Abstract

Silicon photonics provides a promising platform for energy-efficient interconnects within supercomputers and data centers. However, developing a complementary metal–oxide–semiconductor compatible high-speed photodetector with low dark current has long presented a challenge in the field. In this paper, we report the first O-band InAs quantum dot (QD) waveguide photodiode (PD) heterogeneously integrated on silicon. Record low dark currents as low as 0.01 nA, responsivities of 0.34 A/W at 1310 nm and 0.9 A/W at 1280 nm, and a record high 3 dB bandwidth of 15 GHz was measured. Avalanche gain was observed and a maximum gain of up to 45 and a gain bandwidth product (GBP) of 240 GHz were achieved, which are also record high results for any QD avalanche photodetector (APD) on silicon. Additionally, we demonstrate a device sensitivity of 11dBm at 10 Gb/s and open-eye diagrams up to 12.5 Gb/s. These QD-based PDs are able to operate as p-i-n PDs or APDs under different bias conditions and offer a promising alternative to heterogeneous InGaAs-on-silicon and SiGe counterparts in low-power optical communication links. They also leverage the same epitaxial layers and processing steps as heterogeneously integrated QD lasers, significantly simplifying the processing and reducing the cost of a fully integrated QD transceiver on silicon.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
1300 nm Wavelength InAs Quantum Dot Photodetector Grown on Silicon

Ian Sandall, Jo Shien Ng, John P. R. David, Chee Hing Tan, Ting Wang, and Huiyun Liu
Opt. Express 20(10) 10446-10452 (2012)

High-bandwidth uni-traveling carrier waveguide photodetector on an InP-membrane-on-silicon platform

L. Shen, Y. Jiao, W. Yao, Z. Cao, J. P. van Engelen, G. Roelkens, M. K. Smit, and J. J. G. M. van der Tol
Opt. Express 24(8) 8290-8301 (2016)

High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes

Nicholas J. D. Martinez, Christopher T. Derose, Reinhard W. Brock, Andrew L. Starbuck, Andrew T. Pomerene, Anthony L. Lentine, Douglas C. Trotter, and Paul S. Davids
Opt. Express 24(17) 19072-19081 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [Crossref]
  2. J. Reboul, L. Cerutti, J. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
    [Crossref]
  3. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
    [Crossref]
  4. G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24, 16167–16174 (2016).
    [Crossref]
  5. M. Sugawara and M. Usami, “Quantum dot devices handling the heat,” Nat. Photonics 3, 30–31 (2009).
    [Crossref]
  6. G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3  μm quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 230–232 (2000).
    [Crossref]
  7. G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
    [Crossref]
  8. G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in IEEE International Semiconductor Laser Conference (ISLC), Santa Fe, New Mexico, USA (2018).
  9. D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer boning on the silicon-on insulator substrate,” J. Vac. Sci. Technol. B 26, 1560–1568 (2008).
    [Crossref]
  10. B. Tossoun, G. Kurczveil, C. Zhang, D. Liang, and R. G. Beausoleil, “High-speed 1310  nm hybrid silicon quantum dot photodiodes with ultra-low dark current,” in 76th Device Research Conference (DRC) (IEEE, 2018), pp. 1–2.
  11. L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19, 1813–1815 (2007).
    [Crossref]
  12. F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999).
    [Crossref]
  13. P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
    [Crossref]
  14. L. L. Pinel, S. J. Dimler, X. Zhou, S. Abdullah, S. Zhang, C. H. Tan, and J. S. Ng, “Effects of carrier injection profile on low noise thin Al0.85 Ga0.15 As0.56 Sb0.44 avalanche photodiodes,” Opt. Express 26, 3568–3576 (2018).
    [Crossref]
  15. I. Sandall, J. S. Ng, J. P. David, C. H. Tan, T. Wang, and H. Liu, “1300  nm wavelength InAs quantum dot photodetector grown on silicon,” Opt. Express 20, 10446–10452 (2012).
    [Crossref]
  16. B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, X. Zeng, Z. Huang, D. Liang, and R. G. Beausoleil, “1310  nm quantum dot waveguide avalanche photodiode heterogeneously integrated on silicon,” in 21st European Conference on Integrated Optics, June25, 2019.
  17. Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
    [Crossref]
  18. H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009).
    [Crossref]
  19. W. H. Chang, W. Y. Chen, T. M. Hsu, N. T. Yeh, and J. I. Chyi, “Hole emission processes in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 195337 (2002).
    [Crossref]
  20. J. E. Bowers, D. Dai, Y. Kang, and M. Morse, “High-gain high- sensitivity resonant Ge/Si APD photodetectors,” Proc. SPIE 7660, 76603H(2010).
    [Crossref]
  21. D. Dai, H. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a waveguide- type Ge/Si avalanche photodetector,” Phys. Stat. Solidi C 7, 2532–2535 (2010).
    [Crossref]
  22. K. Yu, C. H. Chen, A. Titriku, A. Shafik, M. Fiorentino, P. Y. Chiang, and S. Palermo, “25  Gb/s hybrid integrated silicon photonic receiver with microring wavelength stabilization,” in Optical Fiber Communication Conference, Optical Society of America, March22–26, 2015, paper W3A–6.
  23. Z. Huang, C. Li, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25  Gbps low- voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–798 (2016).
    [Crossref]

2018 (1)

2017 (1)

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

2016 (2)

2012 (1)

2011 (1)

J. Reboul, L. Cerutti, J. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

2010 (3)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

J. E. Bowers, D. Dai, Y. Kang, and M. Morse, “High-gain high- sensitivity resonant Ge/Si APD photodetectors,” Proc. SPIE 7660, 76603H(2010).
[Crossref]

D. Dai, H. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a waveguide- type Ge/Si avalanche photodetector,” Phys. Stat. Solidi C 7, 2532–2535 (2010).
[Crossref]

2009 (3)

H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009).
[Crossref]

M. Sugawara and M. Usami, “Quantum dot devices handling the heat,” Nat. Photonics 3, 30–31 (2009).
[Crossref]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

2008 (1)

D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer boning on the silicon-on insulator substrate,” J. Vac. Sci. Technol. B 26, 1560–1568 (2008).
[Crossref]

2007 (1)

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19, 1813–1815 (2007).
[Crossref]

2006 (1)

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

2004 (1)

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

2002 (1)

W. H. Chang, W. Y. Chen, T. M. Hsu, N. T. Yeh, and J. I. Chyi, “Hole emission processes in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 195337 (2002).
[Crossref]

2000 (1)

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3  μm quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 230–232 (2000).
[Crossref]

1999 (1)

F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999).
[Crossref]

Abdullah, S.

Aers, G. C.

F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999).
[Crossref]

Allen, C. N.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

Assanto, G.

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19, 1813–1815 (2007).
[Crossref]

Barrios, P.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

Beausoleil, R.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in IEEE International Semiconductor Laser Conference (ISLC), Santa Fe, New Mexico, USA (2018).

Beausoleil, R. G.

Z. Huang, C. Li, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25  Gbps low- voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–798 (2016).
[Crossref]

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24, 16167–16174 (2016).
[Crossref]

B. Tossoun, G. Kurczveil, C. Zhang, D. Liang, and R. G. Beausoleil, “High-speed 1310  nm hybrid silicon quantum dot photodiodes with ultra-low dark current,” in 76th Device Research Conference (DRC) (IEEE, 2018), pp. 1–2.

B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, X. Zeng, Z. Huang, D. Liang, and R. G. Beausoleil, “1310  nm quantum dot waveguide avalanche photodiode heterogeneously integrated on silicon,” in 21st European Conference on Integrated Optics, June25, 2019.

Bowers, J. E.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

J. E. Bowers, D. Dai, Y. Kang, and M. Morse, “High-gain high- sensitivity resonant Ge/Si APD photodetectors,” Proc. SPIE 7660, 76603H(2010).
[Crossref]

D. Dai, H. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a waveguide- type Ge/Si avalanche photodetector,” Phys. Stat. Solidi C 7, 2532–2535 (2010).
[Crossref]

D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer boning on the silicon-on insulator substrate,” J. Vac. Sci. Technol. B 26, 1560–1568 (2008).
[Crossref]

Campbell, J.

H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009).
[Crossref]

Cerutti, L.

J. Reboul, L. Cerutti, J. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

Chang, W. H.

W. H. Chang, W. Y. Chen, T. M. Hsu, N. T. Yeh, and J. I. Chyi, “Hole emission processes in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 195337 (2002).
[Crossref]

Charbonneau, S.

F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999).
[Crossref]

Chen, C. H.

K. Yu, C. H. Chen, A. Titriku, A. Shafik, M. Fiorentino, P. Y. Chiang, and S. Palermo, “25  Gb/s hybrid integrated silicon photonic receiver with microring wavelength stabilization,” in Optical Fiber Communication Conference, Optical Society of America, March22–26, 2015, paper W3A–6.

Chen, H.

D. Dai, H. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a waveguide- type Ge/Si avalanche photodetector,” Phys. Stat. Solidi C 7, 2532–2535 (2010).
[Crossref]

Chen, W. Y.

W. H. Chang, W. Y. Chen, T. M. Hsu, N. T. Yeh, and J. I. Chyi, “Hole emission processes in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 195337 (2002).
[Crossref]

Chen, X. Y.

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

Chen, Y. H.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Chiang, P. Y.

K. Yu, C. H. Chen, A. Titriku, A. Shafik, M. Fiorentino, P. Y. Chiang, and S. Palermo, “25  Gb/s hybrid integrated silicon photonic receiver with microring wavelength stabilization,” in Optical Fiber Communication Conference, Optical Society of America, March22–26, 2015, paper W3A–6.

Chyi, J. I.

W. H. Chang, W. Y. Chen, T. M. Hsu, N. T. Yeh, and J. I. Chyi, “Hole emission processes in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 195337 (2002).
[Crossref]

Colace, L.

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19, 1813–1815 (2007).
[Crossref]

Dai, D.

D. Dai, H. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a waveguide- type Ge/Si avalanche photodetector,” Phys. Stat. Solidi C 7, 2532–2535 (2010).
[Crossref]

J. E. Bowers, D. Dai, Y. Kang, and M. Morse, “High-gain high- sensitivity resonant Ge/Si APD photodetectors,” Proc. SPIE 7660, 76603H(2010).
[Crossref]

Dalacu, D.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

David, J. P.

Deppe, D. G.

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3  μm quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 230–232 (2000).
[Crossref]

Descos, A.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in IEEE International Semiconductor Laser Conference (ISLC), Santa Fe, New Mexico, USA (2018).

B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, X. Zeng, Z. Huang, D. Liang, and R. G. Beausoleil, “1310  nm quantum dot waveguide avalanche photodiode heterogeneously integrated on silicon,” in 21st European Conference on Integrated Optics, June25, 2019.

Dimler, S. J.

Dion, C.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

Fafard, S.

F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999).
[Crossref]

Farrell, A.

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

Feng, Y.

F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999).
[Crossref]

Ferrara, P.

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19, 1813–1815 (2007).
[Crossref]

Fiorentino, M.

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24, 16167–16174 (2016).
[Crossref]

Z. Huang, C. Li, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25  Gbps low- voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–798 (2016).
[Crossref]

K. Yu, C. H. Chen, A. Titriku, A. Shafik, M. Fiorentino, P. Y. Chiang, and S. Palermo, “25  Gb/s hybrid integrated silicon photonic receiver with microring wavelength stabilization,” in Optical Fiber Communication Conference, Optical Society of America, March22–26, 2015, paper W3A–6.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in IEEE International Semiconductor Laser Conference (ISLC), Santa Fe, New Mexico, USA (2018).

Fulgoni, D.

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19, 1813–1815 (2007).
[Crossref]

Grech, P.

J. Reboul, L. Cerutti, J. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

Gu, Y.

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

Hinzer, K.

F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999).
[Crossref]

Hsu, T. M.

W. H. Chang, W. Y. Chen, T. M. Hsu, N. T. Yeh, and J. I. Chyi, “Hole emission processes in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 195337 (2002).
[Crossref]

Hu, C.

H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009).
[Crossref]

Huang, Z.

Z. Huang, C. Li, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25  Gbps low- voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–798 (2016).
[Crossref]

B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, X. Zeng, Z. Huang, D. Liang, and R. G. Beausoleil, “1310  nm quantum dot waveguide avalanche photodiode heterogeneously integrated on silicon,” in 21st European Conference on Integrated Optics, June25, 2019.

Huffaker, D. L.

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3  μm quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 230–232 (2000).
[Crossref]

Ji, W. Y.

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

Jin, P.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Juang, B. C.

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

Kang, Y.

J. E. Bowers, D. Dai, Y. Kang, and M. Morse, “High-gain high- sensitivity resonant Ge/Si APD photodetectors,” Proc. SPIE 7660, 76603H(2010).
[Crossref]

D. Dai, H. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a waveguide- type Ge/Si avalanche photodetector,” Phys. Stat. Solidi C 7, 2532–2535 (2010).
[Crossref]

H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009).
[Crossref]

Kurczveil, G.

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24, 16167–16174 (2016).
[Crossref]

B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, X. Zeng, Z. Huang, D. Liang, and R. G. Beausoleil, “1310  nm quantum dot waveguide avalanche photodiode heterogeneously integrated on silicon,” in 21st European Conference on Integrated Optics, June25, 2019.

B. Tossoun, G. Kurczveil, C. Zhang, D. Liang, and R. G. Beausoleil, “High-speed 1310  nm hybrid silicon quantum dot photodiodes with ultra-low dark current,” in 76th Device Research Conference (DRC) (IEEE, 2018), pp. 1–2.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in IEEE International Semiconductor Laser Conference (ISLC), Santa Fe, New Mexico, USA (2018).

Lapointe, J.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

Li, C.

Li, C. M.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Liang, B. L.

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

Liang, D.

Z. Huang, C. Li, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25  Gbps low- voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–798 (2016).
[Crossref]

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24, 16167–16174 (2016).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer boning on the silicon-on insulator substrate,” J. Vac. Sci. Technol. B 26, 1560–1568 (2008).
[Crossref]

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in IEEE International Semiconductor Laser Conference (ISLC), Santa Fe, New Mexico, USA (2018).

B. Tossoun, G. Kurczveil, C. Zhang, D. Liang, and R. G. Beausoleil, “High-speed 1310  nm hybrid silicon quantum dot photodiodes with ultra-low dark current,” in 76th Device Research Conference (DRC) (IEEE, 2018), pp. 1–2.

B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, X. Zeng, Z. Huang, D. Liang, and R. G. Beausoleil, “1310  nm quantum dot waveguide avalanche photodiode heterogeneously integrated on silicon,” in 21st European Conference on Integrated Optics, June25, 2019.

Liu, F. Q.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Liu, H.

Liu, H. D.

H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009).
[Crossref]

Lu, Z.

H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009).
[Crossref]

Ma, Y.

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

McCaffrey, J.

F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999).
[Crossref]

McIntosh, D.

H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Morse, M.

D. Dai, H. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a waveguide- type Ge/Si avalanche photodetector,” Phys. Stat. Solidi C 7, 2532–2535 (2010).
[Crossref]

J. E. Bowers, D. Dai, Y. Kang, and M. Morse, “High-gain high- sensitivity resonant Ge/Si APD photodetectors,” Proc. SPIE 7660, 76603H(2010).
[Crossref]

H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009).
[Crossref]

Nash, L.

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19, 1813–1815 (2007).
[Crossref]

Ng, J. S.

Ni Allen, C.

F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999).
[Crossref]

Ortner, G.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

Pakulski, G.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

Palermo, S.

Z. Huang, C. Li, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25  Gbps low- voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–798 (2016).
[Crossref]

K. Yu, C. H. Chen, A. Titriku, A. Shafik, M. Fiorentino, P. Y. Chiang, and S. Palermo, “25  Gb/s hybrid integrated silicon photonic receiver with microring wavelength stabilization,” in Optical Fiber Communication Conference, Optical Society of America, March22–26, 2015, paper W3A–6.

Pan, H.

H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009).
[Crossref]

Paniccia, M. J.

D. Dai, H. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a waveguide- type Ge/Si avalanche photodetector,” Phys. Stat. Solidi C 7, 2532–2535 (2010).
[Crossref]

Park, G.

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3  μm quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 230–232 (2000).
[Crossref]

Pinel, L. L.

Poitras, D.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

Poole, P. J.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

Raymond, S.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

Reboul, J.

J. Reboul, L. Cerutti, J. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

Render, W.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

Rodriguez, J.

J. Reboul, L. Cerutti, J. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

Sandall, I.

Santori, C.

Shafik, A.

K. Yu, C. H. Chen, A. Titriku, A. Shafik, M. Fiorentino, P. Y. Chiang, and S. Palermo, “25  Gb/s hybrid integrated silicon photonic receiver with microring wavelength stabilization,” in Optical Fiber Communication Conference, Optical Society of America, March22–26, 2015, paper W3A–6.

Shchekin, O. B.

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3  μm quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 230–232 (2000).
[Crossref]

Shi, Y. H.

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

Sorin, W.

Sugawara, M.

M. Sugawara and M. Usami, “Quantum dot devices handling the heat,” Nat. Photonics 3, 30–31 (2009).
[Crossref]

Tan, C. H.

Titriku, A.

K. Yu, C. H. Chen, A. Titriku, A. Shafik, M. Fiorentino, P. Y. Chiang, and S. Palermo, “25  Gb/s hybrid integrated silicon photonic receiver with microring wavelength stabilization,” in Optical Fiber Communication Conference, Optical Society of America, March22–26, 2015, paper W3A–6.

Tossoun, B.

B. Tossoun, G. Kurczveil, C. Zhang, D. Liang, and R. G. Beausoleil, “High-speed 1310  nm hybrid silicon quantum dot photodiodes with ultra-low dark current,” in 76th Device Research Conference (DRC) (IEEE, 2018), pp. 1–2.

B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, X. Zeng, Z. Huang, D. Liang, and R. G. Beausoleil, “1310  nm quantum dot waveguide avalanche photodiode heterogeneously integrated on silicon,” in 21st European Conference on Integrated Optics, June25, 2019.

Tournié, E.

J. Reboul, L. Cerutti, J. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

Usami, M.

M. Sugawara and M. Usami, “Quantum dot devices handling the heat,” Nat. Photonics 3, 30–31 (2009).
[Crossref]

Wang, P.

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

Wang, T.

Wang, Z. G.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Xu, B.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Yang, F.

F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999).
[Crossref]

Ye, X. L.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Yeh, N. T.

W. H. Chang, W. Y. Chen, T. M. Hsu, N. T. Yeh, and J. I. Chyi, “Hole emission processes in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 195337 (2002).
[Crossref]

Yu, K.

Z. Huang, C. Li, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25  Gbps low- voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–798 (2016).
[Crossref]

K. Yu, C. H. Chen, A. Titriku, A. Shafik, M. Fiorentino, P. Y. Chiang, and S. Palermo, “25  Gb/s hybrid integrated silicon photonic receiver with microring wavelength stabilization,” in Optical Fiber Communication Conference, Optical Society of America, March22–26, 2015, paper W3A–6.

Zeng, X.

B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, X. Zeng, Z. Huang, D. Liang, and R. G. Beausoleil, “1310  nm quantum dot waveguide avalanche photodiode heterogeneously integrated on silicon,” in 21st European Conference on Integrated Optics, June25, 2019.

Zhang, C.

B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, X. Zeng, Z. Huang, D. Liang, and R. G. Beausoleil, “1310  nm quantum dot waveguide avalanche photodiode heterogeneously integrated on silicon,” in 21st European Conference on Integrated Optics, June25, 2019.

B. Tossoun, G. Kurczveil, C. Zhang, D. Liang, and R. G. Beausoleil, “High-speed 1310  nm hybrid silicon quantum dot photodiodes with ultra-low dark current,” in 76th Device Research Conference (DRC) (IEEE, 2018), pp. 1–2.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in IEEE International Semiconductor Laser Conference (ISLC), Santa Fe, New Mexico, USA (2018).

Zhang, S.

Zhang, Y. G.

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

Zhang, Z. Y.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Zhou, X.

Adv. Opt. Mater. (1)

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

Appl. Phys. Lett. (3)

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

J. Reboul, L. Cerutti, J. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (2)

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19, 1813–1815 (2007).
[Crossref]

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3  μm quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 230–232 (2000).
[Crossref]

J. Appl. Phys. (1)

H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009).
[Crossref]

J. Vac. Sci. Technol. B (1)

D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer boning on the silicon-on insulator substrate,” J. Vac. Sci. Technol. B 26, 1560–1568 (2008).
[Crossref]

Nat. Photonics (2)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

M. Sugawara and M. Usami, “Quantum dot devices handling the heat,” Nat. Photonics 3, 30–31 (2009).
[Crossref]

Opt. Express (3)

Optica (1)

Phys. Rev. B (1)

W. H. Chang, W. Y. Chen, T. M. Hsu, N. T. Yeh, and J. I. Chyi, “Hole emission processes in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 195337 (2002).
[Crossref]

Phys. Stat. Solidi C (1)

D. Dai, H. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a waveguide- type Ge/Si avalanche photodetector,” Phys. Stat. Solidi C 7, 2532–2535 (2010).
[Crossref]

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Proc. SPIE (1)

J. E. Bowers, D. Dai, Y. Kang, and M. Morse, “High-gain high- sensitivity resonant Ge/Si APD photodetectors,” Proc. SPIE 7660, 76603H(2010).
[Crossref]

Superlattices Microstruct. (1)

F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999).
[Crossref]

Other (4)

K. Yu, C. H. Chen, A. Titriku, A. Shafik, M. Fiorentino, P. Y. Chiang, and S. Palermo, “25  Gb/s hybrid integrated silicon photonic receiver with microring wavelength stabilization,” in Optical Fiber Communication Conference, Optical Society of America, March22–26, 2015, paper W3A–6.

B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, X. Zeng, Z. Huang, D. Liang, and R. G. Beausoleil, “1310  nm quantum dot waveguide avalanche photodiode heterogeneously integrated on silicon,” in 21st European Conference on Integrated Optics, June25, 2019.

B. Tossoun, G. Kurczveil, C. Zhang, D. Liang, and R. G. Beausoleil, “High-speed 1310  nm hybrid silicon quantum dot photodiodes with ultra-low dark current,” in 76th Device Research Conference (DRC) (IEEE, 2018), pp. 1–2.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in IEEE International Semiconductor Laser Conference (ISLC), Santa Fe, New Mexico, USA (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (a) Cross-section schematic of the photodiode; (b) SEM cross section of the QD waveguide PD on Si.
Fig. 2.
Fig. 2. Dark current vs. temperature for a 11 μm × 60 μm device.
Fig. 3.
Fig. 3. Responsivity at 1310 nm versus voltage bias of QD on Si waveguide PDs of different lengths.
Fig. 4.
Fig. 4. Responsivity of an 11μm×90μm PD at different optical input wavelengths.
Fig. 5.
Fig. 5. Spectral response versus voltage of an 11μm×90μm PD.
Fig. 6.
Fig. 6. Gain versus voltage for an 11μm×60μm device at 1310 nm.
Fig. 7.
Fig. 7. Output frequency response of an 11μm×30μm PD, an 11μm×60μm, and an 11μm×90μm PD measured at 16V bias voltage (dashed lines are smoothed data).
Fig. 8.
Fig. 8. Output frequency responses of an 11μm×90μm PD from 18V to 19V.
Fig. 9.
Fig. 9. GBP of an 11μm×90μm PD.
Fig. 10.
Fig. 10. Eye diagrams at a bias voltage of 13V at (a) 5 Gb/s, (b) 10 Gb/s, and (c) 12.5 Gb/s.
Fig. 11.
Fig. 11. BER versus input optical power of a 11μm×90μm PD at a gain of 28.