Abstract

The measurement of chirality and its temporal evolution are crucial for the understanding of a large range of biological functions and chemical reactions. Steady-state circular dichroism (CD) is a standard analytical tool for measuring chirality in chemistry and biology. Nevertheless, its push into the ultrafast time domain and in the deep-ultraviolet has remained a challenge, with only some isolated reports of subnanosecond CD. Here, we present a broadband time-resolved CD spectrometer in the deep ultraviolet (UV) spectral range with femtosecond time resolution. The setup employs a photoelastic modulator to achieve shot-to-shot polarization switching of a 20 kHz pulse train of broadband femtosecond deep-UV pulses (250–370 nm). The resulting sequence of alternating left- and right-circularly polarized probe pulses is employed in a pump-probe scheme with shot-to-shot dispersive detection and thus allows for the acquisition of broadband CD spectra of ground- and excited-state species. Through polarization scrambling of the probe pulses prior to detection, artifact-free static and transient CD spectra of enantiopure [Ru(bpy)3]2+ are successfully recorded with a sensitivity of <2×105 OD (0.7mdeg). Due to its broadband deep-UV detection with unprecedented sensitivity, the measurement of ultrafast chirality changes in biological systems with amino-acid residues and peptides and of DNA oligomers is now feasible.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband transient dichroism spectroscopy in chiral molecules

Laureen Mangot, Gregory Taupier, Michelangelo Romeo, Alex Boeglin, Olivier Cregut, and Kokou D. (Honorat) Dorkenoo
Opt. Lett. 35(3) 381-383 (2010)

Broadband near UV to visible optical activity measurement using self-heterodyned method

Intae Eom, Sung-Hyun Ahn, Hanju Rhee, and Minhaeng Cho
Opt. Express 19(10) 10017-10028 (2011)

Optimized interferometric setup for chiral and achiral ultrafast IR spectroscopy

Biplab Dutta and Jan Helbing
Opt. Express 23(12) 16449-16465 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. D. Fasman, ed., Circular Dichroism and the Conformational Analysis of Biomolecules, 1996th ed. (Springer, 1996).
  2. R. A. Goldbeck, D. B. Kim-Shapiro, and D. S. Kliger, “Fast natural and magnetic circular dichroism spectroscopy,” Annu. Rev. Phys. Chem. 48, 453–479 (1997).
    [Crossref]
  3. J. Meyer-Ilse, D. Akimov, and B. Dietzek, “Recent advances in ultrafast time-resolved chirality measurements: perspective and outlook: ultrafast transient molecular chirality,” Laser Photon. Rev. 7, 495–505 (2013).
    [Crossref]
  4. K. Hiramatsu and T. Nagata, “Communication: broadband and ultrasensitive femtosecond time-resolved circular dichroism spectroscopy,” J. Chem. Phys. 143, 121102 (2015).
    [Crossref]
  5. V. Stadnytskyi, G. S. Orf, R. E. Blankenship, and S. Savikhin, “Near shot-noise limited time-resolved circular dichroism pump-probe spectrometer,” Rev. Sci. Instrum. 89, 033104 (2018).
    [Crossref]
  6. X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism spectroscopy: experimental details and applications,” Rev. Sci. Instrum. 60, 2614–2627 (1989).
    [Crossref]
  7. S. C. Bjorling, R. A. Goldbeck, S. J. Milder, C. E. Randall, J. W. Lewis, and D. S. Kliger, “Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism,” J. Phys. Chem. 95, 4685–4694 (1991).
    [Crossref]
  8. C. Niezborala and F. Hache, “Measuring the dynamics of circular dichroism in a pump-probe experiment with a Babinet-Soleil compensator,” J. Opt. Soc. Am. B 23, 2418–2424 (2006).
    [Crossref]
  9. L. Mangot, G. Taupier, M. Romeo, A. Boeglin, O. Cregut, and K. D. H. Dorkenoo, “Broadband transient dichroism spectroscopy in chiral molecules,” Opt. Lett. 35, 381–383 (2010).
    [Crossref]
  10. A. Trifonov, I. Buchvarov, A. Lohr, F. Würthner, and T. Fiebig, “Broadband femtosecond circular dichroism spectrometer with white-light polarization control,” Rev. Sci. Instrum. 81, 043104 (2010).
    [Crossref]
  11. P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29, 1686–1688 (2004).
    [Crossref]
  12. A. Steinbacher, H. Hildenbrand, S. Schott, J. Buback, M. Schmid, P. Nuernberger, and T. Brixner, “Generating laser-pulse enantiomers,” Opt. Express 25, 21735–21752 (2017).
    [Crossref]
  13. F. Preda, A. Perri, J. Réhault, B. Dutta, J. Helbing, G. Cerullo, and D. Polli, “Time-domain measurement of optical activity by an ultrastable common-path interferometer,” Opt. Lett. 43, 1882–1885 (2018).
    [Crossref]
  14. G. Auböck, C. Consani, F. V. Mourik, and M. Chergui, “Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption,” Opt. Lett. 37, 2337–2339 (2012).
    [Crossref]
  15. G. Auböck, C. Consani, R. Monni, A. Cannizzo, F. van Mourik, and M. Chergui, “Femtosecond pump/supercontinuum-probe setup with 20  kHz repetition rate,” Rev. Sci. Instrum. 83, 093105 (2012).
    [Crossref]
  16. M. Bonmarin and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality 21, E298–E306 (2009).
    [Crossref]
  17. J. Helbing and M. Bonmarin, “Vibrational circular dichroism signal enhancement using self-heterodyning with elliptically polarized laser pulses,” J. Chem. Phys. 131, 174507 (2009).
    [Crossref]
  18. T. Dartigalongue and F. Hache, “Precise alignment of a longitudinal Pockels cell for time-resolved circular dichroism experiments,” J. Opt. Soc. Am. B 20, 1780–1787 (2003).
    [Crossref]
  19. B. Dutta and J. Helbing, “Optimized interferometric setup for chiral and achiral ultrafast IR spectroscopy,” Opt. Express 23, 16449–16465 (2015).
    [Crossref]
  20. B. Wang, E. Hinds, and E. Krivoy, “Basic optical properties of the photoelastic modulator part II: residual birefringence in the optical element,” Proc. SPIE 7461, 746110 (2009).
    [Crossref]
  21. A. Picchiotti, V. I. Prokhorenko, and R. J. D. Miller, “A closed-loop pump-driven wire-guided flow jet for ultrafast spectroscopy of liquid samples,” Rev. Sci. Instrum. 86, 093105 (2015).
    [Crossref]
  22. A. Davidsson, B. Nordén, and S. Seth, “Measurement of oriented circular dichroism,” Chem. Phys. Lett. 70, 313–316 (1980).
    [Crossref]
  23. S. Schott, A. Steinbacher, J. Buback, P. Nuernberger, and T. Brixner, “Generalized magic angle for time-resolved spectroscopy with laser pulses of arbitrary ellipticity,” J. Phys. B 47, 124014 (2014).
    [Crossref]
  24. D. Che, R. A. Goldbeck, and D. S. Kliger, “Theory of natural circular dichroism in molecules oriented by photoselection,” J. Chem. Phys. 100, 8602–8613 (1994).
    [Crossref]
  25. M. Cho, “Two-dimensional circularly polarized pump-probe spectroscopy,” J. Chem. Phys. 119, 7003–7016 (2003).
    [Crossref]
  26. X. Xie and J. D. Simon, “Picosecond circular dichroism spectroscopy: a Jones matrix analysis,” J. Opt. Soc. Am. B 7, 1673–1684 (1990).
    [Crossref]
  27. V. Joshi and P. K. Ghosh, “Spectral evidence of spontaneous racemic and pseudoracemic interactions between optically active poly(pyridyl) metal chelates adsorbed on smectite clays,” J. Am. Chem. Soc. 111, 5604–5612 (1989).
    [Crossref]
  28. R. Puttreddy, J. A. Hutchison, Y. Gorodetski, J. Harrowfield, and K. Rissanen, “Enantiomer separation of tris(2, 2-bipyridine)ruthenium(II): interaction of a D3-symmetric cation with a C2-symmetric anion,” Cryst. Growth Des. 15, 1559–1563 (2015).
    [Crossref]
  29. J. Lacour and D. Moraleda, “Chiral anion-mediated asymmetric ion pairing chemistry,” Chem. Commun. 46, 7073–7089 (2009).
    [Crossref]
  30. O. Maury, J. Lacour, and H. L. Bozec, “Diastereoselective homochiral self-assembly between anions and cation in solution,” Eur. J. Inorg. Chem. 2001, 201–204 (2001).
    [Crossref]
  31. J. Lacour, C. Ginglinger, C. Grivet, and G. Bernardinelli, “Synthesis and resolution of the configurationally stable tris(tetrachlorobenzenediolato)phosphate(V) ion,” Angew. Chem. Int. Ed. 36, 608–610 (1997).
    [Crossref]
  32. F. Favarger, C. Goujon-Ginglinger, D. Monchaud, and J. Lacour, “Large-scale synthesis and resolution of TRISPHAT [tris(tetrachlorobenzenediolato) phosphate(V)] anion,” J. Org. Chem. 69, 8521–8524 (2004).
    [Crossref]
  33. J. Lacour, S. Torche-Haldimann, and J. J. Jodry, “Ion pair chromatographic resolution of tris(diimine)ruthenium(ii) complexes using TRISPHAT anions as resolving agents,” Chem. Commun. 0, 1733–1734 (1998).
    [Crossref]
  34. D. Monchaud, J. J. Jodry, D. Pomeranc, V. Heitz, J.-C. Chambron, J.-P. Sauvage, and J. Lacour, “Ion-pair-mediated asymmetric synthesis of a configurationally stable mononuclear tris(diimine)-iron(II) complex,” Angew. Chem. Int. Ed. 41, 2423–2425 (2002).
    [Crossref]
  35. M. G. N. Reddy, R. Ballesteros Garrido, J. Lacour, and S. Caldarelli, “Determination of Labile chiral supramolecular ion pairs by chromatographic NMR spectroscopy,” Angew. Chem. Int. Ed. 52, 3255–3258 (2013).
    [Crossref]
  36. B. Bosnich, “Application of exciton theory to the determination of the absolute configurations of inorganic complexes,” Acc. Chem. Res. 2, 266–273 (1969).
    [Crossref]
  37. C. Niezborala and F. Hache, “Excited-state absorption and circular dichroism of ruthenium(II) tris(phenanthroline) in the ultraviolet region,” J. Phys. Chem. A 111, 7732–7735 (2007).
    [Crossref]
  38. D. H. Oh and S. G. Boxer, “Stark effect spectra of Ru(diimine)32+ complexes,” J. Am. Chem. Soc. 111, 1130–1131 (1989).
    [Crossref]
  39. A. Cannizzo, F. V. Mourik, W. Gawelda, G. Zgrablic, C. Bressler, and M. Chergui, “Broadband femtosecond fluorescence spectroscopy of [Ru(bpy)3]2+,” Angew. Chem. 118, 3246–3248 (2006).
    [Crossref]

2018 (2)

V. Stadnytskyi, G. S. Orf, R. E. Blankenship, and S. Savikhin, “Near shot-noise limited time-resolved circular dichroism pump-probe spectrometer,” Rev. Sci. Instrum. 89, 033104 (2018).
[Crossref]

F. Preda, A. Perri, J. Réhault, B. Dutta, J. Helbing, G. Cerullo, and D. Polli, “Time-domain measurement of optical activity by an ultrastable common-path interferometer,” Opt. Lett. 43, 1882–1885 (2018).
[Crossref]

2017 (1)

2015 (4)

B. Dutta and J. Helbing, “Optimized interferometric setup for chiral and achiral ultrafast IR spectroscopy,” Opt. Express 23, 16449–16465 (2015).
[Crossref]

K. Hiramatsu and T. Nagata, “Communication: broadband and ultrasensitive femtosecond time-resolved circular dichroism spectroscopy,” J. Chem. Phys. 143, 121102 (2015).
[Crossref]

A. Picchiotti, V. I. Prokhorenko, and R. J. D. Miller, “A closed-loop pump-driven wire-guided flow jet for ultrafast spectroscopy of liquid samples,” Rev. Sci. Instrum. 86, 093105 (2015).
[Crossref]

R. Puttreddy, J. A. Hutchison, Y. Gorodetski, J. Harrowfield, and K. Rissanen, “Enantiomer separation of tris(2, 2-bipyridine)ruthenium(II): interaction of a D3-symmetric cation with a C2-symmetric anion,” Cryst. Growth Des. 15, 1559–1563 (2015).
[Crossref]

2014 (1)

S. Schott, A. Steinbacher, J. Buback, P. Nuernberger, and T. Brixner, “Generalized magic angle for time-resolved spectroscopy with laser pulses of arbitrary ellipticity,” J. Phys. B 47, 124014 (2014).
[Crossref]

2013 (2)

M. G. N. Reddy, R. Ballesteros Garrido, J. Lacour, and S. Caldarelli, “Determination of Labile chiral supramolecular ion pairs by chromatographic NMR spectroscopy,” Angew. Chem. Int. Ed. 52, 3255–3258 (2013).
[Crossref]

J. Meyer-Ilse, D. Akimov, and B. Dietzek, “Recent advances in ultrafast time-resolved chirality measurements: perspective and outlook: ultrafast transient molecular chirality,” Laser Photon. Rev. 7, 495–505 (2013).
[Crossref]

2012 (2)

G. Auböck, C. Consani, F. V. Mourik, and M. Chergui, “Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption,” Opt. Lett. 37, 2337–2339 (2012).
[Crossref]

G. Auböck, C. Consani, R. Monni, A. Cannizzo, F. van Mourik, and M. Chergui, “Femtosecond pump/supercontinuum-probe setup with 20  kHz repetition rate,” Rev. Sci. Instrum. 83, 093105 (2012).
[Crossref]

2010 (2)

L. Mangot, G. Taupier, M. Romeo, A. Boeglin, O. Cregut, and K. D. H. Dorkenoo, “Broadband transient dichroism spectroscopy in chiral molecules,” Opt. Lett. 35, 381–383 (2010).
[Crossref]

A. Trifonov, I. Buchvarov, A. Lohr, F. Würthner, and T. Fiebig, “Broadband femtosecond circular dichroism spectrometer with white-light polarization control,” Rev. Sci. Instrum. 81, 043104 (2010).
[Crossref]

2009 (4)

M. Bonmarin and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality 21, E298–E306 (2009).
[Crossref]

J. Helbing and M. Bonmarin, “Vibrational circular dichroism signal enhancement using self-heterodyning with elliptically polarized laser pulses,” J. Chem. Phys. 131, 174507 (2009).
[Crossref]

B. Wang, E. Hinds, and E. Krivoy, “Basic optical properties of the photoelastic modulator part II: residual birefringence in the optical element,” Proc. SPIE 7461, 746110 (2009).
[Crossref]

J. Lacour and D. Moraleda, “Chiral anion-mediated asymmetric ion pairing chemistry,” Chem. Commun. 46, 7073–7089 (2009).
[Crossref]

2007 (1)

C. Niezborala and F. Hache, “Excited-state absorption and circular dichroism of ruthenium(II) tris(phenanthroline) in the ultraviolet region,” J. Phys. Chem. A 111, 7732–7735 (2007).
[Crossref]

2006 (2)

C. Niezborala and F. Hache, “Measuring the dynamics of circular dichroism in a pump-probe experiment with a Babinet-Soleil compensator,” J. Opt. Soc. Am. B 23, 2418–2424 (2006).
[Crossref]

A. Cannizzo, F. V. Mourik, W. Gawelda, G. Zgrablic, C. Bressler, and M. Chergui, “Broadband femtosecond fluorescence spectroscopy of [Ru(bpy)3]2+,” Angew. Chem. 118, 3246–3248 (2006).
[Crossref]

2004 (2)

P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29, 1686–1688 (2004).
[Crossref]

F. Favarger, C. Goujon-Ginglinger, D. Monchaud, and J. Lacour, “Large-scale synthesis and resolution of TRISPHAT [tris(tetrachlorobenzenediolato) phosphate(V)] anion,” J. Org. Chem. 69, 8521–8524 (2004).
[Crossref]

2003 (2)

2002 (1)

D. Monchaud, J. J. Jodry, D. Pomeranc, V. Heitz, J.-C. Chambron, J.-P. Sauvage, and J. Lacour, “Ion-pair-mediated asymmetric synthesis of a configurationally stable mononuclear tris(diimine)-iron(II) complex,” Angew. Chem. Int. Ed. 41, 2423–2425 (2002).
[Crossref]

2001 (1)

O. Maury, J. Lacour, and H. L. Bozec, “Diastereoselective homochiral self-assembly between anions and cation in solution,” Eur. J. Inorg. Chem. 2001, 201–204 (2001).
[Crossref]

1998 (1)

J. Lacour, S. Torche-Haldimann, and J. J. Jodry, “Ion pair chromatographic resolution of tris(diimine)ruthenium(ii) complexes using TRISPHAT anions as resolving agents,” Chem. Commun. 0, 1733–1734 (1998).
[Crossref]

1997 (2)

J. Lacour, C. Ginglinger, C. Grivet, and G. Bernardinelli, “Synthesis and resolution of the configurationally stable tris(tetrachlorobenzenediolato)phosphate(V) ion,” Angew. Chem. Int. Ed. 36, 608–610 (1997).
[Crossref]

R. A. Goldbeck, D. B. Kim-Shapiro, and D. S. Kliger, “Fast natural and magnetic circular dichroism spectroscopy,” Annu. Rev. Phys. Chem. 48, 453–479 (1997).
[Crossref]

1994 (1)

D. Che, R. A. Goldbeck, and D. S. Kliger, “Theory of natural circular dichroism in molecules oriented by photoselection,” J. Chem. Phys. 100, 8602–8613 (1994).
[Crossref]

1991 (1)

S. C. Bjorling, R. A. Goldbeck, S. J. Milder, C. E. Randall, J. W. Lewis, and D. S. Kliger, “Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism,” J. Phys. Chem. 95, 4685–4694 (1991).
[Crossref]

1990 (1)

1989 (3)

V. Joshi and P. K. Ghosh, “Spectral evidence of spontaneous racemic and pseudoracemic interactions between optically active poly(pyridyl) metal chelates adsorbed on smectite clays,” J. Am. Chem. Soc. 111, 5604–5612 (1989).
[Crossref]

D. H. Oh and S. G. Boxer, “Stark effect spectra of Ru(diimine)32+ complexes,” J. Am. Chem. Soc. 111, 1130–1131 (1989).
[Crossref]

X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism spectroscopy: experimental details and applications,” Rev. Sci. Instrum. 60, 2614–2627 (1989).
[Crossref]

1980 (1)

A. Davidsson, B. Nordén, and S. Seth, “Measurement of oriented circular dichroism,” Chem. Phys. Lett. 70, 313–316 (1980).
[Crossref]

1969 (1)

B. Bosnich, “Application of exciton theory to the determination of the absolute configurations of inorganic complexes,” Acc. Chem. Res. 2, 266–273 (1969).
[Crossref]

Akimov, D.

J. Meyer-Ilse, D. Akimov, and B. Dietzek, “Recent advances in ultrafast time-resolved chirality measurements: perspective and outlook: ultrafast transient molecular chirality,” Laser Photon. Rev. 7, 495–505 (2013).
[Crossref]

Auböck, G.

G. Auböck, C. Consani, R. Monni, A. Cannizzo, F. van Mourik, and M. Chergui, “Femtosecond pump/supercontinuum-probe setup with 20  kHz repetition rate,” Rev. Sci. Instrum. 83, 093105 (2012).
[Crossref]

G. Auböck, C. Consani, F. V. Mourik, and M. Chergui, “Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption,” Opt. Lett. 37, 2337–2339 (2012).
[Crossref]

Ballesteros Garrido, R.

M. G. N. Reddy, R. Ballesteros Garrido, J. Lacour, and S. Caldarelli, “Determination of Labile chiral supramolecular ion pairs by chromatographic NMR spectroscopy,” Angew. Chem. Int. Ed. 52, 3255–3258 (2013).
[Crossref]

Baum, P.

Bernardinelli, G.

J. Lacour, C. Ginglinger, C. Grivet, and G. Bernardinelli, “Synthesis and resolution of the configurationally stable tris(tetrachlorobenzenediolato)phosphate(V) ion,” Angew. Chem. Int. Ed. 36, 608–610 (1997).
[Crossref]

Bjorling, S. C.

S. C. Bjorling, R. A. Goldbeck, S. J. Milder, C. E. Randall, J. W. Lewis, and D. S. Kliger, “Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism,” J. Phys. Chem. 95, 4685–4694 (1991).
[Crossref]

Blankenship, R. E.

V. Stadnytskyi, G. S. Orf, R. E. Blankenship, and S. Savikhin, “Near shot-noise limited time-resolved circular dichroism pump-probe spectrometer,” Rev. Sci. Instrum. 89, 033104 (2018).
[Crossref]

Boeglin, A.

Bonmarin, M.

M. Bonmarin and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality 21, E298–E306 (2009).
[Crossref]

J. Helbing and M. Bonmarin, “Vibrational circular dichroism signal enhancement using self-heterodyning with elliptically polarized laser pulses,” J. Chem. Phys. 131, 174507 (2009).
[Crossref]

Bosnich, B.

B. Bosnich, “Application of exciton theory to the determination of the absolute configurations of inorganic complexes,” Acc. Chem. Res. 2, 266–273 (1969).
[Crossref]

Boxer, S. G.

D. H. Oh and S. G. Boxer, “Stark effect spectra of Ru(diimine)32+ complexes,” J. Am. Chem. Soc. 111, 1130–1131 (1989).
[Crossref]

Bozec, H. L.

O. Maury, J. Lacour, and H. L. Bozec, “Diastereoselective homochiral self-assembly between anions and cation in solution,” Eur. J. Inorg. Chem. 2001, 201–204 (2001).
[Crossref]

Bressler, C.

A. Cannizzo, F. V. Mourik, W. Gawelda, G. Zgrablic, C. Bressler, and M. Chergui, “Broadband femtosecond fluorescence spectroscopy of [Ru(bpy)3]2+,” Angew. Chem. 118, 3246–3248 (2006).
[Crossref]

Brixner, T.

A. Steinbacher, H. Hildenbrand, S. Schott, J. Buback, M. Schmid, P. Nuernberger, and T. Brixner, “Generating laser-pulse enantiomers,” Opt. Express 25, 21735–21752 (2017).
[Crossref]

S. Schott, A. Steinbacher, J. Buback, P. Nuernberger, and T. Brixner, “Generalized magic angle for time-resolved spectroscopy with laser pulses of arbitrary ellipticity,” J. Phys. B 47, 124014 (2014).
[Crossref]

Buback, J.

A. Steinbacher, H. Hildenbrand, S. Schott, J. Buback, M. Schmid, P. Nuernberger, and T. Brixner, “Generating laser-pulse enantiomers,” Opt. Express 25, 21735–21752 (2017).
[Crossref]

S. Schott, A. Steinbacher, J. Buback, P. Nuernberger, and T. Brixner, “Generalized magic angle for time-resolved spectroscopy with laser pulses of arbitrary ellipticity,” J. Phys. B 47, 124014 (2014).
[Crossref]

Buchvarov, I.

A. Trifonov, I. Buchvarov, A. Lohr, F. Würthner, and T. Fiebig, “Broadband femtosecond circular dichroism spectrometer with white-light polarization control,” Rev. Sci. Instrum. 81, 043104 (2010).
[Crossref]

Caldarelli, S.

M. G. N. Reddy, R. Ballesteros Garrido, J. Lacour, and S. Caldarelli, “Determination of Labile chiral supramolecular ion pairs by chromatographic NMR spectroscopy,” Angew. Chem. Int. Ed. 52, 3255–3258 (2013).
[Crossref]

Cannizzo, A.

G. Auböck, C. Consani, R. Monni, A. Cannizzo, F. van Mourik, and M. Chergui, “Femtosecond pump/supercontinuum-probe setup with 20  kHz repetition rate,” Rev. Sci. Instrum. 83, 093105 (2012).
[Crossref]

A. Cannizzo, F. V. Mourik, W. Gawelda, G. Zgrablic, C. Bressler, and M. Chergui, “Broadband femtosecond fluorescence spectroscopy of [Ru(bpy)3]2+,” Angew. Chem. 118, 3246–3248 (2006).
[Crossref]

Cerullo, G.

Chambron, J.-C.

D. Monchaud, J. J. Jodry, D. Pomeranc, V. Heitz, J.-C. Chambron, J.-P. Sauvage, and J. Lacour, “Ion-pair-mediated asymmetric synthesis of a configurationally stable mononuclear tris(diimine)-iron(II) complex,” Angew. Chem. Int. Ed. 41, 2423–2425 (2002).
[Crossref]

Che, D.

D. Che, R. A. Goldbeck, and D. S. Kliger, “Theory of natural circular dichroism in molecules oriented by photoselection,” J. Chem. Phys. 100, 8602–8613 (1994).
[Crossref]

Chergui, M.

G. Auböck, C. Consani, R. Monni, A. Cannizzo, F. van Mourik, and M. Chergui, “Femtosecond pump/supercontinuum-probe setup with 20  kHz repetition rate,” Rev. Sci. Instrum. 83, 093105 (2012).
[Crossref]

G. Auböck, C. Consani, F. V. Mourik, and M. Chergui, “Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption,” Opt. Lett. 37, 2337–2339 (2012).
[Crossref]

A. Cannizzo, F. V. Mourik, W. Gawelda, G. Zgrablic, C. Bressler, and M. Chergui, “Broadband femtosecond fluorescence spectroscopy of [Ru(bpy)3]2+,” Angew. Chem. 118, 3246–3248 (2006).
[Crossref]

Cho, M.

M. Cho, “Two-dimensional circularly polarized pump-probe spectroscopy,” J. Chem. Phys. 119, 7003–7016 (2003).
[Crossref]

Consani, C.

G. Auböck, C. Consani, R. Monni, A. Cannizzo, F. van Mourik, and M. Chergui, “Femtosecond pump/supercontinuum-probe setup with 20  kHz repetition rate,” Rev. Sci. Instrum. 83, 093105 (2012).
[Crossref]

G. Auböck, C. Consani, F. V. Mourik, and M. Chergui, “Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption,” Opt. Lett. 37, 2337–2339 (2012).
[Crossref]

Cregut, O.

Dartigalongue, T.

Davidsson, A.

A. Davidsson, B. Nordén, and S. Seth, “Measurement of oriented circular dichroism,” Chem. Phys. Lett. 70, 313–316 (1980).
[Crossref]

Dietzek, B.

J. Meyer-Ilse, D. Akimov, and B. Dietzek, “Recent advances in ultrafast time-resolved chirality measurements: perspective and outlook: ultrafast transient molecular chirality,” Laser Photon. Rev. 7, 495–505 (2013).
[Crossref]

Dorkenoo, K. D. H.

Dutta, B.

Favarger, F.

F. Favarger, C. Goujon-Ginglinger, D. Monchaud, and J. Lacour, “Large-scale synthesis and resolution of TRISPHAT [tris(tetrachlorobenzenediolato) phosphate(V)] anion,” J. Org. Chem. 69, 8521–8524 (2004).
[Crossref]

Fiebig, T.

A. Trifonov, I. Buchvarov, A. Lohr, F. Würthner, and T. Fiebig, “Broadband femtosecond circular dichroism spectrometer with white-light polarization control,” Rev. Sci. Instrum. 81, 043104 (2010).
[Crossref]

Gawelda, W.

A. Cannizzo, F. V. Mourik, W. Gawelda, G. Zgrablic, C. Bressler, and M. Chergui, “Broadband femtosecond fluorescence spectroscopy of [Ru(bpy)3]2+,” Angew. Chem. 118, 3246–3248 (2006).
[Crossref]

Ghosh, P. K.

V. Joshi and P. K. Ghosh, “Spectral evidence of spontaneous racemic and pseudoracemic interactions between optically active poly(pyridyl) metal chelates adsorbed on smectite clays,” J. Am. Chem. Soc. 111, 5604–5612 (1989).
[Crossref]

Ginglinger, C.

J. Lacour, C. Ginglinger, C. Grivet, and G. Bernardinelli, “Synthesis and resolution of the configurationally stable tris(tetrachlorobenzenediolato)phosphate(V) ion,” Angew. Chem. Int. Ed. 36, 608–610 (1997).
[Crossref]

Goldbeck, R. A.

R. A. Goldbeck, D. B. Kim-Shapiro, and D. S. Kliger, “Fast natural and magnetic circular dichroism spectroscopy,” Annu. Rev. Phys. Chem. 48, 453–479 (1997).
[Crossref]

D. Che, R. A. Goldbeck, and D. S. Kliger, “Theory of natural circular dichroism in molecules oriented by photoselection,” J. Chem. Phys. 100, 8602–8613 (1994).
[Crossref]

S. C. Bjorling, R. A. Goldbeck, S. J. Milder, C. E. Randall, J. W. Lewis, and D. S. Kliger, “Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism,” J. Phys. Chem. 95, 4685–4694 (1991).
[Crossref]

Gorodetski, Y.

R. Puttreddy, J. A. Hutchison, Y. Gorodetski, J. Harrowfield, and K. Rissanen, “Enantiomer separation of tris(2, 2-bipyridine)ruthenium(II): interaction of a D3-symmetric cation with a C2-symmetric anion,” Cryst. Growth Des. 15, 1559–1563 (2015).
[Crossref]

Goujon-Ginglinger, C.

F. Favarger, C. Goujon-Ginglinger, D. Monchaud, and J. Lacour, “Large-scale synthesis and resolution of TRISPHAT [tris(tetrachlorobenzenediolato) phosphate(V)] anion,” J. Org. Chem. 69, 8521–8524 (2004).
[Crossref]

Grivet, C.

J. Lacour, C. Ginglinger, C. Grivet, and G. Bernardinelli, “Synthesis and resolution of the configurationally stable tris(tetrachlorobenzenediolato)phosphate(V) ion,” Angew. Chem. Int. Ed. 36, 608–610 (1997).
[Crossref]

Hache, F.

Harrowfield, J.

R. Puttreddy, J. A. Hutchison, Y. Gorodetski, J. Harrowfield, and K. Rissanen, “Enantiomer separation of tris(2, 2-bipyridine)ruthenium(II): interaction of a D3-symmetric cation with a C2-symmetric anion,” Cryst. Growth Des. 15, 1559–1563 (2015).
[Crossref]

Heitz, V.

D. Monchaud, J. J. Jodry, D. Pomeranc, V. Heitz, J.-C. Chambron, J.-P. Sauvage, and J. Lacour, “Ion-pair-mediated asymmetric synthesis of a configurationally stable mononuclear tris(diimine)-iron(II) complex,” Angew. Chem. Int. Ed. 41, 2423–2425 (2002).
[Crossref]

Helbing, J.

F. Preda, A. Perri, J. Réhault, B. Dutta, J. Helbing, G. Cerullo, and D. Polli, “Time-domain measurement of optical activity by an ultrastable common-path interferometer,” Opt. Lett. 43, 1882–1885 (2018).
[Crossref]

B. Dutta and J. Helbing, “Optimized interferometric setup for chiral and achiral ultrafast IR spectroscopy,” Opt. Express 23, 16449–16465 (2015).
[Crossref]

M. Bonmarin and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality 21, E298–E306 (2009).
[Crossref]

J. Helbing and M. Bonmarin, “Vibrational circular dichroism signal enhancement using self-heterodyning with elliptically polarized laser pulses,” J. Chem. Phys. 131, 174507 (2009).
[Crossref]

Hildenbrand, H.

Hinds, E.

B. Wang, E. Hinds, and E. Krivoy, “Basic optical properties of the photoelastic modulator part II: residual birefringence in the optical element,” Proc. SPIE 7461, 746110 (2009).
[Crossref]

Hiramatsu, K.

K. Hiramatsu and T. Nagata, “Communication: broadband and ultrasensitive femtosecond time-resolved circular dichroism spectroscopy,” J. Chem. Phys. 143, 121102 (2015).
[Crossref]

Hutchison, J. A.

R. Puttreddy, J. A. Hutchison, Y. Gorodetski, J. Harrowfield, and K. Rissanen, “Enantiomer separation of tris(2, 2-bipyridine)ruthenium(II): interaction of a D3-symmetric cation with a C2-symmetric anion,” Cryst. Growth Des. 15, 1559–1563 (2015).
[Crossref]

Jodry, J. J.

D. Monchaud, J. J. Jodry, D. Pomeranc, V. Heitz, J.-C. Chambron, J.-P. Sauvage, and J. Lacour, “Ion-pair-mediated asymmetric synthesis of a configurationally stable mononuclear tris(diimine)-iron(II) complex,” Angew. Chem. Int. Ed. 41, 2423–2425 (2002).
[Crossref]

J. Lacour, S. Torche-Haldimann, and J. J. Jodry, “Ion pair chromatographic resolution of tris(diimine)ruthenium(ii) complexes using TRISPHAT anions as resolving agents,” Chem. Commun. 0, 1733–1734 (1998).
[Crossref]

Joshi, V.

V. Joshi and P. K. Ghosh, “Spectral evidence of spontaneous racemic and pseudoracemic interactions between optically active poly(pyridyl) metal chelates adsorbed on smectite clays,” J. Am. Chem. Soc. 111, 5604–5612 (1989).
[Crossref]

Kim-Shapiro, D. B.

R. A. Goldbeck, D. B. Kim-Shapiro, and D. S. Kliger, “Fast natural and magnetic circular dichroism spectroscopy,” Annu. Rev. Phys. Chem. 48, 453–479 (1997).
[Crossref]

Kliger, D. S.

R. A. Goldbeck, D. B. Kim-Shapiro, and D. S. Kliger, “Fast natural and magnetic circular dichroism spectroscopy,” Annu. Rev. Phys. Chem. 48, 453–479 (1997).
[Crossref]

D. Che, R. A. Goldbeck, and D. S. Kliger, “Theory of natural circular dichroism in molecules oriented by photoselection,” J. Chem. Phys. 100, 8602–8613 (1994).
[Crossref]

S. C. Bjorling, R. A. Goldbeck, S. J. Milder, C. E. Randall, J. W. Lewis, and D. S. Kliger, “Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism,” J. Phys. Chem. 95, 4685–4694 (1991).
[Crossref]

Krivoy, E.

B. Wang, E. Hinds, and E. Krivoy, “Basic optical properties of the photoelastic modulator part II: residual birefringence in the optical element,” Proc. SPIE 7461, 746110 (2009).
[Crossref]

Lacour, J.

M. G. N. Reddy, R. Ballesteros Garrido, J. Lacour, and S. Caldarelli, “Determination of Labile chiral supramolecular ion pairs by chromatographic NMR spectroscopy,” Angew. Chem. Int. Ed. 52, 3255–3258 (2013).
[Crossref]

J. Lacour and D. Moraleda, “Chiral anion-mediated asymmetric ion pairing chemistry,” Chem. Commun. 46, 7073–7089 (2009).
[Crossref]

F. Favarger, C. Goujon-Ginglinger, D. Monchaud, and J. Lacour, “Large-scale synthesis and resolution of TRISPHAT [tris(tetrachlorobenzenediolato) phosphate(V)] anion,” J. Org. Chem. 69, 8521–8524 (2004).
[Crossref]

D. Monchaud, J. J. Jodry, D. Pomeranc, V. Heitz, J.-C. Chambron, J.-P. Sauvage, and J. Lacour, “Ion-pair-mediated asymmetric synthesis of a configurationally stable mononuclear tris(diimine)-iron(II) complex,” Angew. Chem. Int. Ed. 41, 2423–2425 (2002).
[Crossref]

O. Maury, J. Lacour, and H. L. Bozec, “Diastereoselective homochiral self-assembly between anions and cation in solution,” Eur. J. Inorg. Chem. 2001, 201–204 (2001).
[Crossref]

J. Lacour, S. Torche-Haldimann, and J. J. Jodry, “Ion pair chromatographic resolution of tris(diimine)ruthenium(ii) complexes using TRISPHAT anions as resolving agents,” Chem. Commun. 0, 1733–1734 (1998).
[Crossref]

J. Lacour, C. Ginglinger, C. Grivet, and G. Bernardinelli, “Synthesis and resolution of the configurationally stable tris(tetrachlorobenzenediolato)phosphate(V) ion,” Angew. Chem. Int. Ed. 36, 608–610 (1997).
[Crossref]

Lewis, J. W.

S. C. Bjorling, R. A. Goldbeck, S. J. Milder, C. E. Randall, J. W. Lewis, and D. S. Kliger, “Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism,” J. Phys. Chem. 95, 4685–4694 (1991).
[Crossref]

Lochbrunner, S.

Lohr, A.

A. Trifonov, I. Buchvarov, A. Lohr, F. Würthner, and T. Fiebig, “Broadband femtosecond circular dichroism spectrometer with white-light polarization control,” Rev. Sci. Instrum. 81, 043104 (2010).
[Crossref]

Mangot, L.

Maury, O.

O. Maury, J. Lacour, and H. L. Bozec, “Diastereoselective homochiral self-assembly between anions and cation in solution,” Eur. J. Inorg. Chem. 2001, 201–204 (2001).
[Crossref]

Meyer-Ilse, J.

J. Meyer-Ilse, D. Akimov, and B. Dietzek, “Recent advances in ultrafast time-resolved chirality measurements: perspective and outlook: ultrafast transient molecular chirality,” Laser Photon. Rev. 7, 495–505 (2013).
[Crossref]

Milder, S. J.

S. C. Bjorling, R. A. Goldbeck, S. J. Milder, C. E. Randall, J. W. Lewis, and D. S. Kliger, “Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism,” J. Phys. Chem. 95, 4685–4694 (1991).
[Crossref]

Miller, R. J. D.

A. Picchiotti, V. I. Prokhorenko, and R. J. D. Miller, “A closed-loop pump-driven wire-guided flow jet for ultrafast spectroscopy of liquid samples,” Rev. Sci. Instrum. 86, 093105 (2015).
[Crossref]

Monchaud, D.

F. Favarger, C. Goujon-Ginglinger, D. Monchaud, and J. Lacour, “Large-scale synthesis and resolution of TRISPHAT [tris(tetrachlorobenzenediolato) phosphate(V)] anion,” J. Org. Chem. 69, 8521–8524 (2004).
[Crossref]

D. Monchaud, J. J. Jodry, D. Pomeranc, V. Heitz, J.-C. Chambron, J.-P. Sauvage, and J. Lacour, “Ion-pair-mediated asymmetric synthesis of a configurationally stable mononuclear tris(diimine)-iron(II) complex,” Angew. Chem. Int. Ed. 41, 2423–2425 (2002).
[Crossref]

Monni, R.

G. Auböck, C. Consani, R. Monni, A. Cannizzo, F. van Mourik, and M. Chergui, “Femtosecond pump/supercontinuum-probe setup with 20  kHz repetition rate,” Rev. Sci. Instrum. 83, 093105 (2012).
[Crossref]

Moraleda, D.

J. Lacour and D. Moraleda, “Chiral anion-mediated asymmetric ion pairing chemistry,” Chem. Commun. 46, 7073–7089 (2009).
[Crossref]

Mourik, F. V.

G. Auböck, C. Consani, F. V. Mourik, and M. Chergui, “Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption,” Opt. Lett. 37, 2337–2339 (2012).
[Crossref]

A. Cannizzo, F. V. Mourik, W. Gawelda, G. Zgrablic, C. Bressler, and M. Chergui, “Broadband femtosecond fluorescence spectroscopy of [Ru(bpy)3]2+,” Angew. Chem. 118, 3246–3248 (2006).
[Crossref]

Nagata, T.

K. Hiramatsu and T. Nagata, “Communication: broadband and ultrasensitive femtosecond time-resolved circular dichroism spectroscopy,” J. Chem. Phys. 143, 121102 (2015).
[Crossref]

Niezborala, C.

C. Niezborala and F. Hache, “Excited-state absorption and circular dichroism of ruthenium(II) tris(phenanthroline) in the ultraviolet region,” J. Phys. Chem. A 111, 7732–7735 (2007).
[Crossref]

C. Niezborala and F. Hache, “Measuring the dynamics of circular dichroism in a pump-probe experiment with a Babinet-Soleil compensator,” J. Opt. Soc. Am. B 23, 2418–2424 (2006).
[Crossref]

Nordén, B.

A. Davidsson, B. Nordén, and S. Seth, “Measurement of oriented circular dichroism,” Chem. Phys. Lett. 70, 313–316 (1980).
[Crossref]

Nuernberger, P.

A. Steinbacher, H. Hildenbrand, S. Schott, J. Buback, M. Schmid, P. Nuernberger, and T. Brixner, “Generating laser-pulse enantiomers,” Opt. Express 25, 21735–21752 (2017).
[Crossref]

S. Schott, A. Steinbacher, J. Buback, P. Nuernberger, and T. Brixner, “Generalized magic angle for time-resolved spectroscopy with laser pulses of arbitrary ellipticity,” J. Phys. B 47, 124014 (2014).
[Crossref]

Oh, D. H.

D. H. Oh and S. G. Boxer, “Stark effect spectra of Ru(diimine)32+ complexes,” J. Am. Chem. Soc. 111, 1130–1131 (1989).
[Crossref]

Orf, G. S.

V. Stadnytskyi, G. S. Orf, R. E. Blankenship, and S. Savikhin, “Near shot-noise limited time-resolved circular dichroism pump-probe spectrometer,” Rev. Sci. Instrum. 89, 033104 (2018).
[Crossref]

Perri, A.

Picchiotti, A.

A. Picchiotti, V. I. Prokhorenko, and R. J. D. Miller, “A closed-loop pump-driven wire-guided flow jet for ultrafast spectroscopy of liquid samples,” Rev. Sci. Instrum. 86, 093105 (2015).
[Crossref]

Polli, D.

Pomeranc, D.

D. Monchaud, J. J. Jodry, D. Pomeranc, V. Heitz, J.-C. Chambron, J.-P. Sauvage, and J. Lacour, “Ion-pair-mediated asymmetric synthesis of a configurationally stable mononuclear tris(diimine)-iron(II) complex,” Angew. Chem. Int. Ed. 41, 2423–2425 (2002).
[Crossref]

Preda, F.

Prokhorenko, V. I.

A. Picchiotti, V. I. Prokhorenko, and R. J. D. Miller, “A closed-loop pump-driven wire-guided flow jet for ultrafast spectroscopy of liquid samples,” Rev. Sci. Instrum. 86, 093105 (2015).
[Crossref]

Puttreddy, R.

R. Puttreddy, J. A. Hutchison, Y. Gorodetski, J. Harrowfield, and K. Rissanen, “Enantiomer separation of tris(2, 2-bipyridine)ruthenium(II): interaction of a D3-symmetric cation with a C2-symmetric anion,” Cryst. Growth Des. 15, 1559–1563 (2015).
[Crossref]

Randall, C. E.

S. C. Bjorling, R. A. Goldbeck, S. J. Milder, C. E. Randall, J. W. Lewis, and D. S. Kliger, “Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism,” J. Phys. Chem. 95, 4685–4694 (1991).
[Crossref]

Reddy, M. G. N.

M. G. N. Reddy, R. Ballesteros Garrido, J. Lacour, and S. Caldarelli, “Determination of Labile chiral supramolecular ion pairs by chromatographic NMR spectroscopy,” Angew. Chem. Int. Ed. 52, 3255–3258 (2013).
[Crossref]

Réhault, J.

Riedle, E.

Rissanen, K.

R. Puttreddy, J. A. Hutchison, Y. Gorodetski, J. Harrowfield, and K. Rissanen, “Enantiomer separation of tris(2, 2-bipyridine)ruthenium(II): interaction of a D3-symmetric cation with a C2-symmetric anion,” Cryst. Growth Des. 15, 1559–1563 (2015).
[Crossref]

Romeo, M.

Sauvage, J.-P.

D. Monchaud, J. J. Jodry, D. Pomeranc, V. Heitz, J.-C. Chambron, J.-P. Sauvage, and J. Lacour, “Ion-pair-mediated asymmetric synthesis of a configurationally stable mononuclear tris(diimine)-iron(II) complex,” Angew. Chem. Int. Ed. 41, 2423–2425 (2002).
[Crossref]

Savikhin, S.

V. Stadnytskyi, G. S. Orf, R. E. Blankenship, and S. Savikhin, “Near shot-noise limited time-resolved circular dichroism pump-probe spectrometer,” Rev. Sci. Instrum. 89, 033104 (2018).
[Crossref]

Schmid, M.

Schott, S.

A. Steinbacher, H. Hildenbrand, S. Schott, J. Buback, M. Schmid, P. Nuernberger, and T. Brixner, “Generating laser-pulse enantiomers,” Opt. Express 25, 21735–21752 (2017).
[Crossref]

S. Schott, A. Steinbacher, J. Buback, P. Nuernberger, and T. Brixner, “Generalized magic angle for time-resolved spectroscopy with laser pulses of arbitrary ellipticity,” J. Phys. B 47, 124014 (2014).
[Crossref]

Seth, S.

A. Davidsson, B. Nordén, and S. Seth, “Measurement of oriented circular dichroism,” Chem. Phys. Lett. 70, 313–316 (1980).
[Crossref]

Simon, J. D.

X. Xie and J. D. Simon, “Picosecond circular dichroism spectroscopy: a Jones matrix analysis,” J. Opt. Soc. Am. B 7, 1673–1684 (1990).
[Crossref]

X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism spectroscopy: experimental details and applications,” Rev. Sci. Instrum. 60, 2614–2627 (1989).
[Crossref]

Stadnytskyi, V.

V. Stadnytskyi, G. S. Orf, R. E. Blankenship, and S. Savikhin, “Near shot-noise limited time-resolved circular dichroism pump-probe spectrometer,” Rev. Sci. Instrum. 89, 033104 (2018).
[Crossref]

Steinbacher, A.

A. Steinbacher, H. Hildenbrand, S. Schott, J. Buback, M. Schmid, P. Nuernberger, and T. Brixner, “Generating laser-pulse enantiomers,” Opt. Express 25, 21735–21752 (2017).
[Crossref]

S. Schott, A. Steinbacher, J. Buback, P. Nuernberger, and T. Brixner, “Generalized magic angle for time-resolved spectroscopy with laser pulses of arbitrary ellipticity,” J. Phys. B 47, 124014 (2014).
[Crossref]

Taupier, G.

Torche-Haldimann, S.

J. Lacour, S. Torche-Haldimann, and J. J. Jodry, “Ion pair chromatographic resolution of tris(diimine)ruthenium(ii) complexes using TRISPHAT anions as resolving agents,” Chem. Commun. 0, 1733–1734 (1998).
[Crossref]

Trifonov, A.

A. Trifonov, I. Buchvarov, A. Lohr, F. Würthner, and T. Fiebig, “Broadband femtosecond circular dichroism spectrometer with white-light polarization control,” Rev. Sci. Instrum. 81, 043104 (2010).
[Crossref]

van Mourik, F.

G. Auböck, C. Consani, R. Monni, A. Cannizzo, F. van Mourik, and M. Chergui, “Femtosecond pump/supercontinuum-probe setup with 20  kHz repetition rate,” Rev. Sci. Instrum. 83, 093105 (2012).
[Crossref]

Wang, B.

B. Wang, E. Hinds, and E. Krivoy, “Basic optical properties of the photoelastic modulator part II: residual birefringence in the optical element,” Proc. SPIE 7461, 746110 (2009).
[Crossref]

Würthner, F.

A. Trifonov, I. Buchvarov, A. Lohr, F. Würthner, and T. Fiebig, “Broadband femtosecond circular dichroism spectrometer with white-light polarization control,” Rev. Sci. Instrum. 81, 043104 (2010).
[Crossref]

Xie, X.

X. Xie and J. D. Simon, “Picosecond circular dichroism spectroscopy: a Jones matrix analysis,” J. Opt. Soc. Am. B 7, 1673–1684 (1990).
[Crossref]

X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism spectroscopy: experimental details and applications,” Rev. Sci. Instrum. 60, 2614–2627 (1989).
[Crossref]

Zgrablic, G.

A. Cannizzo, F. V. Mourik, W. Gawelda, G. Zgrablic, C. Bressler, and M. Chergui, “Broadband femtosecond fluorescence spectroscopy of [Ru(bpy)3]2+,” Angew. Chem. 118, 3246–3248 (2006).
[Crossref]

Acc. Chem. Res. (1)

B. Bosnich, “Application of exciton theory to the determination of the absolute configurations of inorganic complexes,” Acc. Chem. Res. 2, 266–273 (1969).
[Crossref]

Angew. Chem. (1)

A. Cannizzo, F. V. Mourik, W. Gawelda, G. Zgrablic, C. Bressler, and M. Chergui, “Broadband femtosecond fluorescence spectroscopy of [Ru(bpy)3]2+,” Angew. Chem. 118, 3246–3248 (2006).
[Crossref]

Angew. Chem. Int. Ed. (3)

D. Monchaud, J. J. Jodry, D. Pomeranc, V. Heitz, J.-C. Chambron, J.-P. Sauvage, and J. Lacour, “Ion-pair-mediated asymmetric synthesis of a configurationally stable mononuclear tris(diimine)-iron(II) complex,” Angew. Chem. Int. Ed. 41, 2423–2425 (2002).
[Crossref]

M. G. N. Reddy, R. Ballesteros Garrido, J. Lacour, and S. Caldarelli, “Determination of Labile chiral supramolecular ion pairs by chromatographic NMR spectroscopy,” Angew. Chem. Int. Ed. 52, 3255–3258 (2013).
[Crossref]

J. Lacour, C. Ginglinger, C. Grivet, and G. Bernardinelli, “Synthesis and resolution of the configurationally stable tris(tetrachlorobenzenediolato)phosphate(V) ion,” Angew. Chem. Int. Ed. 36, 608–610 (1997).
[Crossref]

Annu. Rev. Phys. Chem. (1)

R. A. Goldbeck, D. B. Kim-Shapiro, and D. S. Kliger, “Fast natural and magnetic circular dichroism spectroscopy,” Annu. Rev. Phys. Chem. 48, 453–479 (1997).
[Crossref]

Chem. Commun. (2)

J. Lacour, S. Torche-Haldimann, and J. J. Jodry, “Ion pair chromatographic resolution of tris(diimine)ruthenium(ii) complexes using TRISPHAT anions as resolving agents,” Chem. Commun. 0, 1733–1734 (1998).
[Crossref]

J. Lacour and D. Moraleda, “Chiral anion-mediated asymmetric ion pairing chemistry,” Chem. Commun. 46, 7073–7089 (2009).
[Crossref]

Chem. Phys. Lett. (1)

A. Davidsson, B. Nordén, and S. Seth, “Measurement of oriented circular dichroism,” Chem. Phys. Lett. 70, 313–316 (1980).
[Crossref]

Chirality (1)

M. Bonmarin and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality 21, E298–E306 (2009).
[Crossref]

Cryst. Growth Des. (1)

R. Puttreddy, J. A. Hutchison, Y. Gorodetski, J. Harrowfield, and K. Rissanen, “Enantiomer separation of tris(2, 2-bipyridine)ruthenium(II): interaction of a D3-symmetric cation with a C2-symmetric anion,” Cryst. Growth Des. 15, 1559–1563 (2015).
[Crossref]

Eur. J. Inorg. Chem. (1)

O. Maury, J. Lacour, and H. L. Bozec, “Diastereoselective homochiral self-assembly between anions and cation in solution,” Eur. J. Inorg. Chem. 2001, 201–204 (2001).
[Crossref]

J. Am. Chem. Soc. (2)

V. Joshi and P. K. Ghosh, “Spectral evidence of spontaneous racemic and pseudoracemic interactions between optically active poly(pyridyl) metal chelates adsorbed on smectite clays,” J. Am. Chem. Soc. 111, 5604–5612 (1989).
[Crossref]

D. H. Oh and S. G. Boxer, “Stark effect spectra of Ru(diimine)32+ complexes,” J. Am. Chem. Soc. 111, 1130–1131 (1989).
[Crossref]

J. Chem. Phys. (4)

D. Che, R. A. Goldbeck, and D. S. Kliger, “Theory of natural circular dichroism in molecules oriented by photoselection,” J. Chem. Phys. 100, 8602–8613 (1994).
[Crossref]

M. Cho, “Two-dimensional circularly polarized pump-probe spectroscopy,” J. Chem. Phys. 119, 7003–7016 (2003).
[Crossref]

J. Helbing and M. Bonmarin, “Vibrational circular dichroism signal enhancement using self-heterodyning with elliptically polarized laser pulses,” J. Chem. Phys. 131, 174507 (2009).
[Crossref]

K. Hiramatsu and T. Nagata, “Communication: broadband and ultrasensitive femtosecond time-resolved circular dichroism spectroscopy,” J. Chem. Phys. 143, 121102 (2015).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Org. Chem. (1)

F. Favarger, C. Goujon-Ginglinger, D. Monchaud, and J. Lacour, “Large-scale synthesis and resolution of TRISPHAT [tris(tetrachlorobenzenediolato) phosphate(V)] anion,” J. Org. Chem. 69, 8521–8524 (2004).
[Crossref]

J. Phys. B (1)

S. Schott, A. Steinbacher, J. Buback, P. Nuernberger, and T. Brixner, “Generalized magic angle for time-resolved spectroscopy with laser pulses of arbitrary ellipticity,” J. Phys. B 47, 124014 (2014).
[Crossref]

J. Phys. Chem. (1)

S. C. Bjorling, R. A. Goldbeck, S. J. Milder, C. E. Randall, J. W. Lewis, and D. S. Kliger, “Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism,” J. Phys. Chem. 95, 4685–4694 (1991).
[Crossref]

J. Phys. Chem. A (1)

C. Niezborala and F. Hache, “Excited-state absorption and circular dichroism of ruthenium(II) tris(phenanthroline) in the ultraviolet region,” J. Phys. Chem. A 111, 7732–7735 (2007).
[Crossref]

Laser Photon. Rev. (1)

J. Meyer-Ilse, D. Akimov, and B. Dietzek, “Recent advances in ultrafast time-resolved chirality measurements: perspective and outlook: ultrafast transient molecular chirality,” Laser Photon. Rev. 7, 495–505 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Proc. SPIE (1)

B. Wang, E. Hinds, and E. Krivoy, “Basic optical properties of the photoelastic modulator part II: residual birefringence in the optical element,” Proc. SPIE 7461, 746110 (2009).
[Crossref]

Rev. Sci. Instrum. (5)

A. Picchiotti, V. I. Prokhorenko, and R. J. D. Miller, “A closed-loop pump-driven wire-guided flow jet for ultrafast spectroscopy of liquid samples,” Rev. Sci. Instrum. 86, 093105 (2015).
[Crossref]

G. Auböck, C. Consani, R. Monni, A. Cannizzo, F. van Mourik, and M. Chergui, “Femtosecond pump/supercontinuum-probe setup with 20  kHz repetition rate,” Rev. Sci. Instrum. 83, 093105 (2012).
[Crossref]

A. Trifonov, I. Buchvarov, A. Lohr, F. Würthner, and T. Fiebig, “Broadband femtosecond circular dichroism spectrometer with white-light polarization control,” Rev. Sci. Instrum. 81, 043104 (2010).
[Crossref]

V. Stadnytskyi, G. S. Orf, R. E. Blankenship, and S. Savikhin, “Near shot-noise limited time-resolved circular dichroism pump-probe spectrometer,” Rev. Sci. Instrum. 89, 033104 (2018).
[Crossref]

X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism spectroscopy: experimental details and applications,” Rev. Sci. Instrum. 60, 2614–2627 (1989).
[Crossref]

Other (1)

G. D. Fasman, ed., Circular Dichroism and the Conformational Analysis of Biomolecules, 1996th ed. (Springer, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic drawing of the time-resolved CD setup, where the probe polarization is switched by a PEM. The inset displays the sequence of six consecutive probe pulses necessary to obtain a transient CD spectrum.
Fig. 2.
Fig. 2. Static CD spectra of both enantiomers of [Ru(bpy)3]2+ and the corresponding racemic sample in 1.0 mM aqueous solution and their comparison with CD spectra obtained with a commercial CD spectrometer.
Fig. 3.
Fig. 3. (a) Time-resolved CD spectra of both enantiomers of [Ru(bpy)3]2+ and the corresponding racemic sample in 0.4 mM aqueous solution, photoexcited with a 400 nm pulse at 50 ps pump-probe delay. The shaded area denotes one standard deviation. (b) TRCD of the racemic sample with the corresponding TA spectrum.
Fig. 4.
Fig. 4. Time-wavelength TRCD map of Δ[Ru(bpy)3]2+ in 0.4 mM aqueous solution, photoexcited with a 400 nm pulse.