Abstract

Near-field imaging in the microwave regime has many applications from radar to through-the-wall imaging and cancer cell detection. Currently, practical near-field imagers are implemented as benchtop systems and therefore are bulky, expensive, and typically susceptible to electromagnetic interference. Here we introduce and demonstrate the first single-chip nanophotonic near-field imager, where the impinging microwave signals are upconverted to the optical domain and optically delayed and processed to form the near-field image of the target object. The 121-element imager, which is integrated on a silicon chip, is capable of simultaneous processing of ultra-wideband microwave signals and achieves 4.8° spatial resolution for near-field imaging with orders of magnitude smaller size than the benchtop implementations and a fraction of the power consumption.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nanophotonic coherent imager

Firooz Aflatouni, Behrooz Abiri, Angad Rekhi, and Ali Hajimiri
Opt. Express 23(4) 5117-5125 (2015)

Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip

Anshuman Singh, Qing Li, Shunfa Liu, Ying Yu, Xiyuan Lu, Christian Schneider, Sven Höfling, John Lawall, Varun Verma, Richard Mirin, Sae Woo Nam, Jin Liu, and Kartik Srinivasan
Optica 6(5) 563-569 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. G. Yarovoy, T. G. Savelyev, P. J. Aubry, P. E. Lys, and L. P. Ligthart, “UWB array-based sensor for near-field imaging,” IEEE Trans. Microwave Theory Tech. 55, 1288–1295 (2007).
    [Crossref]
  2. A. O. Boryssenko, C. Craeye, and D. H. Schaubert, “Ultra-wide band near-field imaging system,” in IEEE Radar Conference, Boston (2007), pp. 402–407.
  3. S. Kidera, T. Sakamoto, and T. Sato, “High-resolution 3-D imaging algorithm with an envelope of modified spheres for UWB through-the-wall radars,” IEEE Trans. Antennas Propag. 57, 3520–3529 (2009).
    [Crossref]
  4. X. Liang, J. Deng, H. Zhang, and T. A. Gulliver, “Ultra-wideband impulse radar through-wall detection of vital signs,” Sci. Rep. 8, 13367 (2018).
    [Crossref]
  5. M. R. Mahfouz, C. Zhang, B. C. Merkl, M. J. Kuhn, and A. E. Fathy, “Investigation of high-accuracy indoor 3-D positioning using UWB technology,” IEEE Trans. Microwave Theory Tech. 56, 1316–1330 (2008).
    [Crossref]
  6. P. A. Catherwood and J. McLaughlin, “Internet of things-enabled hospital wards: ultra-wideband doctor-patient radio channels,” IEEE Antennas Propag. Mag. 60(3), 10–18 (2018).
    [Crossref]
  7. H. Hashemi, T. S. Chu, and J. Roderick, “Integrated true-time-delay-based ultra-wideband array processing,” IEEE Commun. Mag. 46(9), 162–172 (2008).
    [Crossref]
  8. H. Song, S. Sasada, T. Kadoya, M. Okada, K. Arihiro, X. Xiao, and T. Kikkawa, “Detectability of breast tumor by a hand-held impulse-radar detector: performance evaluation and pilot clinical study,” Sci. Rep. 7, 16353 (2017).
    [Crossref]
  9. A. Rahman, M. T. Islam, M. J. Singh, S. Kibria, and Md. Akhtaruzzaman, “Electromagnetic performances analysis of an ultra-wideband and flexible material antenna in microwave breast imaging: to implement a wearable medical bra,” Sci. Rep. 6, 38906 (2016).
    [Crossref]
  10. A. T. Mobashsher, A. Mahmoud, and A. M. Abbosh, “Portable wideband microwave imaging system for intracranial hemorrhage detection using improved back-projection algorithm with model of effective head permittivity,” Sci. Rep. 6, 20459 (2016).
    [Crossref]
  11. Y. Lee, J. Y. Park, Y. W. Choi, H. K. Park, S. H. Cho, S. H. Cho, and Y. H. Lim, “A novel non-contact heart rate monitor using impulse-radio ultra-wideband (IR-UWB) radar technology,” Sci. Rep. 8, 13053 (2018).
    [Crossref]
  12. S. Brovoll, T. Berger, Y. Paichard, O. Aardal, T. S. Lande, and S. E. Hamran, “Time-lapse imaging of human heart motion with switched array UWB radar,” IEEE Trans. Biomed. Circuits Syst. 8, 704–715 (2014).
    [Crossref]
  13. R. Chavez-Santiago and I. Balasingham, “Ultra-wideband signals in medicine,” IEEE Signal Process. Mag. 31(6), 130–136 (2014).
    [Crossref]
  14. T. S. Chu and H. Hashemi, “True-time-delay-based multi-beam arrays,” IEEE Trans. Microwave Theory Tech. 61, 3072–3082 (2013).
    [Crossref]
  15. F. Elbahhar, A. Rivenq, M. Heddebaut, and J. M. Rouvaen, “Using UWB Gaussian pulses for inter-vehicle communications,” IEE Proc.- Commun. 152, 229–234 (2005).
    [Crossref]
  16. T. Kikkawa, P. K. Saha, N. Sasaki, and K. Kimoto, “Gaussian monocycle pulse transmitter using 0.18  μm CMOS technology with on-chip integrated antennas for inter-chip UWB communication,” IEEE J. Solid-State Circuits 43, 1303–1312 (2008).
    [Crossref]
  17. T. Chu and H. Hashemi, “A CMOS UWB camera with 7 × 7 simultaneous active pixels,” in IEEE International Solid-State Circuits Conference (2008), pp. 120–600.
  18. S. Park and S. Jeon, “A 15-40  GHz CMOS true-time delay circuit for UWB multi-antenna systems,” IEEE Microwave Wireless Compon. Lett. 23, 149–151 (2013).
    [Crossref]
  19. T. Chu, J. Roderick, and H. Hashemi, “An integrated ultra-wideband timed array receiver in 0.13  μm CMOS using a path-sharing true time delay architecture,” IEEE J. Solid-State Circuits 42, 2834–2850 (2007).
    [Crossref]
  20. J. Roderick, H. Krishnaswamy, K. Newton, and H. Hashemi, “Silicon-based ultra-wideband beam-forming,” IEEE J. Solid-State Circuits 41, 1726–1739 (2006).
    [Crossref]
  21. D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
    [Crossref]
  22. W. Zhang and J. Yao, “Silicon photonic integrated optoelectronic oscillator for frequency-tunable microwave generation,” J. Lightwave Technol. 36, 4655–4663 (2018).
    [Crossref]
  23. V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference (2018), paper M2G.5.
  24. Z. Xuan, Y. Ma, Y. Liu, R. Ding, Y. Li, N. Ophir, A. E. Lim, G. Q. Lo, P. Magill, K. Bergman, T. B. Jones, and M. Hochberg, “Silicon microring modulator for 40  Gb/s NRZ-OOK metro networks in O-band,” Opt. Express 22, 28284–28291 (2014).
    [Crossref]
  25. Z. N. Low, J. H. Cheong, and C. L. Law, “Low-cost PCB antenna for UWB applications,” IEEE Antennas Wireless Propag. Lett. 4, 237–239 (2005).
    [Crossref]
  26. T. S. Chu, “Silicon-based broadband short-range radar architectures and implementations,” Doctoral dissertation (University of Southern California, 2010), pp. 29–30.

2019 (1)

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
[Crossref]

2018 (4)

Y. Lee, J. Y. Park, Y. W. Choi, H. K. Park, S. H. Cho, S. H. Cho, and Y. H. Lim, “A novel non-contact heart rate monitor using impulse-radio ultra-wideband (IR-UWB) radar technology,” Sci. Rep. 8, 13053 (2018).
[Crossref]

X. Liang, J. Deng, H. Zhang, and T. A. Gulliver, “Ultra-wideband impulse radar through-wall detection of vital signs,” Sci. Rep. 8, 13367 (2018).
[Crossref]

P. A. Catherwood and J. McLaughlin, “Internet of things-enabled hospital wards: ultra-wideband doctor-patient radio channels,” IEEE Antennas Propag. Mag. 60(3), 10–18 (2018).
[Crossref]

W. Zhang and J. Yao, “Silicon photonic integrated optoelectronic oscillator for frequency-tunable microwave generation,” J. Lightwave Technol. 36, 4655–4663 (2018).
[Crossref]

2017 (1)

H. Song, S. Sasada, T. Kadoya, M. Okada, K. Arihiro, X. Xiao, and T. Kikkawa, “Detectability of breast tumor by a hand-held impulse-radar detector: performance evaluation and pilot clinical study,” Sci. Rep. 7, 16353 (2017).
[Crossref]

2016 (2)

A. Rahman, M. T. Islam, M. J. Singh, S. Kibria, and Md. Akhtaruzzaman, “Electromagnetic performances analysis of an ultra-wideband and flexible material antenna in microwave breast imaging: to implement a wearable medical bra,” Sci. Rep. 6, 38906 (2016).
[Crossref]

A. T. Mobashsher, A. Mahmoud, and A. M. Abbosh, “Portable wideband microwave imaging system for intracranial hemorrhage detection using improved back-projection algorithm with model of effective head permittivity,” Sci. Rep. 6, 20459 (2016).
[Crossref]

2014 (3)

S. Brovoll, T. Berger, Y. Paichard, O. Aardal, T. S. Lande, and S. E. Hamran, “Time-lapse imaging of human heart motion with switched array UWB radar,” IEEE Trans. Biomed. Circuits Syst. 8, 704–715 (2014).
[Crossref]

R. Chavez-Santiago and I. Balasingham, “Ultra-wideband signals in medicine,” IEEE Signal Process. Mag. 31(6), 130–136 (2014).
[Crossref]

Z. Xuan, Y. Ma, Y. Liu, R. Ding, Y. Li, N. Ophir, A. E. Lim, G. Q. Lo, P. Magill, K. Bergman, T. B. Jones, and M. Hochberg, “Silicon microring modulator for 40  Gb/s NRZ-OOK metro networks in O-band,” Opt. Express 22, 28284–28291 (2014).
[Crossref]

2013 (2)

T. S. Chu and H. Hashemi, “True-time-delay-based multi-beam arrays,” IEEE Trans. Microwave Theory Tech. 61, 3072–3082 (2013).
[Crossref]

S. Park and S. Jeon, “A 15-40  GHz CMOS true-time delay circuit for UWB multi-antenna systems,” IEEE Microwave Wireless Compon. Lett. 23, 149–151 (2013).
[Crossref]

2009 (1)

S. Kidera, T. Sakamoto, and T. Sato, “High-resolution 3-D imaging algorithm with an envelope of modified spheres for UWB through-the-wall radars,” IEEE Trans. Antennas Propag. 57, 3520–3529 (2009).
[Crossref]

2008 (3)

M. R. Mahfouz, C. Zhang, B. C. Merkl, M. J. Kuhn, and A. E. Fathy, “Investigation of high-accuracy indoor 3-D positioning using UWB technology,” IEEE Trans. Microwave Theory Tech. 56, 1316–1330 (2008).
[Crossref]

H. Hashemi, T. S. Chu, and J. Roderick, “Integrated true-time-delay-based ultra-wideband array processing,” IEEE Commun. Mag. 46(9), 162–172 (2008).
[Crossref]

T. Kikkawa, P. K. Saha, N. Sasaki, and K. Kimoto, “Gaussian monocycle pulse transmitter using 0.18  μm CMOS technology with on-chip integrated antennas for inter-chip UWB communication,” IEEE J. Solid-State Circuits 43, 1303–1312 (2008).
[Crossref]

2007 (2)

A. G. Yarovoy, T. G. Savelyev, P. J. Aubry, P. E. Lys, and L. P. Ligthart, “UWB array-based sensor for near-field imaging,” IEEE Trans. Microwave Theory Tech. 55, 1288–1295 (2007).
[Crossref]

T. Chu, J. Roderick, and H. Hashemi, “An integrated ultra-wideband timed array receiver in 0.13  μm CMOS using a path-sharing true time delay architecture,” IEEE J. Solid-State Circuits 42, 2834–2850 (2007).
[Crossref]

2006 (1)

J. Roderick, H. Krishnaswamy, K. Newton, and H. Hashemi, “Silicon-based ultra-wideband beam-forming,” IEEE J. Solid-State Circuits 41, 1726–1739 (2006).
[Crossref]

2005 (2)

Z. N. Low, J. H. Cheong, and C. L. Law, “Low-cost PCB antenna for UWB applications,” IEEE Antennas Wireless Propag. Lett. 4, 237–239 (2005).
[Crossref]

F. Elbahhar, A. Rivenq, M. Heddebaut, and J. M. Rouvaen, “Using UWB Gaussian pulses for inter-vehicle communications,” IEE Proc.- Commun. 152, 229–234 (2005).
[Crossref]

Aardal, O.

S. Brovoll, T. Berger, Y. Paichard, O. Aardal, T. S. Lande, and S. E. Hamran, “Time-lapse imaging of human heart motion with switched array UWB radar,” IEEE Trans. Biomed. Circuits Syst. 8, 704–715 (2014).
[Crossref]

Abbosh, A. M.

A. T. Mobashsher, A. Mahmoud, and A. M. Abbosh, “Portable wideband microwave imaging system for intracranial hemorrhage detection using improved back-projection algorithm with model of effective head permittivity,” Sci. Rep. 6, 20459 (2016).
[Crossref]

Akhtaruzzaman, Md.

A. Rahman, M. T. Islam, M. J. Singh, S. Kibria, and Md. Akhtaruzzaman, “Electromagnetic performances analysis of an ultra-wideband and flexible material antenna in microwave breast imaging: to implement a wearable medical bra,” Sci. Rep. 6, 38906 (2016).
[Crossref]

Anzalchi, J.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference (2018), paper M2G.5.

Arihiro, K.

H. Song, S. Sasada, T. Kadoya, M. Okada, K. Arihiro, X. Xiao, and T. Kikkawa, “Detectability of breast tumor by a hand-held impulse-radar detector: performance evaluation and pilot clinical study,” Sci. Rep. 7, 16353 (2017).
[Crossref]

Aubry, P. J.

A. G. Yarovoy, T. G. Savelyev, P. J. Aubry, P. E. Lys, and L. P. Ligthart, “UWB array-based sensor for near-field imaging,” IEEE Trans. Microwave Theory Tech. 55, 1288–1295 (2007).
[Crossref]

Balasingham, I.

R. Chavez-Santiago and I. Balasingham, “Ultra-wideband signals in medicine,” IEEE Signal Process. Mag. 31(6), 130–136 (2014).
[Crossref]

Berger, T.

S. Brovoll, T. Berger, Y. Paichard, O. Aardal, T. S. Lande, and S. E. Hamran, “Time-lapse imaging of human heart motion with switched array UWB radar,” IEEE Trans. Biomed. Circuits Syst. 8, 704–715 (2014).
[Crossref]

Bergman, K.

Boryssenko, A. O.

A. O. Boryssenko, C. Craeye, and D. H. Schaubert, “Ultra-wide band near-field imaging system,” in IEEE Radar Conference, Boston (2007), pp. 402–407.

Brovoll, S.

S. Brovoll, T. Berger, Y. Paichard, O. Aardal, T. S. Lande, and S. E. Hamran, “Time-lapse imaging of human heart motion with switched array UWB radar,” IEEE Trans. Biomed. Circuits Syst. 8, 704–715 (2014).
[Crossref]

Capmany, J.

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
[Crossref]

Catherwood, P. A.

P. A. Catherwood and J. McLaughlin, “Internet of things-enabled hospital wards: ultra-wideband doctor-patient radio channels,” IEEE Antennas Propag. Mag. 60(3), 10–18 (2018).
[Crossref]

Chavez-Santiago, R.

R. Chavez-Santiago and I. Balasingham, “Ultra-wideband signals in medicine,” IEEE Signal Process. Mag. 31(6), 130–136 (2014).
[Crossref]

Cheong, J. H.

Z. N. Low, J. H. Cheong, and C. L. Law, “Low-cost PCB antenna for UWB applications,” IEEE Antennas Wireless Propag. Lett. 4, 237–239 (2005).
[Crossref]

Cho, S. H.

Y. Lee, J. Y. Park, Y. W. Choi, H. K. Park, S. H. Cho, S. H. Cho, and Y. H. Lim, “A novel non-contact heart rate monitor using impulse-radio ultra-wideband (IR-UWB) radar technology,” Sci. Rep. 8, 13053 (2018).
[Crossref]

Y. Lee, J. Y. Park, Y. W. Choi, H. K. Park, S. H. Cho, S. H. Cho, and Y. H. Lim, “A novel non-contact heart rate monitor using impulse-radio ultra-wideband (IR-UWB) radar technology,” Sci. Rep. 8, 13053 (2018).
[Crossref]

Choi, Y. W.

Y. Lee, J. Y. Park, Y. W. Choi, H. K. Park, S. H. Cho, S. H. Cho, and Y. H. Lim, “A novel non-contact heart rate monitor using impulse-radio ultra-wideband (IR-UWB) radar technology,” Sci. Rep. 8, 13053 (2018).
[Crossref]

Chu, T.

T. Chu, J. Roderick, and H. Hashemi, “An integrated ultra-wideband timed array receiver in 0.13  μm CMOS using a path-sharing true time delay architecture,” IEEE J. Solid-State Circuits 42, 2834–2850 (2007).
[Crossref]

T. Chu and H. Hashemi, “A CMOS UWB camera with 7 × 7 simultaneous active pixels,” in IEEE International Solid-State Circuits Conference (2008), pp. 120–600.

Chu, T. S.

T. S. Chu and H. Hashemi, “True-time-delay-based multi-beam arrays,” IEEE Trans. Microwave Theory Tech. 61, 3072–3082 (2013).
[Crossref]

H. Hashemi, T. S. Chu, and J. Roderick, “Integrated true-time-delay-based ultra-wideband array processing,” IEEE Commun. Mag. 46(9), 162–172 (2008).
[Crossref]

T. S. Chu, “Silicon-based broadband short-range radar architectures and implementations,” Doctoral dissertation (University of Southern California, 2010), pp. 29–30.

Clements, S.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference (2018), paper M2G.5.

Crabb, J.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference (2018), paper M2G.5.

Craeye, C.

A. O. Boryssenko, C. Craeye, and D. H. Schaubert, “Ultra-wide band near-field imaging system,” in IEEE Radar Conference, Boston (2007), pp. 402–407.

Deng, J.

X. Liang, J. Deng, H. Zhang, and T. A. Gulliver, “Ultra-wideband impulse radar through-wall detection of vital signs,” Sci. Rep. 8, 13367 (2018).
[Crossref]

Ding, R.

Drummond, M. V.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference (2018), paper M2G.5.

Duarte, V. C.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference (2018), paper M2G.5.

Elbahhar, F.

F. Elbahhar, A. Rivenq, M. Heddebaut, and J. M. Rouvaen, “Using UWB Gaussian pulses for inter-vehicle communications,” IEE Proc.- Commun. 152, 229–234 (2005).
[Crossref]

Fathy, A. E.

M. R. Mahfouz, C. Zhang, B. C. Merkl, M. J. Kuhn, and A. E. Fathy, “Investigation of high-accuracy indoor 3-D positioning using UWB technology,” IEEE Trans. Microwave Theory Tech. 56, 1316–1330 (2008).
[Crossref]

Filipowicz, M.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference (2018), paper M2G.5.

Gulliver, T. A.

X. Liang, J. Deng, H. Zhang, and T. A. Gulliver, “Ultra-wideband impulse radar through-wall detection of vital signs,” Sci. Rep. 8, 13367 (2018).
[Crossref]

Hamran, S. E.

S. Brovoll, T. Berger, Y. Paichard, O. Aardal, T. S. Lande, and S. E. Hamran, “Time-lapse imaging of human heart motion with switched array UWB radar,” IEEE Trans. Biomed. Circuits Syst. 8, 704–715 (2014).
[Crossref]

Hashemi, H.

T. S. Chu and H. Hashemi, “True-time-delay-based multi-beam arrays,” IEEE Trans. Microwave Theory Tech. 61, 3072–3082 (2013).
[Crossref]

H. Hashemi, T. S. Chu, and J. Roderick, “Integrated true-time-delay-based ultra-wideband array processing,” IEEE Commun. Mag. 46(9), 162–172 (2008).
[Crossref]

T. Chu, J. Roderick, and H. Hashemi, “An integrated ultra-wideband timed array receiver in 0.13  μm CMOS using a path-sharing true time delay architecture,” IEEE J. Solid-State Circuits 42, 2834–2850 (2007).
[Crossref]

J. Roderick, H. Krishnaswamy, K. Newton, and H. Hashemi, “Silicon-based ultra-wideband beam-forming,” IEEE J. Solid-State Circuits 41, 1726–1739 (2006).
[Crossref]

T. Chu and H. Hashemi, “A CMOS UWB camera with 7 × 7 simultaneous active pixels,” in IEEE International Solid-State Circuits Conference (2008), pp. 120–600.

Heddebaut, M.

F. Elbahhar, A. Rivenq, M. Heddebaut, and J. M. Rouvaen, “Using UWB Gaussian pulses for inter-vehicle communications,” IEE Proc.- Commun. 152, 229–234 (2005).
[Crossref]

Hochberg, M.

Islam, M. T.

A. Rahman, M. T. Islam, M. J. Singh, S. Kibria, and Md. Akhtaruzzaman, “Electromagnetic performances analysis of an ultra-wideband and flexible material antenna in microwave breast imaging: to implement a wearable medical bra,” Sci. Rep. 6, 38906 (2016).
[Crossref]

Jeon, S.

S. Park and S. Jeon, “A 15-40  GHz CMOS true-time delay circuit for UWB multi-antenna systems,” IEEE Microwave Wireless Compon. Lett. 23, 149–151 (2013).
[Crossref]

Jones, T. B.

Kadoya, T.

H. Song, S. Sasada, T. Kadoya, M. Okada, K. Arihiro, X. Xiao, and T. Kikkawa, “Detectability of breast tumor by a hand-held impulse-radar detector: performance evaluation and pilot clinical study,” Sci. Rep. 7, 16353 (2017).
[Crossref]

Kibria, S.

A. Rahman, M. T. Islam, M. J. Singh, S. Kibria, and Md. Akhtaruzzaman, “Electromagnetic performances analysis of an ultra-wideband and flexible material antenna in microwave breast imaging: to implement a wearable medical bra,” Sci. Rep. 6, 38906 (2016).
[Crossref]

Kidera, S.

S. Kidera, T. Sakamoto, and T. Sato, “High-resolution 3-D imaging algorithm with an envelope of modified spheres for UWB through-the-wall radars,” IEEE Trans. Antennas Propag. 57, 3520–3529 (2009).
[Crossref]

Kikkawa, T.

H. Song, S. Sasada, T. Kadoya, M. Okada, K. Arihiro, X. Xiao, and T. Kikkawa, “Detectability of breast tumor by a hand-held impulse-radar detector: performance evaluation and pilot clinical study,” Sci. Rep. 7, 16353 (2017).
[Crossref]

T. Kikkawa, P. K. Saha, N. Sasaki, and K. Kimoto, “Gaussian monocycle pulse transmitter using 0.18  μm CMOS technology with on-chip integrated antennas for inter-chip UWB communication,” IEEE J. Solid-State Circuits 43, 1303–1312 (2008).
[Crossref]

Kimoto, K.

T. Kikkawa, P. K. Saha, N. Sasaki, and K. Kimoto, “Gaussian monocycle pulse transmitter using 0.18  μm CMOS technology with on-chip integrated antennas for inter-chip UWB communication,” IEEE J. Solid-State Circuits 43, 1303–1312 (2008).
[Crossref]

Krishnaswamy, H.

J. Roderick, H. Krishnaswamy, K. Newton, and H. Hashemi, “Silicon-based ultra-wideband beam-forming,” IEEE J. Solid-State Circuits 41, 1726–1739 (2006).
[Crossref]

Kuhn, M. J.

M. R. Mahfouz, C. Zhang, B. C. Merkl, M. J. Kuhn, and A. E. Fathy, “Investigation of high-accuracy indoor 3-D positioning using UWB technology,” IEEE Trans. Microwave Theory Tech. 56, 1316–1330 (2008).
[Crossref]

Lande, T. S.

S. Brovoll, T. Berger, Y. Paichard, O. Aardal, T. S. Lande, and S. E. Hamran, “Time-lapse imaging of human heart motion with switched array UWB radar,” IEEE Trans. Biomed. Circuits Syst. 8, 704–715 (2014).
[Crossref]

Law, C. L.

Z. N. Low, J. H. Cheong, and C. L. Law, “Low-cost PCB antenna for UWB applications,” IEEE Antennas Wireless Propag. Lett. 4, 237–239 (2005).
[Crossref]

Lee, Y.

Y. Lee, J. Y. Park, Y. W. Choi, H. K. Park, S. H. Cho, S. H. Cho, and Y. H. Lim, “A novel non-contact heart rate monitor using impulse-radio ultra-wideband (IR-UWB) radar technology,” Sci. Rep. 8, 13053 (2018).
[Crossref]

Li, Y.

Liang, X.

X. Liang, J. Deng, H. Zhang, and T. A. Gulliver, “Ultra-wideband impulse radar through-wall detection of vital signs,” Sci. Rep. 8, 13367 (2018).
[Crossref]

Ligthart, L. P.

A. G. Yarovoy, T. G. Savelyev, P. J. Aubry, P. E. Lys, and L. P. Ligthart, “UWB array-based sensor for near-field imaging,” IEEE Trans. Microwave Theory Tech. 55, 1288–1295 (2007).
[Crossref]

Lim, A. E.

Lim, Y. H.

Y. Lee, J. Y. Park, Y. W. Choi, H. K. Park, S. H. Cho, S. H. Cho, and Y. H. Lim, “A novel non-contact heart rate monitor using impulse-radio ultra-wideband (IR-UWB) radar technology,” Sci. Rep. 8, 13053 (2018).
[Crossref]

Liu, Y.

Lo, G. Q.

Low, Z. N.

Z. N. Low, J. H. Cheong, and C. L. Law, “Low-cost PCB antenna for UWB applications,” IEEE Antennas Wireless Propag. Lett. 4, 237–239 (2005).
[Crossref]

Lys, P. E.

A. G. Yarovoy, T. G. Savelyev, P. J. Aubry, P. E. Lys, and L. P. Ligthart, “UWB array-based sensor for near-field imaging,” IEEE Trans. Microwave Theory Tech. 55, 1288–1295 (2007).
[Crossref]

Ma, Y.

Magill, P.

Mahfouz, M. R.

M. R. Mahfouz, C. Zhang, B. C. Merkl, M. J. Kuhn, and A. E. Fathy, “Investigation of high-accuracy indoor 3-D positioning using UWB technology,” IEEE Trans. Microwave Theory Tech. 56, 1316–1330 (2008).
[Crossref]

Mahmoud, A.

A. T. Mobashsher, A. Mahmoud, and A. M. Abbosh, “Portable wideband microwave imaging system for intracranial hemorrhage detection using improved back-projection algorithm with model of effective head permittivity,” Sci. Rep. 6, 20459 (2016).
[Crossref]

Marpaung, D.

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
[Crossref]

McLaughlin, J.

P. A. Catherwood and J. McLaughlin, “Internet of things-enabled hospital wards: ultra-wideband doctor-patient radio channels,” IEEE Antennas Propag. Mag. 60(3), 10–18 (2018).
[Crossref]

Merkl, B. C.

M. R. Mahfouz, C. Zhang, B. C. Merkl, M. J. Kuhn, and A. E. Fathy, “Investigation of high-accuracy indoor 3-D positioning using UWB technology,” IEEE Trans. Microwave Theory Tech. 56, 1316–1330 (2008).
[Crossref]

Mobashsher, A. T.

A. T. Mobashsher, A. Mahmoud, and A. M. Abbosh, “Portable wideband microwave imaging system for intracranial hemorrhage detection using improved back-projection algorithm with model of effective head permittivity,” Sci. Rep. 6, 20459 (2016).
[Crossref]

Napierala, M.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference (2018), paper M2G.5.

Nasilowski, T.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference (2018), paper M2G.5.

Newton, K.

J. Roderick, H. Krishnaswamy, K. Newton, and H. Hashemi, “Silicon-based ultra-wideband beam-forming,” IEEE J. Solid-State Circuits 41, 1726–1739 (2006).
[Crossref]

Nogueira, R. N.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference (2018), paper M2G.5.

Okada, M.

H. Song, S. Sasada, T. Kadoya, M. Okada, K. Arihiro, X. Xiao, and T. Kikkawa, “Detectability of breast tumor by a hand-held impulse-radar detector: performance evaluation and pilot clinical study,” Sci. Rep. 7, 16353 (2017).
[Crossref]

Ophir, N.

Paichard, Y.

S. Brovoll, T. Berger, Y. Paichard, O. Aardal, T. S. Lande, and S. E. Hamran, “Time-lapse imaging of human heart motion with switched array UWB radar,” IEEE Trans. Biomed. Circuits Syst. 8, 704–715 (2014).
[Crossref]

Park, H. K.

Y. Lee, J. Y. Park, Y. W. Choi, H. K. Park, S. H. Cho, S. H. Cho, and Y. H. Lim, “A novel non-contact heart rate monitor using impulse-radio ultra-wideband (IR-UWB) radar technology,” Sci. Rep. 8, 13053 (2018).
[Crossref]

Park, J. Y.

Y. Lee, J. Y. Park, Y. W. Choi, H. K. Park, S. H. Cho, S. H. Cho, and Y. H. Lim, “A novel non-contact heart rate monitor using impulse-radio ultra-wideband (IR-UWB) radar technology,” Sci. Rep. 8, 13053 (2018).
[Crossref]

Park, S.

S. Park and S. Jeon, “A 15-40  GHz CMOS true-time delay circuit for UWB multi-antenna systems,” IEEE Microwave Wireless Compon. Lett. 23, 149–151 (2013).
[Crossref]

Prata, J. G.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference (2018), paper M2G.5.

Rahman, A.

A. Rahman, M. T. Islam, M. J. Singh, S. Kibria, and Md. Akhtaruzzaman, “Electromagnetic performances analysis of an ultra-wideband and flexible material antenna in microwave breast imaging: to implement a wearable medical bra,” Sci. Rep. 6, 38906 (2016).
[Crossref]

Ribeiro, C.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference (2018), paper M2G.5.

Rivenq, A.

F. Elbahhar, A. Rivenq, M. Heddebaut, and J. M. Rouvaen, “Using UWB Gaussian pulses for inter-vehicle communications,” IEE Proc.- Commun. 152, 229–234 (2005).
[Crossref]

Roderick, J.

H. Hashemi, T. S. Chu, and J. Roderick, “Integrated true-time-delay-based ultra-wideband array processing,” IEEE Commun. Mag. 46(9), 162–172 (2008).
[Crossref]

T. Chu, J. Roderick, and H. Hashemi, “An integrated ultra-wideband timed array receiver in 0.13  μm CMOS using a path-sharing true time delay architecture,” IEEE J. Solid-State Circuits 42, 2834–2850 (2007).
[Crossref]

J. Roderick, H. Krishnaswamy, K. Newton, and H. Hashemi, “Silicon-based ultra-wideband beam-forming,” IEEE J. Solid-State Circuits 41, 1726–1739 (2006).
[Crossref]

Rouvaen, J. M.

F. Elbahhar, A. Rivenq, M. Heddebaut, and J. M. Rouvaen, “Using UWB Gaussian pulses for inter-vehicle communications,” IEE Proc.- Commun. 152, 229–234 (2005).
[Crossref]

Saha, P. K.

T. Kikkawa, P. K. Saha, N. Sasaki, and K. Kimoto, “Gaussian monocycle pulse transmitter using 0.18  μm CMOS technology with on-chip integrated antennas for inter-chip UWB communication,” IEEE J. Solid-State Circuits 43, 1303–1312 (2008).
[Crossref]

Sakamoto, T.

S. Kidera, T. Sakamoto, and T. Sato, “High-resolution 3-D imaging algorithm with an envelope of modified spheres for UWB through-the-wall radars,” IEEE Trans. Antennas Propag. 57, 3520–3529 (2009).
[Crossref]

Sasada, S.

H. Song, S. Sasada, T. Kadoya, M. Okada, K. Arihiro, X. Xiao, and T. Kikkawa, “Detectability of breast tumor by a hand-held impulse-radar detector: performance evaluation and pilot clinical study,” Sci. Rep. 7, 16353 (2017).
[Crossref]

Sasaki, N.

T. Kikkawa, P. K. Saha, N. Sasaki, and K. Kimoto, “Gaussian monocycle pulse transmitter using 0.18  μm CMOS technology with on-chip integrated antennas for inter-chip UWB communication,” IEEE J. Solid-State Circuits 43, 1303–1312 (2008).
[Crossref]

Sato, T.

S. Kidera, T. Sakamoto, and T. Sato, “High-resolution 3-D imaging algorithm with an envelope of modified spheres for UWB through-the-wall radars,” IEEE Trans. Antennas Propag. 57, 3520–3529 (2009).
[Crossref]

Savelyev, T. G.

A. G. Yarovoy, T. G. Savelyev, P. J. Aubry, P. E. Lys, and L. P. Ligthart, “UWB array-based sensor for near-field imaging,” IEEE Trans. Microwave Theory Tech. 55, 1288–1295 (2007).
[Crossref]

Schaubert, D. H.

A. O. Boryssenko, C. Craeye, and D. H. Schaubert, “Ultra-wide band near-field imaging system,” in IEEE Radar Conference, Boston (2007), pp. 402–407.

Singh, M. J.

A. Rahman, M. T. Islam, M. J. Singh, S. Kibria, and Md. Akhtaruzzaman, “Electromagnetic performances analysis of an ultra-wideband and flexible material antenna in microwave breast imaging: to implement a wearable medical bra,” Sci. Rep. 6, 38906 (2016).
[Crossref]

Song, H.

H. Song, S. Sasada, T. Kadoya, M. Okada, K. Arihiro, X. Xiao, and T. Kikkawa, “Detectability of breast tumor by a hand-held impulse-radar detector: performance evaluation and pilot clinical study,” Sci. Rep. 7, 16353 (2017).
[Crossref]

Stampoulidis, L.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference (2018), paper M2G.5.

Walker, R.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference (2018), paper M2G.5.

Winzer, G.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference (2018), paper M2G.5.

Xiao, X.

H. Song, S. Sasada, T. Kadoya, M. Okada, K. Arihiro, X. Xiao, and T. Kikkawa, “Detectability of breast tumor by a hand-held impulse-radar detector: performance evaluation and pilot clinical study,” Sci. Rep. 7, 16353 (2017).
[Crossref]

Xuan, Z.

Yao, J.

Yarovoy, A. G.

A. G. Yarovoy, T. G. Savelyev, P. J. Aubry, P. E. Lys, and L. P. Ligthart, “UWB array-based sensor for near-field imaging,” IEEE Trans. Microwave Theory Tech. 55, 1288–1295 (2007).
[Crossref]

Zhang, C.

M. R. Mahfouz, C. Zhang, B. C. Merkl, M. J. Kuhn, and A. E. Fathy, “Investigation of high-accuracy indoor 3-D positioning using UWB technology,” IEEE Trans. Microwave Theory Tech. 56, 1316–1330 (2008).
[Crossref]

Zhang, H.

X. Liang, J. Deng, H. Zhang, and T. A. Gulliver, “Ultra-wideband impulse radar through-wall detection of vital signs,” Sci. Rep. 8, 13367 (2018).
[Crossref]

Zhang, W.

Zimmermann, L.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference (2018), paper M2G.5.

IEE Proc.- Commun. (1)

F. Elbahhar, A. Rivenq, M. Heddebaut, and J. M. Rouvaen, “Using UWB Gaussian pulses for inter-vehicle communications,” IEE Proc.- Commun. 152, 229–234 (2005).
[Crossref]

IEEE Antennas Propag. Mag. (1)

P. A. Catherwood and J. McLaughlin, “Internet of things-enabled hospital wards: ultra-wideband doctor-patient radio channels,” IEEE Antennas Propag. Mag. 60(3), 10–18 (2018).
[Crossref]

IEEE Antennas Wireless Propag. Lett. (1)

Z. N. Low, J. H. Cheong, and C. L. Law, “Low-cost PCB antenna for UWB applications,” IEEE Antennas Wireless Propag. Lett. 4, 237–239 (2005).
[Crossref]

IEEE Commun. Mag. (1)

H. Hashemi, T. S. Chu, and J. Roderick, “Integrated true-time-delay-based ultra-wideband array processing,” IEEE Commun. Mag. 46(9), 162–172 (2008).
[Crossref]

IEEE J. Solid-State Circuits (3)

T. Kikkawa, P. K. Saha, N. Sasaki, and K. Kimoto, “Gaussian monocycle pulse transmitter using 0.18  μm CMOS technology with on-chip integrated antennas for inter-chip UWB communication,” IEEE J. Solid-State Circuits 43, 1303–1312 (2008).
[Crossref]

T. Chu, J. Roderick, and H. Hashemi, “An integrated ultra-wideband timed array receiver in 0.13  μm CMOS using a path-sharing true time delay architecture,” IEEE J. Solid-State Circuits 42, 2834–2850 (2007).
[Crossref]

J. Roderick, H. Krishnaswamy, K. Newton, and H. Hashemi, “Silicon-based ultra-wideband beam-forming,” IEEE J. Solid-State Circuits 41, 1726–1739 (2006).
[Crossref]

IEEE Microwave Wireless Compon. Lett. (1)

S. Park and S. Jeon, “A 15-40  GHz CMOS true-time delay circuit for UWB multi-antenna systems,” IEEE Microwave Wireless Compon. Lett. 23, 149–151 (2013).
[Crossref]

IEEE Signal Process. Mag. (1)

R. Chavez-Santiago and I. Balasingham, “Ultra-wideband signals in medicine,” IEEE Signal Process. Mag. 31(6), 130–136 (2014).
[Crossref]

IEEE Trans. Antennas Propag. (1)

S. Kidera, T. Sakamoto, and T. Sato, “High-resolution 3-D imaging algorithm with an envelope of modified spheres for UWB through-the-wall radars,” IEEE Trans. Antennas Propag. 57, 3520–3529 (2009).
[Crossref]

IEEE Trans. Biomed. Circuits Syst. (1)

S. Brovoll, T. Berger, Y. Paichard, O. Aardal, T. S. Lande, and S. E. Hamran, “Time-lapse imaging of human heart motion with switched array UWB radar,” IEEE Trans. Biomed. Circuits Syst. 8, 704–715 (2014).
[Crossref]

IEEE Trans. Microwave Theory Tech. (3)

M. R. Mahfouz, C. Zhang, B. C. Merkl, M. J. Kuhn, and A. E. Fathy, “Investigation of high-accuracy indoor 3-D positioning using UWB technology,” IEEE Trans. Microwave Theory Tech. 56, 1316–1330 (2008).
[Crossref]

T. S. Chu and H. Hashemi, “True-time-delay-based multi-beam arrays,” IEEE Trans. Microwave Theory Tech. 61, 3072–3082 (2013).
[Crossref]

A. G. Yarovoy, T. G. Savelyev, P. J. Aubry, P. E. Lys, and L. P. Ligthart, “UWB array-based sensor for near-field imaging,” IEEE Trans. Microwave Theory Tech. 55, 1288–1295 (2007).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (1)

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
[Crossref]

Opt. Express (1)

Sci. Rep. (5)

X. Liang, J. Deng, H. Zhang, and T. A. Gulliver, “Ultra-wideband impulse radar through-wall detection of vital signs,” Sci. Rep. 8, 13367 (2018).
[Crossref]

H. Song, S. Sasada, T. Kadoya, M. Okada, K. Arihiro, X. Xiao, and T. Kikkawa, “Detectability of breast tumor by a hand-held impulse-radar detector: performance evaluation and pilot clinical study,” Sci. Rep. 7, 16353 (2017).
[Crossref]

A. Rahman, M. T. Islam, M. J. Singh, S. Kibria, and Md. Akhtaruzzaman, “Electromagnetic performances analysis of an ultra-wideband and flexible material antenna in microwave breast imaging: to implement a wearable medical bra,” Sci. Rep. 6, 38906 (2016).
[Crossref]

A. T. Mobashsher, A. Mahmoud, and A. M. Abbosh, “Portable wideband microwave imaging system for intracranial hemorrhage detection using improved back-projection algorithm with model of effective head permittivity,” Sci. Rep. 6, 20459 (2016).
[Crossref]

Y. Lee, J. Y. Park, Y. W. Choi, H. K. Park, S. H. Cho, S. H. Cho, and Y. H. Lim, “A novel non-contact heart rate monitor using impulse-radio ultra-wideband (IR-UWB) radar technology,” Sci. Rep. 8, 13053 (2018).
[Crossref]

Other (4)

A. O. Boryssenko, C. Craeye, and D. H. Schaubert, “Ultra-wide band near-field imaging system,” in IEEE Radar Conference, Boston (2007), pp. 402–407.

T. Chu and H. Hashemi, “A CMOS UWB camera with 7 × 7 simultaneous active pixels,” in IEEE International Solid-State Circuits Conference (2008), pp. 120–600.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference (2018), paper M2G.5.

T. S. Chu, “Silicon-based broadband short-range radar architectures and implementations,” Doctoral dissertation (University of Southern California, 2010), pp. 29–30.

Supplementary Material (1)

NameDescription
» Supplement 1       Supplementary Notes

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Multi-beam antenna arrays and delay line implementation using silicon waveguides. (a) The 1D multi-beam antenna array with three simultaneous outputs. Antennas A1 and A2 receive signals at different times depending on the angle of incidence. For the case of normal incidence (direction 1, red signal), two signals are combined coherently at output 2 after both passing through the same amount of delay of 2τ. For the case that the pulse impinges on the array from direction 2 (purple signal), the pulses received by antennas A1 and A2 are delayed by 3τ and τ, respectively, and combined coherently at output 3. (b) 2D multi-beam array. For normal incidence (direction 1), signals received by A1 to A4 experience the same delay (4τ) and are coherently combined at the center pixel. For a pulse impinging from direction 2, the pulses received by antennas A1 and A3 are delayed by 4τ while the pulses received by antennas A2 and A4 are delayed by 6τ and 2τ, respectively. The resulting four aligned pulses are coherently combined at the red pixel. (c) Single-mode and multi-mode silicon waveguides implemented in IME 180 nm silicon-on-insulator (SOI) photonic process and the corresponding mode profile at 1550 nm. (d) Delay cell microphotograph. Each delay cell, with delay of 9.8 ps, is implemented as a meandered waveguide structure, where 1.2 μm wide multi-mode waveguides (with loss of 0.3 dB/cm) are used for the straight sections and 500 nm wide single-mode waveguides are used for the bend structures enabling realization of compact delay cells.
Fig. 2.
Fig. 2. Implemented 11×11 nanophotonic near-field imager. (a) The structure of the photonic-assisted one-dimensional UWB antenna array including 1×2 array of UWB antennas that receive and upconvert UWB pulses into the optical domain using ring modulators. The output of each ring modulator is guided to an array of delay lines. An array of directional couplers with varying coupling lengths, interleaved with the delay lines, taps out equal optical power after each delay line. (b) Structure of the 11×11 imager consists of two 1D UWB antenna arrays serving as distribution networks and 11 arrays of 1D delay line columns. An array of 11×11 photodiodes, the imager pixels, are used to photodetect the outputs of all columns. The input light is split into four optical signals that are modulated by the UWB pulses received by the wideband antenna array. (c) Waveguide connections illustrating the delay cells, the waveguide crossings, and the directional couplers. (d) Microphotograph of the SiGe photodiode with responsivity of 0.75 A/W at 1550 nm and 3 dB bandwidth of more than 30 GHz. (e) Microphotograph of the ring modulator with a 3 dB bandwidth of more than 30 GHz. (f) Microphotograph of the 11×11 nanophotonic near-field imager integrated in the IME 180 nm silicon-on-insulator process.
Fig. 3.
Fig. 3. Wired and wireless characterization of the near-field imager. (a) Wired measurement setup for characterization of the imager chip. The output of an Avtech AVE2-C-5000 UWB pulse source generating 200 ps wide monocycles (with a frequency spectrum spread from 0.5 GHz to 5 GHz) is split into four branches using a power splitter. A four-channel digitally controlled electrical variable delay line is used to independently adjust the delay of each channel between 0 to 220 ps with a resolution of 0.06 ps (Supplementary Note S3 of Supplement 1), emulating an UWB signal impinging with different incidence angles. An array of power detectors are used to differentially read and detect the power of the pixels forming an 11×11 image after processing. (b) Wired measurement results showing a bright pixel at different locations for different electrical delay settings emulating different angles of incidence. (c) Wireless measurement setup. A 2×2 array of UWB Knight’s helm printed circuit board (PCB) antennas [25] are used to receive the UWB pulses. The UWB pulse generator drives a wideband antenna transmitting pulses toward the imager. To minimize the undesired reflections and the effect of the electromagnetic interference, the measurement setup is placed inside a shielded anechoic chamber. The distance between the transmit antenna and the receive antenna array is set to about 1 m. (d) Wireless measurement results for five different angles of incidence, where a pixel for each case is illuminated.
Fig. 4.
Fig. 4. Near-field imaging results. (a) Imaging measurement setup. The object is at a distance of about 0.5 m from the receive antenna array. The transmitter radiates UWB pulses toward the object and the reflected signals are received and processed in the nanophotonic imager chip. The dimensions of the target objects and their distance to the imager are chosen to ensure that the entire object is within the imager field-of-view. The transmit antenna, the target object, and the receive antenna array are placed inside a shielded anechoic chamber. (b) Three target objects and their near-field images formed using the implemented nanophotonic imager are shown.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

SR=2sin1(c0τd),
FOV=±sin1((N1)c0τd),