippen, and H. A. Haus, “Characterization of the noise and correlations in harmonically mode-locked lasers,” J. Opt. Soc. Am. B 19, 2609–2621 (2002).
    [Crossref]
  34. Z. Liu, Z. M. Ziegler, L. G. Wright, and F. W. Wise, “Megawatt peak power from a Mamyshev oscillator,” Optica 4, 649–654 (2017).
    [Crossref]
  35. P. Sidorenko, W. Fu, L. G. Wright, M. Olivier, and F. W. Wise, “Self-seeded, multi-megawatt, Mamyshev oscillator,” Opt. Lett. 43, 2672–2675 (2018).
    [Crossref]
  36. A. Fedotov, T. Noronen, R. Gumenyuk, V. Ustimchik, Y. Chamorovskii, K. Golant, M. Odnoblyudov, J. Rissanen, T. Niemi, and V. Filippov, “Ultra-large core birefringent Yb-doped tapered double clad fiber for high power amplifiers,” Opt. Express 26, 6581–6592 (2018).
    [Crossref]
  37. F. Beier, F. Möller, B. Sattler, J. Nold, A. Liem, C. Hupel, S. Kuhn, S. Hein, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Experimental investigations on the TMI thresholds of low-NA Yb-doped single-mode fibers,” Opt. Lett. 43, 1291–1294 (2018).
    [Crossref]
  38. K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11, 237–241 (2017).
    [Crossref]
  39. A. Scott, Encyclopedia of Nonlinear Science (Routledge, 2006).
  40. A. Scott, The Nonlinear Universe, The Frontiers Collection (Springer, 2007).

2018 (3)

2017 (3)

2016 (3)

2015 (1)

2014 (2)

W. Zhao, X. Hu, and Y. Wang, “Femtosecond-pulse fiber based amplification techniques and their applications,” IEEE J. Sel. Top. Quantum Electron. 20, 512–524 (2014).
[Crossref]

P. Elahi, S. Yılmaz, Y. B. Eldeniz, and F. Ö. Ilday, “Generation of picosecond pulses directly from a 100  W, burst-mode, doping-managed Yb-doped fiber amplifier,” Opt. Lett. 39, 236–239 (2014).
[Crossref]

2013 (2)

2012 (3)

2009 (1)

M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[Crossref]

2008 (1)

2006 (3)

2005 (1)

2002 (2)

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, “Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,” Opt. Commun. 206, 171–177 (2002).
[Crossref]

F. Rana, H. L. T. Lee, R. J. Ram, M. E. Grein, L. A. Jiang, E. P. Ippen, and H. A. Haus, “Characterization of the noise and correlations in harmonically mode-locked lasers,” J. Opt. Soc. Am. B 19, 2609–2621 (2002).
[Crossref]

2000 (2)

V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, “Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,” Opt. Lett. 25, 1753–1755 (2000).
[Crossref]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref]

1997 (3)

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–984 (1997).
[Crossref]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]

1994 (1)

1993 (1)

1992 (1)

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

1984 (1)

1983 (1)

B. P. Nelson, D. Cotter, K. J. Blow, and N. J. Doran, “Large nonlinear pulse broadening in long lengths of monomode fibre,” Opt. Commun. 48, 292–294 (1983).
[Crossref]

1982 (1)

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
[Crossref]

Aguergaray, C.

Akçaalan, Ö.

Anderson, D.

Bai, D.

Barthélémy, A.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11, 237–241 (2017).
[Crossref]

Beier, F.

Blow, K. J.

B. P. Nelson, D. Cotter, K. J. Blow, and N. J. Doran, “Large nonlinear pulse broadening in long lengths of monomode fibre,” Opt. Commun. 48, 292–294 (1983).
[Crossref]

Boullet, J.

Buckley, J.

Chai, L.

Chamorovskii, Y.

Chan, L. Y.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–984 (1997).
[Crossref]

Chang, G.

Chen, H.-W.

Chong, A.

Cormier, E.

Cotter, D.

B. P. Nelson, D. Cotter, K. J. Blow, and N. J. Doran, “Large nonlinear pulse broadening in long lengths of monomode fibre,” Opt. Commun. 48, 292–294 (1983).
[Crossref]

Couderc, V.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11, 237–241 (2017).
[Crossref]

DeLong, K. W.

Demmler, S.

Desaix, M.

Doran, N. J.

B. P. Nelson, D. Cotter, K. J. Blow, and N. J. Doran, “Large nonlinear pulse broadening in long lengths of monomode fibre,” Opt. Commun. 48, 292–294 (1983).
[Crossref]

Druon, F.

Dudley, J. M.

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, “Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,” Opt. Commun. 206, 171–177 (2002).
[Crossref]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref]

V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, “Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,” Opt. Lett. 25, 1753–1755 (2000).
[Crossref]

Eberhardt, R.

Eidam, T.

Eken, K.

Elahi, P.

Eldeniz, Y. B.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]

Fabert, M.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11, 237–241 (2017).
[Crossref]

Fedotov, A.

Fermann, M. E.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[Crossref]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref]

Filippov, V.

Fork, R. L.

O. E. Martinez, J. P. Gordon, and R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. A 1, 1003–1006 (1984).
[Crossref]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
[Crossref]

Fu, W.

Georges, P.

Golant, K.

Gordon, J. P.

Grein, M. E.

Grudinin, A. B.

Gumenyuk, R.

Haarlammert, N.

Hädrich, S.

Hage, A.

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

Hanna, M.

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[Crossref]

Harvey, J. D.

V. I. Kruglov, C. Aguergaray, and J. D. Harvey, “Parabolic and hyper-Gaussian similaritons in fiber amplifiers and lasers with gain saturation,” Opt. Express 20, 8741–8754 (2012).
[Crossref]

V. I. Kruglov and J. D. Harvey, “Asymptotically exact parabolic solutions of the generalized nonlinear Schrödinger equation with varying parameters,” J. Opt. Soc. Am. B 23, 2541–2550 (2006).
[Crossref]

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, “Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,” Opt. Commun. 206, 171–177 (2002).
[Crossref]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref]

V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, “Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,” Opt. Lett. 25, 1753–1755 (2000).
[Crossref]

Haus, H. A.

He, H.

Hein, S.

Horowitz, M.

Hu, M.

Hu, X.

W. Zhao, X. Hu, and Y. Wang, “Femtosecond-pulse fiber based amplification techniques and their applications,” IEEE J. Sel. Top. Quantum Electron. 20, 512–524 (2014).
[Crossref]

Huang, L.

Huang, S.-W.

Hunter, J.

Hupel, C.

Ilday, F. Ö.

Ippen, E. P.

Jiang, L. A.

Kalaycioglu, H.

Karlsson, M.

Kärtner, F. X.

Kashyap, R.

R. Kashyap, “Principles of optical fiber grating sensors,” in Fiber Bragg Gratings (Elsevier, 2010), pp. 441–502.

Krebs, M.

Kruglov, V. I.

Kruhlak, R. J.

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, “Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,” Opt. Commun. 206, 171–177 (2002).
[Crossref]

Krupa, K.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11, 237–241 (2017).
[Crossref]

Kuhn, S.

Kuznetsova, L.

Laurell, F.

R. Lindberg, P. Zeil, M. Malmström, F. Laurell, and V. Pasiskevicius, “Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers,” Sci. Rep. 6, 34742 (2016).
[Crossref]

Lee, H. L. T.

Li, W.

Li, Y.

Liem, A.

Lim, J.

Limpert, J.

Lindberg, R.

R. Lindberg, P. Zeil, M. Malmström, F. Laurell, and V. Pasiskevicius, “Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers,” Sci. Rep. 6, 34742 (2016).
[Crossref]

Lisak, M.

Liu, B.

Liu, W.

Liu, Y.

Liu, Z.

Luo, D.

Malmström, M.

R. Lindberg, P. Zeil, M. Malmström, F. Laurell, and V. Pasiskevicius, “Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers,” Sci. Rep. 6, 34742 (2016).
[Crossref]

Martinez, O. E.

Millot, G.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11, 237–241 (2017).
[Crossref]

Möller, F.

Mottay, E.

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

Nelson, B. P.

B. P. Nelson, D. Cotter, K. J. Blow, and N. J. Doran, “Large nonlinear pulse broadening in long lengths of monomode fibre,” Opt. Commun. 48, 292–294 (1983).
[Crossref]

Niemi, T.

Nilsson, J.

Nold, J.

Noronen, T.

Odnoblyudov, M.

Öktem, B.

Olivier, M.

Papadopoulos, D. N.

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

Pasiskevicius, V.

R. Lindberg, P. Zeil, M. Malmström, F. Laurell, and V. Pasiskevicius, “Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers,” Sci. Rep. 6, 34742 (2016).
[Crossref]

Peacock, A. C.

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, “Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,” Opt. Commun. 206, 171–177 (2002).
[Crossref]

V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, “Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,” Opt. Lett. 25, 1753–1755 (2000).
[Crossref]

Quiroga-Teixeiro, M. L.

Ram, R. J.

Rana, F.

Renninger, W.

Rissanen, J.

Rothhardt, J.

Sattler, B.

Schimpf, D. N.

Schreiber, T.

Scott, A.

A. Scott, Encyclopedia of Nonlinear Science (Routledge, 2006).

A. Scott, The Nonlinear Universe, The Frontiers Collection (Springer, 2007).

Seenel, C.

Shalaby, B. M.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11, 237–241 (2017).
[Crossref]

Shank, C. V.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
[Crossref]

Shapira, Y. P.

Sidorenko, P.

Smulakovsky, V.

Soh, D. B.

Song, H.

Song, Y.

Stolen, R. H.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
[Crossref]

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref]

Tomlinson, W. J.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
[Crossref]

Tonello, A.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11, 237–241 (2017).
[Crossref]

Tong, Y. C.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–984 (1997).
[Crossref]

Trebino, R.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

Tsang, H. K.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–984 (1997).
[Crossref]

Tünnermann, A.

Ustimchik, V.

Wabnitz, S.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11, 237–241 (2017).
[Crossref]

Wang, C.

Wang, Y.

W. Zhao, X. Hu, and Y. Wang, “Femtosecond-pulse fiber based amplification techniques and their applications,” IEEE J. Sel. Top. Quantum Electron. 20, 512–524 (2014).
[Crossref]

White, W. E.

Wise, F.

Wise, F. W.

Wright, L. G.

Yen, R.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
[Crossref]

Yilmaz, S.

Zaouter, Y.

Zeil, P.

R. Lindberg, P. Zeil, M. Malmström, F. Laurell, and V. Pasiskevicius, “Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers,” Sci. Rep. 6, 34742 (2016).
[Crossref]

Zeng, H.

Zhao, W.

W. Zhao, X. Hu, and Y. Wang, “Femtosecond-pulse fiber based amplification techniques and their applications,” IEEE J. Sel. Top. Quantum Electron. 20, 512–524 (2014).
[Crossref]

Zhou, S.

Ziegler, Z. M.

Appl. Phys. Lett. (1)

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
[Crossref]

Electron. Lett. (1)

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–984 (1997).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

W. Zhao, X. Hu, and Y. Wang, “Femtosecond-pulse fiber based amplification techniques and their applications,” IEEE J. Sel. Top. Quantum Electron. 20, 512–524 (2014).
[Crossref]

M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[Crossref]

J. Lightwave Technol. (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (6)

Nat. Photonics (2)

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11, 237–241 (2017).
[Crossref]

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

Opt. Commun. (3)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, “Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,” Opt. Commun. 206, 171–177 (2002).
[Crossref]

B. P. Nelson, D. Cotter, K. J. Blow, and N. J. Doran, “Large nonlinear pulse broadening in long lengths of monomode fibre,” Opt. Commun. 48, 292–294 (1983).
[Crossref]

Opt. Express (7)

Opt. Lett. (9)

F. Beier, F. Möller, B. Sattler, J. Nold, A. Liem, C. Hupel, S. Kuhn, S. Hein, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Experimental investigations on the TMI thresholds of low-NA Yb-doped single-mode fibers,” Opt. Lett. 43, 1291–1294 (2018).
[Crossref]

P. Sidorenko, W. Fu, L. G. Wright, M. Olivier, and F. W. Wise, “Self-seeded, multi-megawatt, Mamyshev oscillator,” Opt. Lett. 43, 2672–2675 (2018).
[Crossref]

P. Elahi, S. Yılmaz, Ö. Akçaalan, H. Kalaycıoğlu, B. Öktem, C. Sęenel, F. Ö. Ilday, and K. Eken, “Doping management for high-power fiber lasers: 100 W, few-picosecond pulse generation from an all-fiber-integrated amplifier,” Opt. Lett. 37, 3042–3044 (2012).
[Crossref]

S. Demmler, J. Rothhardt, S. Hädrich, M. Krebs, A. Hage, J. Limpert, and A. Tünnermann, “Generation of high photon flux coherent soft x-ray radiation with few-cycle pulses,” Opt. Lett. 38, 5051–5054 (2013).
[Crossref]

P. Elahi, S. Yılmaz, Y. B. Eldeniz, and F. Ö. Ilday, “Generation of picosecond pulses directly from a 100  W, burst-mode, doping-managed Yb-doped fiber amplifier,” Opt. Lett. 39, 236–239 (2014).
[Crossref]

W. Liu, D. N. Schimpf, T. Eidam, J. Limpert, A. Tünnermann, F. X. Kärtner, and G. Chang, “Pre-chirp managed nonlinear amplification in fibers delivering 100  W, 60  fs pulses,” Opt. Lett. 40, 151–154 (2015).
[Crossref]

Y. P. Shapira, V. Smulakovsky, and M. Horowitz, “Experimental demonstration of nonlinear pulse propagation in a fiber Bragg grating written in a fiber amplifier,” Opt. Lett. 41, 5–8 (2016).
[Crossref]

Y. Zaouter, D. N. Papadopoulos, M. Hanna, J. Boullet, L. Huang, C. Aguergaray, F. Druon, E. Mottay, P. Georges, and E. Cormier, “Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers,” Opt. Lett. 33, 107–109 (2008).
[Crossref]

V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, “Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,” Opt. Lett. 25, 1753–1755 (2000).
[Crossref]

Optica (1)

Phys. Rev. Lett. (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref]

Sci. Rep. (1)

R. Lindberg, P. Zeil, M. Malmström, F. Laurell, and V. Pasiskevicius, “Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers,” Sci. Rep. 6, 34742 (2016).
[Crossref]

Other (3)

A. Scott, Encyclopedia of Nonlinear Science (Routledge, 2006).

A. Scott, The Nonlinear Universe, The Frontiers Collection (Springer, 2007).

R. Kashyap, “Principles of optical fiber grating sensors,” in Fiber Bragg Gratings (Elsevier, 2010), pp. 441–502.

Supplementary Material (1)

NameDescription
» Supplement 1       supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Simulated example of GMN amplification regime. The temporal intensity (solid blue line) and instantaneous frequency (dotted red line) are plotted for (a) the seed pulse, (b) the self-similar pulse, (c) the pulse beyond the self-similar regime, and (d) the pulse in the GMN regime.
Fig. 2.
Fig. 2. Simulated pulse evolution in Yb-doped fiber. The top two rows [(a)–(f)] show the spectral evolution of the amplified pulse (blue) and saturating gain spectrum (red), while the bottom two rows [(g)–(l)] show the pulse’s temporal evolution.
Fig. 3.
Fig. 3. Pulse and gain evolution in a GMN amplifier. (a) Longitudinal evolution of the gain. Black dashed curves mark the pulse’s spectrum (central wavelength ± the root-mean-square bandwidth). (b) Peak power (blue) and pulse energy (red) versus propagation distance. (c) Bandwidth (blue) and chirped duration (red) of the pulse versus propagation distance.
Fig. 4.
Fig. 4. Pulses generated by a GMN amplifier. (a) Chirped output pulse from the example presented in Fig. 2. (b) Compressed pulse (solid blue curve) and transform-limited pulse (red dashed curve). The insets in (a) and (b) show spectrograms of the chirped pulse (gated by 1-ps Gaussian window) and the compressed pulse (gated by 5-fs Gaussian window), respectively.
Fig. 5.
Fig. 5. Numerical evidence of the nonlinear attractor. (a) Different seed pulses and their corresponding spectrograms. TL: transform-limited. (b) Evolution of the peak power for each seed. (c) Amplified pulses produced with the different seeds, taken at the same power level [indicated by the dashed black line in (b), arbitrarily chosen to be 6.6 kW].
Fig. 6.
Fig. 6. Experimental demonstration of a GMN amplifier. (a) Measured (blue solid curve) and simulated (red dashed curve) output spectra for increasing pump power (labeled with the output energies). (b) Compressed (blue solid curve) 107-nJ pulse and transform-limited pulse (red dashed curve). Insets in (b) show measured and retrieved SHG-FROG traces.
Fig. 7.
Fig. 7. Experimental evidence of a nonlinear attractor. (a) Output spectra of a GMN amplifier and (b) the corresponding compressed pulses for a constant seed spectrum [black dashed curve in (a)], with the indicated seed pulse energies. (c) Output spectra and pulse shapes of a GMN amplifier seeded with constant seed energies (inset: seed spectra), and (d) corresponding dechirped pulses.
Fig. 8.
Fig. 8. Direct measurement of chirped pulses from a GMN amplifier. (a) Measured (solid blue curve) and simulated (red dashed curve) spectra for increasing pump powers. (b) Measured (blue solid curve) and simulated (red dashed curve) pulse shapes that correspond to the 77-nJ result in (a). (c) Measured compressed pulse (blue solid curve) and calculated transform-limited pulse (red dashed curve).