Abstract

A multitude of large-scale silicon photonic systems based on ring resonators have been envisioned for applications ranging from biomedical sensing to quantum computing and machine learning. Yet, due to the lack of a scalable solution for controlling ring resonators, practical demonstrations have been limited to systems with only a few rings. Here, we demonstrate that large systems can be controlled by using only doped waveguide elements inside their rings while preserving their area and cost. We measure the large photoconductive changes of the waveguides for monitoring the rings’ resonance conditions across high-dynamic ranges and leverage their thermo-optic effects for tuning. This allows us to control ring resonators without requiring additional components, complex tuning algorithms, or additional electrical I/Os. We demonstrate automatic resonance alignment of 31 rings of a 16×16 switch and of a 14-ring coupled resonator optical waveguide, making them the largest, yet most compact, automatically controlled silicon ring resonator circuits to date, to the best of our knowledge.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Continuously tunable ultra-thin silicon waveguide optical delay line

Xinyi Wang, Linjie Zhou, Ruifei Li, Jingya Xie, Liangjun Lu, Kan Wu, and Jianping Chen
Optica 4(5) 507-515 (2017)

Penalty-free transmission in a silicon coupled resonator optical waveguide over the full C-band

Carlo Ferrari, Antonio Canciamilla, Francesco Morichetti, Marc Sorel, and Andrea Melloni
Opt. Lett. 36(19) 3948-3950 (2011)

Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers

Tae Joon Seok, Niels Quack, Sangyoon Han, Richard S. Muller, and Ming C. Wu
Optica 3(1) 64-70 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
    [Crossref]
  2. Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters [invited],” Opt. Express 26, 16022–16043 (2018).
    [Crossref]
  3. P. Dong, A. Melikyan, and K. Kim, “Commercializing silicon microring resonators: technical challenges and potential solutions,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SM4B.3.
  4. A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
    [Crossref]
  5. P. Dong, Y. Chen, T. Gu, L. L. Buhl, D. T. Neilson, and J. H. Sinsky, “Reconfigurable 100 Gb/s silicon photonic network-on-chip,” J. Opt. Commun. Netw. 7, A37–A43 (2015).
    [Crossref]
  6. D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Modular architecture for fully non-blocking silicon photonic switch fabric,” Microsyst. Nanoeng. 3, 16071 (2017).
    [Crossref]
  7. A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G.-R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20, 4454–4469 (2012).
    [Crossref]
  8. R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
    [Crossref]
  9. J. Wang, Z. Yao, T. Lei, and A. W. Poon, “Silicon coupled-resonator optical-waveguide-based biosensors using light-scattering pattern recognition with pixelized mode-field-intensity distributions,” Sci. Rep. 4, 7528 (2014).
    [Crossref]
  10. A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7, 7430 (2017).
    [Crossref]
  11. K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2014).
    [Crossref]
  12. Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20, 136–149 (2014).
    [Crossref]
  13. Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector,” Opt. Express 23, 360–372 (2015).
    [Crossref]
  14. J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic resonance alignment of high-order microring filters,” IEEE J. Quantum Electron. 51, 1–11 (2015).
    [Crossref]
  15. S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1, 129–136 (2014).
    [Crossref]
  16. Z. Wang, D. Paez, A. I. A. El-Rahman, P. Wang, L. Dow, J. C. Cartledge, and A. P. Knights, “Resonance control of a silicon micro-ring resonator modulator under high-speed operation using the intrinsic defect-mediated photocurrent,” Opt. Express 25, 24827–24836 (2017).
    [Crossref]
  17. C. V. Poulton, P. Dong, and Y. K. Chen, “Photoresistive microring heater with resonance control loop,” in Conference on Lasers and Electro-Optics (CLEO) (2015), paper SM2I.3.
  18. M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35  GHz bandwidth and phototransistors with 50  AW-1 response,” Opt. Express 17, 5193–5204 (2009).
    [Crossref]
  19. H. Jayatilleka, K. Murray, M. Á. Guillén-Torres, M. Caverley, R. Hu, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express 23, 25084–25097 (2015).
    [Crossref]
  20. H. Jayatilleka, H. Shoman, R. Boeck, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Automatic configuration and wavelength locking of coupled silicon ring resonators,” J. Lightwave Technol. 36, 210–218 (2018).
    [Crossref]
  21. A. S. Khope, T. Hirokawa, A. M. Netherton, M. Saeidi, Y. Xia, N. Volet, C. Schow, R. Helkey, L. Theogarajan, A. A. Saleh, J. E. Bowers, and R. C. Alferness, “On-chip wavelength locking for photonic switches,” Opt. Lett. 42, 4934–4937 (2017).
    [Crossref]
  22. D. Aguiar, M. Milanizadeh, E. Guglielmi, F. Zanetto, R. Ji, S. Zhou, Y. Li, X. Song, L. Zhang, M. Sampietro, F. Morichetti, and A. Melloni, “Automatic tuning of microring-based hitless reconfigurable add-drop filters,” in Optical Fiber Communications Conference and Exposition (OFC) (2018).
  23. F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
    [Crossref]
  24. L. Zhou, H. Zhu, H. Zhang, and J. Chen, “Photoconductive effect on p-i-p micro-heaters integrated in silicon microring resonators,” Opt. Express 22, 2141–2149 (2014).
    [Crossref]
  25. T. Baehr-Jones, M. Hochberg, and A. Scherer, “Photodetection in silicon beyond the band edge with surface states,” Opt. Express 16, 1659–1668 (2008).
    [Crossref]
  26. Q. Zhang, H. Yu, T. Qi, Z. Fu, X. Jiang, and J. Yang, “Enhancing bulk defect-mediated absorption in silicon waveguides by doping compensation technique,” Sci. Rep. 8, 9929 (2018).
    [Crossref]
  27. S. O. Kasap, Optoelectronics and Photonics: Principles and Practices (Prentice Hall, 2013).
  28. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science (CLEO/QELS) (IEEE, 2009).
  29. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010).
    [Crossref]
  30. H. Jayatilleka, K. Murray, M. Caverley, N. A. Jaeger, L. Chrostowski, and S. Shekhar, “Crosstalk in SOI microring resonator-based filters,” J. Lightwave. Technol. 34, 2886–2896 (2016).
    [Crossref]
  31. A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
    [Crossref]
  32. A. Annoni, E. Guglielmi, M. Carminati, S. Grillanda, P. Ciccarella, G. Ferrari, M. Sorel, M. J. Strain, M. Sampietro, A. Melloni, and F. Morichetti, “Automated routing and control of silicon photonic switch fabrics,” IEEE J. Sel. Top. Quantum Electron. 22, 169–176 (2016).
    [Crossref]
  33. D. Celo, P. Dumais, W. Liu, C. Zhang, D. J. Goodwill, J. Jiang, and E. Bernier, “Optical proximity correction in geometry sensitive silicon photonics waveguide crossings,” in 14th IEEE International Conference on Group IV Photonics (GFP) (2017).
  34. J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photon. Technol. Lett. 25, 1543–1546 (2013).
    [Crossref]
  35. “Fab: Advanced micro foundry (AMF) silicon photonics fabrication process,” 2018, https://www.cmc.ca/en/WhatWeOffer/Products/CMC-00200-03001.aspx .

2018 (4)

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Q. Zhang, H. Yu, T. Qi, Z. Fu, X. Jiang, and J. Yang, “Enhancing bulk defect-mediated absorption in silicon waveguides by doping compensation technique,” Sci. Rep. 8, 9929 (2018).
[Crossref]

H. Jayatilleka, H. Shoman, R. Boeck, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Automatic configuration and wavelength locking of coupled silicon ring resonators,” J. Lightwave Technol. 36, 210–218 (2018).
[Crossref]

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters [invited],” Opt. Express 26, 16022–16043 (2018).
[Crossref]

2017 (4)

Z. Wang, D. Paez, A. I. A. El-Rahman, P. Wang, L. Dow, J. C. Cartledge, and A. P. Knights, “Resonance control of a silicon micro-ring resonator modulator under high-speed operation using the intrinsic defect-mediated photocurrent,” Opt. Express 25, 24827–24836 (2017).
[Crossref]

A. S. Khope, T. Hirokawa, A. M. Netherton, M. Saeidi, Y. Xia, N. Volet, C. Schow, R. Helkey, L. Theogarajan, A. A. Saleh, J. E. Bowers, and R. C. Alferness, “On-chip wavelength locking for photonic switches,” Opt. Lett. 42, 4934–4937 (2017).
[Crossref]

D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Modular architecture for fully non-blocking silicon photonic switch fabric,” Microsyst. Nanoeng. 3, 16071 (2017).
[Crossref]

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7, 7430 (2017).
[Crossref]

2016 (2)

H. Jayatilleka, K. Murray, M. Caverley, N. A. Jaeger, L. Chrostowski, and S. Shekhar, “Crosstalk in SOI microring resonator-based filters,” J. Lightwave. Technol. 34, 2886–2896 (2016).
[Crossref]

A. Annoni, E. Guglielmi, M. Carminati, S. Grillanda, P. Ciccarella, G. Ferrari, M. Sorel, M. J. Strain, M. Sampietro, A. Melloni, and F. Morichetti, “Automated routing and control of silicon photonic switch fabrics,” IEEE J. Sel. Top. Quantum Electron. 22, 169–176 (2016).
[Crossref]

2015 (4)

2014 (6)

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2014).
[Crossref]

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20, 136–149 (2014).
[Crossref]

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
[Crossref]

J. Wang, Z. Yao, T. Lei, and A. W. Poon, “Silicon coupled-resonator optical-waveguide-based biosensors using light-scattering pattern recognition with pixelized mode-field-intensity distributions,” Sci. Rep. 4, 7528 (2014).
[Crossref]

L. Zhou, H. Zhu, H. Zhang, and J. Chen, “Photoconductive effect on p-i-p micro-heaters integrated in silicon microring resonators,” Opt. Express 22, 2141–2149 (2014).
[Crossref]

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1, 129–136 (2014).
[Crossref]

2013 (1)

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photon. Technol. Lett. 25, 1543–1546 (2013).
[Crossref]

2012 (2)

2010 (1)

2009 (3)

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35  GHz bandwidth and phototransistors with 50  AW-1 response,” Opt. Express 17, 5193–5204 (2009).
[Crossref]

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

2008 (1)

Aguiar, D.

D. Aguiar, M. Milanizadeh, E. Guglielmi, F. Zanetto, R. Ji, S. Zhou, Y. Li, X. Song, L. Zhang, M. Sampietro, F. Morichetti, and A. Melloni, “Automatic tuning of microring-based hitless reconfigurable add-drop filters,” in Optical Fiber Communications Conference and Exposition (OFC) (2018).

Al Qubaisi, K.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Alferness, R. C.

Alloatti, L.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Annoni, A.

A. Annoni, E. Guglielmi, M. Carminati, S. Grillanda, P. Ciccarella, G. Ferrari, M. Sorel, M. J. Strain, M. Sampietro, A. Melloni, and F. Morichetti, “Automated routing and control of silicon photonic switch fabrics,” IEEE J. Sel. Top. Quantum Electron. 22, 169–176 (2016).
[Crossref]

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1, 129–136 (2014).
[Crossref]

Asanovic, K.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

Asghari, M.

Atabaki, A. H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Baehr-Jones, T.

D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Modular architecture for fully non-blocking silicon photonic switch fabric,” Microsyst. Nanoeng. 3, 16071 (2017).
[Crossref]

T. Baehr-Jones, M. Hochberg, and A. Scherer, “Photodetection in silicon beyond the band edge with surface states,” Opt. Express 16, 1659–1668 (2008).
[Crossref]

Bahadori, M.

Baiocco, C. V.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Batten, C.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

Bergman, K.

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters [invited],” Opt. Express 26, 16022–16043 (2018).
[Crossref]

D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Modular architecture for fully non-blocking silicon photonic switch fabric,” Microsyst. Nanoeng. 3, 16071 (2017).
[Crossref]

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2014).
[Crossref]

Bernier, E.

D. Celo, P. Dumais, W. Liu, C. Zhang, D. J. Goodwill, J. Jiang, and E. Bernier, “Optical proximity correction in geometry sensitive silicon photonics waveguide crossings,” in 14th IEEE International Conference on Group IV Photonics (GFP) (2017).

Boeck, R.

Bowers, J. E.

Buhl, L. L.

Byun, H.

Calhoun, D. M.

D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Modular architecture for fully non-blocking silicon photonic switch fabric,” Microsyst. Nanoeng. 3, 16071 (2017).
[Crossref]

Canciamilla, A.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[Crossref]

Carminati, M.

A. Annoni, E. Guglielmi, M. Carminati, S. Grillanda, P. Ciccarella, G. Ferrari, M. Sorel, M. J. Strain, M. Sampietro, A. Melloni, and F. Morichetti, “Automated routing and control of silicon photonic switch fabrics,” IEEE J. Sel. Top. Quantum Electron. 22, 169–176 (2016).
[Crossref]

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1, 129–136 (2014).
[Crossref]

Cartledge, J. C.

Caverley, M.

Celo, D.

D. Celo, P. Dumais, W. Liu, C. Zhang, D. J. Goodwill, J. Jiang, and E. Bernier, “Optical proximity correction in geometry sensitive silicon photonics waveguide crossings,” in 14th IEEE International Conference on Group IV Photonics (GFP) (2017).

Chen, H.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Chen, J.

Chen, Y.

Chen, Y. K.

C. V. Poulton, P. Dong, and Y. K. Chen, “Photoresistive microring heater with resonance control loop,” in Conference on Lasers and Electro-Optics (CLEO) (2015), paper SM2I.3.

Cheng, Q.

Chrostowski, L.

Ciccarella, P.

A. Annoni, E. Guglielmi, M. Carminati, S. Grillanda, P. Ciccarella, G. Ferrari, M. Sorel, M. J. Strain, M. Sampietro, A. Melloni, and F. Morichetti, “Automated routing and control of silicon photonic switch fabrics,” IEEE J. Sel. Top. Quantum Electron. 22, 169–176 (2016).
[Crossref]

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1, 129–136 (2014).
[Crossref]

Cunningham, J. E.

Dahlem, M. S.

de Lima, T. F.

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7, 7430 (2017).
[Crossref]

DiLello, N. A.

Dong, P.

P. Dong, Y. Chen, T. Gu, L. L. Buhl, D. T. Neilson, and J. H. Sinsky, “Reconfigurable 100 Gb/s silicon photonic network-on-chip,” J. Opt. Commun. Netw. 7, A37–A43 (2015).
[Crossref]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010).
[Crossref]

C. V. Poulton, P. Dong, and Y. K. Chen, “Photoresistive microring heater with resonance control loop,” in Conference on Lasers and Electro-Optics (CLEO) (2015), paper SM2I.3.

P. Dong, A. Melikyan, and K. Kim, “Commercializing silicon microring resonators: technical challenges and potential solutions,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SM4B.3.

Dow, L.

Dumais, P.

D. Celo, P. Dumais, W. Liu, C. Zhang, D. J. Goodwill, J. Jiang, and E. Bernier, “Optical proximity correction in geometry sensitive silicon photonics waveguide crossings,” in 14th IEEE International Conference on Group IV Photonics (GFP) (2017).

El-Rahman, A. I. A.

Feng, D.

Feng, S.

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20, 136–149 (2014).
[Crossref]

Ferrari, C.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[Crossref]

Ferrari, G.

A. Annoni, E. Guglielmi, M. Carminati, S. Grillanda, P. Ciccarella, G. Ferrari, M. Sorel, M. J. Strain, M. Sampietro, A. Melloni, and F. Morichetti, “Automated routing and control of silicon photonic switch fabrics,” IEEE J. Sel. Top. Quantum Electron. 22, 169–176 (2016).
[Crossref]

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1, 129–136 (2014).
[Crossref]

Fu, Z.

Q. Zhang, H. Yu, T. Qi, Z. Fu, X. Jiang, and J. Yang, “Enhancing bulk defect-mediated absorption in silicon waveguides by doping compensation technique,” Sci. Rep. 8, 9929 (2018).
[Crossref]

Geis, M. W.

Gevorgyan, H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Goodwill, D. J.

D. Celo, P. Dumais, W. Liu, C. Zhang, D. J. Goodwill, J. Jiang, and E. Bernier, “Optical proximity correction in geometry sensitive silicon photonics waveguide crossings,” in 14th IEEE International Conference on Group IV Photonics (GFP) (2017).

Grein, M. E.

Grillanda, S.

A. Annoni, E. Guglielmi, M. Carminati, S. Grillanda, P. Ciccarella, G. Ferrari, M. Sorel, M. J. Strain, M. Sampietro, A. Melloni, and F. Morichetti, “Automated routing and control of silicon photonic switch fabrics,” IEEE J. Sel. Top. Quantum Electron. 22, 169–176 (2016).
[Crossref]

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1, 129–136 (2014).
[Crossref]

Gu, T.

Guglielmi, E.

A. Annoni, E. Guglielmi, M. Carminati, S. Grillanda, P. Ciccarella, G. Ferrari, M. Sorel, M. J. Strain, M. Sampietro, A. Melloni, and F. Morichetti, “Automated routing and control of silicon photonic switch fabrics,” IEEE J. Sel. Top. Quantum Electron. 22, 169–176 (2016).
[Crossref]

D. Aguiar, M. Milanizadeh, E. Guglielmi, F. Zanetto, R. Ji, S. Zhou, Y. Li, X. Song, L. Zhang, M. Sampietro, F. Morichetti, and A. Melloni, “Automatic tuning of microring-based hitless reconfigurable add-drop filters,” in Optical Fiber Communications Conference and Exposition (OFC) (2018).

Guillén-Torres, M. Á.

Helkey, R.

Hirokawa, T.

Hochberg, M.

D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Modular architecture for fully non-blocking silicon photonic switch fabric,” Microsyst. Nanoeng. 3, 16071 (2017).
[Crossref]

T. Baehr-Jones, M. Hochberg, and A. Scherer, “Photodetection in silicon beyond the band edge with surface states,” Opt. Express 16, 1659–1668 (2008).
[Crossref]

Holzwarth, C. W.

Hoyt, J. L.

Hu, R.

Ippen, E. P.

Jaeger, N. A.

H. Jayatilleka, K. Murray, M. Caverley, N. A. Jaeger, L. Chrostowski, and S. Shekhar, “Crosstalk in SOI microring resonator-based filters,” J. Lightwave. Technol. 34, 2886–2896 (2016).
[Crossref]

Jaeger, N. A. F.

Jayatilleka, H.

Ji, R.

D. Aguiar, M. Milanizadeh, E. Guglielmi, F. Zanetto, R. Ji, S. Zhou, Y. Li, X. Song, L. Zhang, M. Sampietro, F. Morichetti, and A. Melloni, “Automatic tuning of microring-based hitless reconfigurable add-drop filters,” in Optical Fiber Communications Conference and Exposition (OFC) (2018).

Jiang, J.

D. Celo, P. Dumais, W. Liu, C. Zhang, D. J. Goodwill, J. Jiang, and E. Bernier, “Optical proximity correction in geometry sensitive silicon photonics waveguide crossings,” in 14th IEEE International Conference on Group IV Photonics (GFP) (2017).

Jiang, X.

Q. Zhang, H. Yu, T. Qi, Z. Fu, X. Jiang, and J. Yang, “Enhancing bulk defect-mediated absorption in silicon waveguides by doping compensation technique,” Sci. Rep. 8, 9929 (2018).
[Crossref]

Joshi, A.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

Kartner, F. X.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

Kärtner, F. X.

Kasap, S. O.

S. O. Kasap, Optoelectronics and Photonics: Principles and Practices (Prentice Hall, 2013).

Khilo, A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G.-R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20, 4454–4469 (2012).
[Crossref]

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

Khope, A. S.

Kim, K.

P. Dong, A. Melikyan, and K. Kim, “Commercializing silicon microring resonators: technical challenges and potential solutions,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SM4B.3.

Knights, A. P.

Krishnamoorthy, A. V.

Kruger, S. A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Kumar, R.

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
[Crossref]

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photon. Technol. Lett. 25, 1543–1546 (2013).
[Crossref]

Lei, T.

J. Wang, Z. Yao, T. Lei, and A. W. Poon, “Silicon coupled-resonator optical-waveguide-based biosensors using light-scattering pattern recognition with pixelized mode-field-intensity distributions,” Sci. Rep. 4, 7528 (2014).
[Crossref]

Lennon, D. M.

Li, G.

Li, H.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

Li, Y.

Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector,” Opt. Express 23, 360–372 (2015).
[Crossref]

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20, 136–149 (2014).
[Crossref]

D. Aguiar, M. Milanizadeh, E. Guglielmi, F. Zanetto, R. Ji, S. Zhou, Y. Li, X. Song, L. Zhang, M. Sampietro, F. Morichetti, and A. Melloni, “Automatic tuning of microring-based hitless reconfigurable add-drop filters,” in Optical Fiber Communications Conference and Exposition (OFC) (2018).

Liang, H.

Liu, W.

D. Celo, P. Dumais, W. Liu, C. Zhang, D. J. Goodwill, J. Jiang, and E. Bernier, “Optical proximity correction in geometry sensitive silicon photonics waveguide crossings,” in 14th IEEE International Conference on Group IV Photonics (GFP) (2017).

Liu, Y.

D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Modular architecture for fully non-blocking silicon photonic switch fabric,” Microsyst. Nanoeng. 3, 16071 (2017).
[Crossref]

Luck, D. L.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science (CLEO/QELS) (IEEE, 2009).

Luo, X.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Lyszczarz, T. M.

Mak, J. C. C.

J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic resonance alignment of high-order microring filters,” IEEE J. Quantum Electron. 51, 1–11 (2015).
[Crossref]

Melikyan, A.

P. Dong, A. Melikyan, and K. Kim, “Commercializing silicon microring resonators: technical challenges and potential solutions,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SM4B.3.

Melloni, A.

A. Annoni, E. Guglielmi, M. Carminati, S. Grillanda, P. Ciccarella, G. Ferrari, M. Sorel, M. J. Strain, M. Sampietro, A. Melloni, and F. Morichetti, “Automated routing and control of silicon photonic switch fabrics,” IEEE J. Sel. Top. Quantum Electron. 22, 169–176 (2016).
[Crossref]

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1, 129–136 (2014).
[Crossref]

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[Crossref]

D. Aguiar, M. Milanizadeh, E. Guglielmi, F. Zanetto, R. Ji, S. Zhou, Y. Li, X. Song, L. Zhang, M. Sampietro, F. Morichetti, and A. Melloni, “Automatic tuning of microring-based hitless reconfigurable add-drop filters,” in Optical Fiber Communications Conference and Exposition (OFC) (2018).

Meng, H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Mikkelsen, J. C.

J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic resonance alignment of high-order microring filters,” IEEE J. Quantum Electron. 51, 1–11 (2015).
[Crossref]

Milanizadeh, M.

D. Aguiar, M. Milanizadeh, E. Guglielmi, F. Zanetto, R. Ji, S. Zhou, Y. Li, X. Song, L. Zhang, M. Sampietro, F. Morichetti, and A. Melloni, “Automatic tuning of microring-based hitless reconfigurable add-drop filters,” in Optical Fiber Communications Conference and Exposition (OFC) (2018).

Moazeni, S.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Mookherjea, S.

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
[Crossref]

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photon. Technol. Lett. 25, 1543–1546 (2013).
[Crossref]

Morichetti, F.

A. Annoni, E. Guglielmi, M. Carminati, S. Grillanda, P. Ciccarella, G. Ferrari, M. Sorel, M. J. Strain, M. Sampietro, A. Melloni, and F. Morichetti, “Automated routing and control of silicon photonic switch fabrics,” IEEE J. Sel. Top. Quantum Electron. 22, 169–176 (2016).
[Crossref]

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1, 129–136 (2014).
[Crossref]

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[Crossref]

D. Aguiar, M. Milanizadeh, E. Guglielmi, F. Zanetto, R. Ji, S. Zhou, Y. Li, X. Song, L. Zhang, M. Sampietro, F. Morichetti, and A. Melloni, “Automatic tuning of microring-based hitless reconfigurable add-drop filters,” in Optical Fiber Communications Conference and Exposition (OFC) (2018).

Moss, B.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

Motamedi, A.

Murray, K.

Nahmias, M. A.

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7, 7430 (2017).
[Crossref]

Neilson, D. T.

Nejadmalayeri, A. H.

Netherton, A. M.

Nielson, G. N.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science (CLEO/QELS) (IEEE, 2009).

Nikolova, D.

D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Modular architecture for fully non-blocking silicon photonic switch fabric,” Microsyst. Nanoeng. 3, 16071 (2017).
[Crossref]

Notaros, J.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Novack, A.

D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Modular architecture for fully non-blocking silicon photonic switch fabric,” Microsyst. Nanoeng. 3, 16071 (2017).
[Crossref]

Ong, J. R.

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
[Crossref]

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photon. Technol. Lett. 25, 1543–1546 (2013).
[Crossref]

Orcutt, J.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

Orcutt, J. S.

Padmaraju, K.

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2014).
[Crossref]

Paez, D.

Pavanello, F.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Peng, M. Y.

Perrott, M.

Poon, A. W.

Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector,” Opt. Express 23, 360–372 (2015).
[Crossref]

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20, 136–149 (2014).
[Crossref]

J. Wang, Z. Yao, T. Lei, and A. W. Poon, “Silicon coupled-resonator optical-waveguide-based biosensors using light-scattering pattern recognition with pixelized mode-field-intensity distributions,” Sci. Rep. 4, 7528 (2014).
[Crossref]

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Poon, J. K. S.

J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic resonance alignment of high-order microring filters,” IEEE J. Quantum Electron. 51, 1–11 (2015).
[Crossref]

Popovic, M. A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G.-R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20, 4454–4469 (2012).
[Crossref]

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

Poulton, C. V.

C. V. Poulton, P. Dong, and Y. K. Chen, “Photoresistive microring heater with resonance control loop,” in Conference on Lasers and Electro-Optics (CLEO) (2015), paper SM2I.3.

Prucnal, P. R.

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7, 7430 (2017).
[Crossref]

Qi, T.

Q. Zhang, H. Yu, T. Qi, Z. Fu, X. Jiang, and J. Yang, “Enhancing bulk defect-mediated absorption in silicon waveguides by doping compensation technique,” Sci. Rep. 8, 9929 (2018).
[Crossref]

Qian, W.

Ram, R. J.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G.-R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20, 4454–4469 (2012).
[Crossref]

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

Rumley, S.

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters [invited],” Opt. Express 26, 16022–16043 (2018).
[Crossref]

D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Modular architecture for fully non-blocking silicon photonic switch fabric,” Microsyst. Nanoeng. 3, 16071 (2017).
[Crossref]

Sacher, W. D.

J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic resonance alignment of high-order microring filters,” IEEE J. Quantum Electron. 51, 1–11 (2015).
[Crossref]

Saeidi, M.

Saleh, A. A.

Sampietro, M.

A. Annoni, E. Guglielmi, M. Carminati, S. Grillanda, P. Ciccarella, G. Ferrari, M. Sorel, M. J. Strain, M. Sampietro, A. Melloni, and F. Morichetti, “Automated routing and control of silicon photonic switch fabrics,” IEEE J. Sel. Top. Quantum Electron. 22, 169–176 (2016).
[Crossref]

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1, 129–136 (2014).
[Crossref]

D. Aguiar, M. Milanizadeh, E. Guglielmi, F. Zanetto, R. Ji, S. Zhou, Y. Li, X. Song, L. Zhang, M. Sampietro, F. Morichetti, and A. Melloni, “Automatic tuning of microring-based hitless reconfigurable add-drop filters,” in Optical Fiber Communications Conference and Exposition (OFC) (2018).

Sander, M. Y.

Savanier, M.

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
[Crossref]

Scherer, A.

Schow, C.

Shafiiha, R.

Shastri, B. J.

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7, 7430 (2017).
[Crossref]

Shekhar, S.

Shoman, H.

Sinsky, J. H.

Smith, H. I.

Song, X.

D. Aguiar, M. Milanizadeh, E. Guglielmi, F. Zanetto, R. Ji, S. Zhou, Y. Li, X. Song, L. Zhang, M. Sampietro, F. Morichetti, and A. Melloni, “Automatic tuning of microring-based hitless reconfigurable add-drop filters,” in Optical Fiber Communications Conference and Exposition (OFC) (2018).

Sorace-Agaskar, C. M.

Sorel, M.

A. Annoni, E. Guglielmi, M. Carminati, S. Grillanda, P. Ciccarella, G. Ferrari, M. Sorel, M. J. Strain, M. Sampietro, A. Melloni, and F. Morichetti, “Automated routing and control of silicon photonic switch fabrics,” IEEE J. Sel. Top. Quantum Electron. 22, 169–176 (2016).
[Crossref]

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1, 129–136 (2014).
[Crossref]

Spector, S. J.

Stojanovic, V.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

Stojanovic, V. M.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Strain, M.

Strain, M. J.

A. Annoni, E. Guglielmi, M. Carminati, S. Grillanda, P. Ciccarella, G. Ferrari, M. Sorel, M. J. Strain, M. Sampietro, A. Melloni, and F. Morichetti, “Automated routing and control of silicon photonic switch fabrics,” IEEE J. Sel. Top. Quantum Electron. 22, 169–176 (2016).
[Crossref]

Sun, C.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Sun, J.

Tait, A. N.

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7, 7430 (2017).
[Crossref]

Theogarajan, L.

Trotter, D. C.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science (CLEO/QELS) (IEEE, 2009).

Volet, N.

Wade, M. T.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Wang, I.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Wang, J.

J. Wang, Z. Yao, T. Lei, and A. W. Poon, “Silicon coupled-resonator optical-waveguide-based biosensors using light-scattering pattern recognition with pixelized mode-field-intensity distributions,” Sci. Rep. 4, 7528 (2014).
[Crossref]

Wang, J. P.

Wang, P.

Wang, Z.

Watts, M. R.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science (CLEO/QELS) (IEEE, 2009).

Wu, A. X.

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7, 7430 (2017).
[Crossref]

Xia, Y.

Xu, F.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Xue, T.

J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic resonance alignment of high-order microring filters,” IEEE J. Quantum Electron. 51, 1–11 (2015).
[Crossref]

Yang, J.

Q. Zhang, H. Yu, T. Qi, Z. Fu, X. Jiang, and J. Yang, “Enhancing bulk defect-mediated absorption in silicon waveguides by doping compensation technique,” Sci. Rep. 8, 9929 (2018).
[Crossref]

Yao, Z.

J. Wang, Z. Yao, T. Lei, and A. W. Poon, “Silicon coupled-resonator optical-waveguide-based biosensors using light-scattering pattern recognition with pixelized mode-field-intensity distributions,” Sci. Rep. 4, 7528 (2014).
[Crossref]

Yong, Z.

J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic resonance alignment of high-order microring filters,” IEEE J. Quantum Electron. 51, 1–11 (2015).
[Crossref]

Yoon, J. U.

Young, R. W.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science (CLEO/QELS) (IEEE, 2009).

Yu, H.

Q. Zhang, H. Yu, T. Qi, Z. Fu, X. Jiang, and J. Yang, “Enhancing bulk defect-mediated absorption in silicon waveguides by doping compensation technique,” Sci. Rep. 8, 9929 (2018).
[Crossref]

Zanetto, F.

D. Aguiar, M. Milanizadeh, E. Guglielmi, F. Zanetto, R. Ji, S. Zhou, Y. Li, X. Song, L. Zhang, M. Sampietro, F. Morichetti, and A. Melloni, “Automatic tuning of microring-based hitless reconfigurable add-drop filters,” in Optical Fiber Communications Conference and Exposition (OFC) (2018).

Zhang, B.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Zhang, C.

D. Celo, P. Dumais, W. Liu, C. Zhang, D. J. Goodwill, J. Jiang, and E. Bernier, “Optical proximity correction in geometry sensitive silicon photonics waveguide crossings,” in 14th IEEE International Conference on Group IV Photonics (GFP) (2017).

Zhang, H.

Zhang, L.

D. Aguiar, M. Milanizadeh, E. Guglielmi, F. Zanetto, R. Ji, S. Zhou, Y. Li, X. Song, L. Zhang, M. Sampietro, F. Morichetti, and A. Melloni, “Automatic tuning of microring-based hitless reconfigurable add-drop filters,” in Optical Fiber Communications Conference and Exposition (OFC) (2018).

Zhang, Q.

Q. Zhang, H. Yu, T. Qi, Z. Fu, X. Jiang, and J. Yang, “Enhancing bulk defect-mediated absorption in silicon waveguides by doping compensation technique,” Sci. Rep. 8, 9929 (2018).
[Crossref]

Zhang, Y.

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20, 136–149 (2014).
[Crossref]

Zhou, E.

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7, 7430 (2017).
[Crossref]

Zhou, G.-R.

Zhou, L.

Zhou, S.

D. Aguiar, M. Milanizadeh, E. Guglielmi, F. Zanetto, R. Ji, S. Zhou, Y. Li, X. Song, L. Zhang, M. Sampietro, F. Morichetti, and A. Melloni, “Automatic tuning of microring-based hitless reconfigurable add-drop filters,” in Optical Fiber Communications Conference and Exposition (OFC) (2018).

Zhu, H.

Zortman, W. A.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science (CLEO/QELS) (IEEE, 2009).

IEEE J. Quantum Electron. (1)

J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic resonance alignment of high-order microring filters,” IEEE J. Quantum Electron. 51, 1–11 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20, 136–149 (2014).
[Crossref]

A. Annoni, E. Guglielmi, M. Carminati, S. Grillanda, P. Ciccarella, G. Ferrari, M. Sorel, M. J. Strain, M. Sampietro, A. Melloni, and F. Morichetti, “Automated routing and control of silicon photonic switch fabrics,” IEEE J. Sel. Top. Quantum Electron. 22, 169–176 (2016).
[Crossref]

IEEE Micro (1)

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photon. Technol. Lett. 25, 1543–1546 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Lightwave. Technol. (1)

H. Jayatilleka, K. Murray, M. Caverley, N. A. Jaeger, L. Chrostowski, and S. Shekhar, “Crosstalk in SOI microring resonator-based filters,” J. Lightwave. Technol. 34, 2886–2896 (2016).
[Crossref]

J. Opt. Commun. Netw. (1)

Laser Photon. Rev. (1)

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[Crossref]

Microsyst. Nanoeng. (1)

D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Modular architecture for fully non-blocking silicon photonic switch fabric,” Microsyst. Nanoeng. 3, 16071 (2017).
[Crossref]

Nanophotonics (1)

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2014).
[Crossref]

Nat. Commun. (1)

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
[Crossref]

Nature (1)

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Opt. Express (9)

A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G.-R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20, 4454–4469 (2012).
[Crossref]

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters [invited],” Opt. Express 26, 16022–16043 (2018).
[Crossref]

Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector,” Opt. Express 23, 360–372 (2015).
[Crossref]

Z. Wang, D. Paez, A. I. A. El-Rahman, P. Wang, L. Dow, J. C. Cartledge, and A. P. Knights, “Resonance control of a silicon micro-ring resonator modulator under high-speed operation using the intrinsic defect-mediated photocurrent,” Opt. Express 25, 24827–24836 (2017).
[Crossref]

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35  GHz bandwidth and phototransistors with 50  AW-1 response,” Opt. Express 17, 5193–5204 (2009).
[Crossref]

H. Jayatilleka, K. Murray, M. Á. Guillén-Torres, M. Caverley, R. Hu, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express 23, 25084–25097 (2015).
[Crossref]

L. Zhou, H. Zhu, H. Zhang, and J. Chen, “Photoconductive effect on p-i-p micro-heaters integrated in silicon microring resonators,” Opt. Express 22, 2141–2149 (2014).
[Crossref]

T. Baehr-Jones, M. Hochberg, and A. Scherer, “Photodetection in silicon beyond the band edge with surface states,” Opt. Express 16, 1659–1668 (2008).
[Crossref]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010).
[Crossref]

Opt. Lett. (1)

Optica (1)

Proc. IEEE (1)

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Sci. Rep. (3)

Q. Zhang, H. Yu, T. Qi, Z. Fu, X. Jiang, and J. Yang, “Enhancing bulk defect-mediated absorption in silicon waveguides by doping compensation technique,” Sci. Rep. 8, 9929 (2018).
[Crossref]

J. Wang, Z. Yao, T. Lei, and A. W. Poon, “Silicon coupled-resonator optical-waveguide-based biosensors using light-scattering pattern recognition with pixelized mode-field-intensity distributions,” Sci. Rep. 4, 7528 (2014).
[Crossref]

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7, 7430 (2017).
[Crossref]

Other (7)

P. Dong, A. Melikyan, and K. Kim, “Commercializing silicon microring resonators: technical challenges and potential solutions,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SM4B.3.

C. V. Poulton, P. Dong, and Y. K. Chen, “Photoresistive microring heater with resonance control loop,” in Conference on Lasers and Electro-Optics (CLEO) (2015), paper SM2I.3.

S. O. Kasap, Optoelectronics and Photonics: Principles and Practices (Prentice Hall, 2013).

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science (CLEO/QELS) (IEEE, 2009).

D. Aguiar, M. Milanizadeh, E. Guglielmi, F. Zanetto, R. Ji, S. Zhou, Y. Li, X. Song, L. Zhang, M. Sampietro, F. Morichetti, and A. Melloni, “Automatic tuning of microring-based hitless reconfigurable add-drop filters,” in Optical Fiber Communications Conference and Exposition (OFC) (2018).

“Fab: Advanced micro foundry (AMF) silicon photonics fabrication process,” 2018, https://www.cmc.ca/en/WhatWeOffer/Products/CMC-00200-03001.aspx .

D. Celo, P. Dumais, W. Liu, C. Zhang, D. J. Goodwill, J. Jiang, and E. Bernier, “Optical proximity correction in geometry sensitive silicon photonics waveguide crossings,” in 14th IEEE International Conference on Group IV Photonics (GFP) (2017).

Supplementary Material (1)

NameDescription
» Supplement 1       All supplementary materials

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Photoconductivity of a silicon nanowire waveguide. Cross sections of a silicon waveguide illustrating the transport of a photogenerated electron and hole towards the terminals at different velocities. The additional electrons injected from the negative terminal in order to maintain the charge neutrality of the semiconductor result in a large net gain in the QE. The center of the waveguide is lightly doped (5×1017cm3), whereas the sides are highly doped to form ohmic contacts. The overlap of the simulated TE optical mode at 1.55 μm with the waveguide is also shown.
Fig. 2.
Fig. 2. Photoconductivity response of a silicon nanowire waveguide. Photocurrent and QE measured from a 100 μm long photoconductive waveguide as functions of the (a) bias voltage (at an input power of 10 μW). The large gain in QE reduces beyond 1.4 V due to the electrons and holes reaching their respective saturation velocities. The solid line is a polynomial fit to the measurement. Measured (b) photocurrent and (c) QE as functions of the input optical power (at a bias voltage of 1 V). In (b), ±3σ variation of the IPD measurement at each input optical power is shown. In (c), the QE reduces with the input optical power due to saturation of the defect and surface states. The error bars shown in (c) correspond to the error in QE due to the ±3σ current measurement noise.
Fig. 3.
Fig. 3. Time-domain photodetection and thermo-optic tuning responses of a photoconductive heater. (a) Photodetection response of the device heater when the input light is modulated at 500 kHz. The rise time of the response is 0.28 μs, corresponding to a photodetection bandwidth of 570 kHz. (b) Thermo-optic response of the photoconductive heater measured by modulating a device integrated into a Mach–Zehnder interferometer with a 100 kHz square wave signal. The rise time of the response is 0.9 μs, corresponding to a 3 dB thermo-optic tuning bandwidth of 175 kHz.
Fig. 4.
Fig. 4. Integrated photoconductive heaters in a silicon ring resonator. (a) Illustration of a photoconductive heater integrated into the ring resonator with 8 μm radius (drawn to scale). The top SiO2 cladding is not shown. The inset shows an overlap of the simulated TE optical mode at 1.55 μm in the bent waveguide. (b) Measured drop-port transmission (left axis) and photocurrent from the photoconductive heater (right axis) of the ring as a function of the supplied electrical power to the heater. The ring can be set to be resonant with the input light by maximizing the photocurrent.
Fig. 5.
Fig. 5. 16×16 ring resonator switch. Microscope picture of the fabricated switch showing the inputs-(I1-I16), and bar-(B1B16) and cross-(C1C16) outputs. The three routing configurations demonstrated in this paper are indicated as diagonal, L1, and L16. The inset shows the microscope picture of a unit cell. The location of the photoconductive heater is shown as a resistor in the circuit.
Fig. 6.
Fig. 6. Programming the switch. (a) Maximum photocurrent measured in each ring’s photoconductive heater when tuning the 31 rings along the diagonal from I1 to C16. (b) Corresponding electrical powers supplied to the heaters that maximize the photocurrents. (c) Measured spectral responses for the as-fabricated and the after-configured switch along L1, L16, and diagonal paths. The simulated transfer function for the diagonal agrees well with the measured response near the peak wavelength. However, a mismatch exists away from the peak wavelength. This is because in simulation, we assumed that all of the rings not in the diagonal were tuned away from the peak wavelength by half of the FSR (i.e., turned off). However, in the experiment, the resonances of these rings were not controlled and the parasitic pathways formed through these rings increased the optical power collected away from the peak wavelength.
Fig. 7.
Fig. 7. Resonance alignment of 14-ring CROW. (a) Microscope picture of the fabricated 14-ring CROW. The inset illustrates the layout of photoconductive heaters in the rings. (b) Measured as-fabricated through- and drop-port spectra of the CROW. (c) Measured through- and drop-port spectra after tuning.

Metrics