Abstract

Photonic entanglement is one of the key resources in modern quantum optics. It opens the door to schemes such as quantum communication, quantum teleportation, and quantum-enhanced precision sensing. Sources based on parametric down-conversion or cascaded decays in atomic and atom-like emitters are limited because of their weak interaction with stationary qubits. This is due to their commonly broadband emission. Furthermore, these sources are commonly in the near-infrared such that quantum emitters in the blue spectral region, such as ions or many defect centers, cannot be addressed. Here, we present a sodium-resonant (589.0 nm) and narrow-band (14 MHz) degenerate entanglement source based on a single molecule. A beam-splitter renders two independently emitted photons into a polarization-entangled state. The quality of the entangled photon pairs is verified by the violation of Bell’s inequality. We measure a Bell parameter of S=2.26±0.05. This attests that the detected photon pairs exceed the classical limit; it is reconfirmed by quantum-state tomography and an analysis of the raw detector counts, which result in a value of S=2.24±0.12. The tomography shows fidelity of 82% to a maximally entangled Bell state. This work opens the route to background-free solid-state entanglement sources which surpass the probabilistic nature of the commonly used sources and are free from unwanted multi-photon events. The source is ideal for combination with stationary qubits such as atoms, ions, quantum dots, or defect centers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Testing the Bell inequality on frequency-bin entangled photon pairs using time-resolved detection

Xianxin Guo, Yefeng Mei, and Shengwang Du
Optica 4(4) 388-392 (2017)

Quantum telecommunication with atomic ensembles

S. D. Jenkins, D. N. Matsukevich, T. Chanelière, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich
J. Opt. Soc. Am. B 24(2) 316-323 (2007)

Experimental violation of the local realism for four-qubit Dicke state

Yuan-Yuan Zhao, Yu-Chun Wu, Guo-Yong Xiang, Chuan-Feng Li, and Guang-Can Guo
Opt. Express 23(23) 30491-30496 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
    [Crossref]
  2. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [Crossref]
  3. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
  4. R. Colbeck, Quantum and relativistic protocols for secure multi-party computation, Ph.D thesis (University of Cambridge, 2009).
  5. S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
    [Crossref]
  6. B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3  kilometres,” Nature 526, 682–686 (2015).
    [Crossref]
  7. W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, “Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes,” Phys. Rev. Lett. 119, 010402 (2017).
    [Crossref]
  8. A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
    [Crossref]
  9. S. J. Freedman and J. F. Clauser, “Experimental test of local hidden-variable theories,” Phys. Rev. Lett. 28, 938–941 (1972).
    [Crossref]
  10. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [Crossref]
  11. J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
    [Crossref]
  12. M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, “Sub-megahertz linewidth single photon source,” APL Photon. 1, 096101 (2016).
    [Crossref]
  13. F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532  nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
    [Crossref]
  14. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
    [Crossref]
  15. N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
    [Crossref]
  16. B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
    [Crossref]
  17. M. Chubarov and E. Nikolayev, “Violation of Einstein locality in states with sub-Poissonian statistics,” Phys. Lett. A 110, 199–202 (1985).
    [Crossref]
  18. Z. Ou, C. Hong, and L. Mandel, “Violations of locality in correlation measurements with a beam splitter,” Phys. Lett. A 122, 11–13 (1987).
    [Crossref]
  19. Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
    [Crossref]
  20. Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988).
    [Crossref]
  21. D. Fattal, K. Inoue, J. Vučkovič, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett. 92, 037903 (2004).
    [Crossref]
  22. J.-B. Trebbia, P. Tamarat, and B. Lounis, “Indistinguishable near-infrared single photons from an individual organic molecule,” Phys. Rev. A 82, 063803 (2010).
    [Crossref]
  23. K. Sanaka, A. Pawlis, T. D. Ladd, D. J. Sleiter, K. Lischka, and Y. Yamamoto, “Entangling single photons from independently tuned semiconductor nanoemitters,” Nano Lett. 12, 4611–4616 (2012).
    [Crossref]
  24. W. Kiefer, M. Rezai, J. Wrachtrup, and I. Gerhardt, “An atomic spectrum recorded with a single molecule light source,” Appl. Phys. B 122, 1–12 (2016).
    [Crossref]
  25. P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
    [Crossref]
  26. M. Rezai, J. Wrachtrup, and I. Gerhardt, “Coherence properties of molecular single photons for quantum networks,” Phys. Rev. X 8, 031026 (2018).
    [Crossref]
  27. S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
    [Crossref]
  28. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref]
  29. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
    [Crossref]
  30. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref]
  31. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
    [Crossref]
  32. J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195–200 (1964).
    [Crossref]
  33. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
    [Crossref]
  34. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
    [Crossref]
  35. O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
    [Crossref]
  36. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
    [Crossref]
  37. G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
    [Crossref]
  38. M. Pirotta, A. Renn, M. H. Werts, and U. P. Wild, “Single molecule spectroscopy. Perylene in the Shpol’skii matrix n-nonane,” Chem. Phys. Lett. 250, 576–582 (1996).
    [Crossref]
  39. S. Popescu, L. Hardy, and M. Z. Żukowski, “Revisiting Bell’s theorem for a class of down-conversion experiments,” Phys. Rev. A 56, R4353–R4356 (1997).
    [Crossref]
  40. D. Luong, L. Jiang, J. Kim, and N. Lütkenhaus, “Overcoming lossy channel bounds using a single quantum repeater node,” Appl. Phys. B 122, 96 (2016).
    [Crossref]

2018 (1)

M. Rezai, J. Wrachtrup, and I. Gerhardt, “Coherence properties of molecular single photons for quantum networks,” Phys. Rev. X 8, 031026 (2018).
[Crossref]

2017 (1)

W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, “Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes,” Phys. Rev. Lett. 119, 010402 (2017).
[Crossref]

2016 (4)

M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, “Sub-megahertz linewidth single photon source,” APL Photon. 1, 096101 (2016).
[Crossref]

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

W. Kiefer, M. Rezai, J. Wrachtrup, and I. Gerhardt, “An atomic spectrum recorded with a single molecule light source,” Appl. Phys. B 122, 1–12 (2016).
[Crossref]

D. Luong, L. Jiang, J. Kim, and N. Lütkenhaus, “Overcoming lossy channel bounds using a single quantum repeater node,” Appl. Phys. B 122, 96 (2016).
[Crossref]

2015 (1)

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3  kilometres,” Nature 526, 682–686 (2015).
[Crossref]

2014 (1)

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref]

2013 (3)

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref]

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref]

2012 (2)

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

K. Sanaka, A. Pawlis, T. D. Ladd, D. J. Sleiter, K. Lischka, and Y. Yamamoto, “Entangling single photons from independently tuned semiconductor nanoemitters,” Nano Lett. 12, 4611–4616 (2012).
[Crossref]

2011 (2)

G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[Crossref]

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532  nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

2010 (2)

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

J.-B. Trebbia, P. Tamarat, and B. Lounis, “Indistinguishable near-infrared single photons from an individual organic molecule,” Phys. Rev. A 82, 063803 (2010).
[Crossref]

2007 (1)

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

2006 (1)

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

2004 (1)

D. Fattal, K. Inoue, J. Vučkovič, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett. 92, 037903 (2004).
[Crossref]

2002 (1)

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

2001 (2)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

2000 (1)

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[Crossref]

1997 (2)

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).

S. Popescu, L. Hardy, and M. Z. Żukowski, “Revisiting Bell’s theorem for a class of down-conversion experiments,” Phys. Rev. A 56, R4353–R4356 (1997).
[Crossref]

1996 (2)

M. Pirotta, A. Renn, M. H. Werts, and U. P. Wild, “Single molecule spectroscopy. Perylene in the Shpol’skii matrix n-nonane,” Chem. Phys. Lett. 250, 576–582 (1996).
[Crossref]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[Crossref]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref]

1988 (2)

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
[Crossref]

Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988).
[Crossref]

1987 (2)

Z. Ou, C. Hong, and L. Mandel, “Violations of locality in correlation measurements with a beam splitter,” Phys. Lett. A 122, 11–13 (1987).
[Crossref]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

1985 (1)

M. Chubarov and E. Nikolayev, “Violation of Einstein locality in states with sub-Poissonian statistics,” Phys. Lett. A 110, 199–202 (1985).
[Crossref]

1972 (1)

S. J. Freedman and J. F. Clauser, “Experimental test of local hidden-variable theories,” Phys. Rev. Lett. 28, 938–941 (1972).
[Crossref]

1969 (1)

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

1964 (1)

J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195–200 (1964).
[Crossref]

1935 (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Abellan, C.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3  kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Acin, A.

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

Acín, A.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

Akopian, N.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Allevi, A.

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532  nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Alley, C. O.

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
[Crossref]

Almeida, M. P.

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref]

Amaya, W.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3  kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Avella, A.

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532  nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Avron, J.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Bell, J. S.

J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195–200 (1964).
[Crossref]

Bennett, C. H.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[Crossref]

Benson, O.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[Crossref]

Berlatzky, Y.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Bernien, H.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3  kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Blok, M. S.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3  kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Bondani, M.

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532  nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Bouwmeester, D.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).

Brassard, G.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[Crossref]

Brunner, N.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

Burchardt, D.

W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, “Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes,” Phys. Rev. Lett. 119, 010402 (2017).
[Crossref]

Chen, W. X.

G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[Crossref]

Chen, Z.-B.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Chng, B.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref]

Chubarov, M.

M. Chubarov and E. Nikolayev, “Violation of Einstein locality in states with sub-Poissonian statistics,” Phys. Lett. A 110, 199–202 (1985).
[Crossref]

Clauser, J. F.

S. J. Freedman and J. F. Clauser, “Experimental test of local hidden-variable theories,” Phys. Rev. Lett. 28, 938–941 (1972).
[Crossref]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Colbeck, R.

R. Colbeck, Quantum and relativistic protocols for secure multi-party computation, Ph.D thesis (University of Cambridge, 2009).

Cristiani, M.

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

de la Giroday, A. B.

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

de Riedmatten, H.

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

Dreau, A. E.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3  kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Eghlidi, H.

G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[Crossref]

Eibl, M.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref]

Elkouss, D.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3  kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Fattal, D.

D. Fattal, K. Inoue, J. Vučkovič, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett. 92, 037903 (2004).
[Crossref]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

Fekete, J.

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

Freedman, S. J.

S. J. Freedman and J. F. Clauser, “Experimental test of local hidden-variable theories,” Phys. Rev. Lett. 28, 938–941 (1972).
[Crossref]

Galinis, J.

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532  nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Garthoff, R.

W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, “Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes,” Phys. Rev. Lett. 119, 010402 (2017).
[Crossref]

Gazzano, O.

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref]

Gerardot, B. D.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Gerhardt, I.

M. Rezai, J. Wrachtrup, and I. Gerhardt, “Coherence properties of molecular single photons for quantum networks,” Phys. Rev. X 8, 031026 (2018).
[Crossref]

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

W. Kiefer, M. Rezai, J. Wrachtrup, and I. Gerhardt, “An atomic spectrum recorded with a single molecule light source,” Appl. Phys. B 122, 1–12 (2016).
[Crossref]

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref]

Gershoni, D.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Gisin, N.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

Gotzinger, S.

G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[Crossref]

Gulati, G. K.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref]

Hanson, R.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3  kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Hardy, L.

S. Popescu, L. Hardy, and M. Z. Żukowski, “Revisiting Bell’s theorem for a class of down-conversion experiments,” Phys. Rev. A 56, R4353–R4356 (1997).
[Crossref]

Hayes, D.

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

Hensen, B.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3  kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Holt, R. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Hong, C.

Z. Ou, C. Hong, and L. Mandel, “Violations of locality in correlation measurements with a beam splitter,” Phys. Lett. A 122, 11–13 (1987).
[Crossref]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Horne, M. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Inoue, K.

D. Fattal, K. Inoue, J. Vučkovič, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett. 92, 037903 (2004).
[Crossref]

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Jetter, M.

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

Jiang, L.

D. Luong, L. Jiang, J. Kim, and N. Lütkenhaus, “Overcoming lossy channel bounds using a single quantum repeater node,” Appl. Phys. B 122, 96 (2016).
[Crossref]

Kalb, N.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3  kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Kiefer, W.

W. Kiefer, M. Rezai, J. Wrachtrup, and I. Gerhardt, “An atomic spectrum recorded with a single molecule light source,” Appl. Phys. B 122, 1–12 (2016).
[Crossref]

Kim, J.

D. Luong, L. Jiang, J. Kim, and N. Lütkenhaus, “Overcoming lossy channel bounds using a single quantum repeater node,” Appl. Phys. B 122, 96 (2016).
[Crossref]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Kukura, P.

G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[Crossref]

Kurtsiefer, C.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref]

Kwiat, P. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Ladd, T. D.

K. Sanaka, A. Pawlis, T. D. Ladd, D. J. Sleiter, K. Lischka, and Y. Yamamoto, “Entangling single photons from independently tuned semiconductor nanoemitters,” Nano Lett. 12, 4611–4616 (2012).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Lee, G. K.

G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[Crossref]

Lemaitre, A.

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref]

Lettow, R.

G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[Crossref]

Lindner, N. H.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Lischka, K.

K. Sanaka, A. Pawlis, T. D. Ladd, D. J. Sleiter, K. Lischka, and Y. Yamamoto, “Entangling single photons from independently tuned semiconductor nanoemitters,” Nano Lett. 12, 4611–4616 (2012).
[Crossref]

Lounis, B.

J.-B. Trebbia, P. Tamarat, and B. Lounis, “Indistinguishable near-infrared single photons from an individual organic molecule,” Phys. Rev. A 82, 063803 (2010).
[Crossref]

Lu, C.-Y.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Luo, L.

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

Luong, D.

D. Luong, L. Jiang, J. Kim, and N. Lütkenhaus, “Overcoming lossy channel bounds using a single quantum repeater node,” Appl. Phys. B 122, 96 (2016).
[Crossref]

Lütkenhaus, N.

D. Luong, L. Jiang, J. Kim, and N. Lütkenhaus, “Overcoming lossy channel bounds using a single quantum repeater node,” Appl. Phys. B 122, 96 (2016).
[Crossref]

Machulka, R.

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532  nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Mandel, L.

Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988).
[Crossref]

Z. Ou, C. Hong, and L. Mandel, “Violations of locality in correlation measurements with a beam splitter,” Phys. Lett. A 122, 11–13 (1987).
[Crossref]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Manning, T. A.

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

Markham, M.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3  kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Maslennikov, G.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref]

Massar, S.

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

Mataloni, P.

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532  nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Matsukevich, D.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref]

Matsukevich, D. N.

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

Mattle, K.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Maunz, P.

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

Michler, P.

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

Milani, G.

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532  nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Mitchell, M. W.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3  kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Monroe, C.

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

Munro, W. J.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Nawrath, C.

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

Nikolayev, E.

M. Chubarov and E. Nikolayev, “Violation of Einstein locality in states with sub-Poissonian statistics,” Phys. Lett. A 110, 199–202 (1985).
[Crossref]

Nikolova, A.

M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, “Sub-megahertz linewidth single photon source,” APL Photon. 1, 096101 (2016).
[Crossref]

Nowak, A. K.

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref]

Olmschenk, S.

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

Ortegel, N.

W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, “Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes,” Phys. Rev. Lett. 119, 010402 (2017).
[Crossref]

Ou, Z.

Z. Ou, C. Hong, and L. Mandel, “Violations of locality in correlation measurements with a beam splitter,” Phys. Lett. A 122, 11–13 (1987).
[Crossref]

Ou, Z. Y.

Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988).
[Crossref]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Pan, J.-W.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).

Pawlis, A.

K. Sanaka, A. Pawlis, T. D. Ladd, D. J. Sleiter, K. Lischka, and Y. Yamamoto, “Entangling single photons from independently tuned semiconductor nanoemitters,” Nano Lett. 12, 4611–4616 (2012).
[Crossref]

Pelton, M.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[Crossref]

Perego, A. M.

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532  nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Petroff, P. M.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Pironio, S.

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

Pirotta, M.

M. Pirotta, A. Renn, M. H. Werts, and U. P. Wild, “Single molecule spectroscopy. Perylene in the Shpol’skii matrix n-nonane,” Chem. Phys. Lett. 250, 576–582 (1996).
[Crossref]

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Poem, E.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Popescu, S.

S. Popescu, L. Hardy, and M. Z. Żukowski, “Revisiting Bell’s theorem for a class of down-conversion experiments,” Phys. Rev. A 56, R4353–R4356 (1997).
[Crossref]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[Crossref]

Portalupi, S. L.

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref]

Pruneri, V.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3  kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Rambach, M.

M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, “Sub-megahertz linewidth single photon source,” APL Photon. 1, 096101 (2016).
[Crossref]

Rau, M.

W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, “Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes,” Phys. Rev. Lett. 119, 010402 (2017).
[Crossref]

Redeker, K.

W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, “Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes,” Phys. Rev. Lett. 119, 010402 (2017).
[Crossref]

Reiserer, A.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3  kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Renn, A.

G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[Crossref]

M. Pirotta, A. Renn, M. H. Werts, and U. P. Wild, “Single molecule spectroscopy. Perylene in the Shpol’skii matrix n-nonane,” Chem. Phys. Lett. 250, 576–582 (1996).
[Crossref]

Rezai, M.

M. Rezai, J. Wrachtrup, and I. Gerhardt, “Coherence properties of molecular single photons for quantum networks,” Phys. Rev. X 8, 031026 (2018).
[Crossref]

W. Kiefer, M. Rezai, J. Wrachtrup, and I. Gerhardt, “An atomic spectrum recorded with a single molecule light source,” Appl. Phys. B 122, 1–12 (2016).
[Crossref]

Rieländer, D.

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Rosenfeld, W.

W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, “Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes,” Phys. Rev. Lett. 119, 010402 (2017).
[Crossref]

Ruitenberg, J.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3  kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Sagnes, I.

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref]

Sanaka, K.

K. Sanaka, A. Pawlis, T. D. Ladd, D. J. Sleiter, K. Lischka, and Y. Yamamoto, “Entangling single photons from independently tuned semiconductor nanoemitters,” Nano Lett. 12, 4611–4616 (2012).
[Crossref]

Sandoghdar, V.

G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[Crossref]

Santori, C.

D. Fattal, K. Inoue, J. Vučkovič, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett. 92, 037903 (2004).
[Crossref]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[Crossref]

Scarani, V.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

Schouten, R. N.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3  kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Schumacher, B.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[Crossref]

Sciarrino, F.

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532  nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Senellart, P.

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Shih, Y. H.

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
[Crossref]

Shimony, A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Siyushev, P.

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref]

Sleiter, D. J.

K. Sanaka, A. Pawlis, T. D. Ladd, D. J. Sleiter, K. Lischka, and Y. Yamamoto, “Entangling single photons from independently tuned semiconductor nanoemitters,” Nano Lett. 12, 4611–4616 (2012).
[Crossref]

Smolin, J. A.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[Crossref]

Solomon, G. S.

D. Fattal, K. Inoue, J. Vučkovič, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett. 92, 037903 (2004).
[Crossref]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

Spasibko, K. Y.

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532  nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Srivathsan, B.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref]

Stein, G.

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref]

Tamarat, P.

J.-B. Trebbia, P. Tamarat, and B. Lounis, “Indistinguishable near-infrared single photons from an individual organic molecule,” Phys. Rev. A 82, 063803 (2010).
[Crossref]

Taminiau, T. H.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3  kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Trebbia, J.-B.

J.-B. Trebbia, P. Tamarat, and B. Lounis, “Indistinguishable near-infrared single photons from an individual organic molecule,” Phys. Rev. A 82, 063803 (2010).
[Crossref]

Twitchen, D. J.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3  kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Vallone, G.

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532  nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Vermeulen, R. F. L.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3  kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Vuckovic, J.

D. Fattal, K. Inoue, J. Vučkovič, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett. 92, 037903 (2004).
[Crossref]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

Wehner, S.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3  kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Weinfurter, H.

W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, “Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes,” Phys. Rev. Lett. 119, 010402 (2017).
[Crossref]

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Weinhold, T. J.

M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, “Sub-megahertz linewidth single photon source,” APL Photon. 1, 096101 (2016).
[Crossref]

Werts, M. H.

M. Pirotta, A. Renn, M. H. Werts, and U. P. Wild, “Single molecule spectroscopy. Perylene in the Shpol’skii matrix n-nonane,” Chem. Phys. Lett. 250, 576–582 (1996).
[Crossref]

White, A. G.

M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, “Sub-megahertz linewidth single photon source,” APL Photon. 1, 096101 (2016).
[Crossref]

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Widmann, M.

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

Wild, U. P.

M. Pirotta, A. Renn, M. H. Werts, and U. P. Wild, “Single molecule spectroscopy. Perylene in the Shpol’skii matrix n-nonane,” Chem. Phys. Lett. 250, 576–582 (1996).
[Crossref]

Wootters, W. K.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[Crossref]

Wrachtrup, J.

M. Rezai, J. Wrachtrup, and I. Gerhardt, “Coherence properties of molecular single photons for quantum networks,” Phys. Rev. X 8, 031026 (2018).
[Crossref]

W. Kiefer, M. Rezai, J. Wrachtrup, and I. Gerhardt, “An atomic spectrum recorded with a single molecule light source,” Appl. Phys. B 122, 1–12 (2016).
[Crossref]

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref]

Yamamoto, Y.

K. Sanaka, A. Pawlis, T. D. Ladd, D. J. Sleiter, K. Lischka, and Y. Yamamoto, “Entangling single photons from independently tuned semiconductor nanoemitters,” Nano Lett. 12, 4611–4616 (2012).
[Crossref]

D. Fattal, K. Inoue, J. Vučkovič, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett. 92, 037903 (2004).
[Crossref]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[Crossref]

Zeilinger, A.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Zukowski, M. Z.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

S. Popescu, L. Hardy, and M. Z. Żukowski, “Revisiting Bell’s theorem for a class of down-conversion experiments,” Phys. Rev. A 56, R4353–R4356 (1997).
[Crossref]

APL Photon. (1)

M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, “Sub-megahertz linewidth single photon source,” APL Photon. 1, 096101 (2016).
[Crossref]

Appl. Phys. B (2)

W. Kiefer, M. Rezai, J. Wrachtrup, and I. Gerhardt, “An atomic spectrum recorded with a single molecule light source,” Appl. Phys. B 122, 1–12 (2016).
[Crossref]

D. Luong, L. Jiang, J. Kim, and N. Lütkenhaus, “Overcoming lossy channel bounds using a single quantum repeater node,” Appl. Phys. B 122, 96 (2016).
[Crossref]

Chem. Phys. Lett. (1)

M. Pirotta, A. Renn, M. H. Werts, and U. P. Wild, “Single molecule spectroscopy. Perylene in the Shpol’skii matrix n-nonane,” Chem. Phys. Lett. 250, 576–582 (1996).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532  nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Nano Lett. (1)

K. Sanaka, A. Pawlis, T. D. Ladd, D. J. Sleiter, K. Lischka, and Y. Yamamoto, “Entangling single photons from independently tuned semiconductor nanoemitters,” Nano Lett. 12, 4611–4616 (2012).
[Crossref]

Nat. Commun. (1)

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

Nat. Photonics (1)

G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[Crossref]

Nature (6)

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3  kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Phys. Lett. A (2)

M. Chubarov and E. Nikolayev, “Violation of Einstein locality in states with sub-Poissonian statistics,” Phys. Lett. A 110, 199–202 (1985).
[Crossref]

Z. Ou, C. Hong, and L. Mandel, “Violations of locality in correlation measurements with a beam splitter,” Phys. Lett. A 122, 11–13 (1987).
[Crossref]

Phys. Rev. (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Phys. Rev. A (3)

J.-B. Trebbia, P. Tamarat, and B. Lounis, “Indistinguishable near-infrared single photons from an individual organic molecule,” Phys. Rev. A 82, 063803 (2010).
[Crossref]

S. Popescu, L. Hardy, and M. Z. Żukowski, “Revisiting Bell’s theorem for a class of down-conversion experiments,” Phys. Rev. A 56, R4353–R4356 (1997).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Phys. Rev. Lett. (16)

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[Crossref]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
[Crossref]

Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988).
[Crossref]

D. Fattal, K. Inoue, J. Vučkovič, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett. 92, 037903 (2004).
[Crossref]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[Crossref]

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref]

W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, “Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes,” Phys. Rev. Lett. 119, 010402 (2017).
[Crossref]

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

S. J. Freedman and J. F. Clauser, “Experimental test of local hidden-variable theories,” Phys. Rev. Lett. 28, 938–941 (1972).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref]

Phys. Rev. X (1)

M. Rezai, J. Wrachtrup, and I. Gerhardt, “Coherence properties of molecular single photons for quantum networks,” Phys. Rev. X 8, 031026 (2018).
[Crossref]

Physics (1)

J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195–200 (1964).
[Crossref]

Rev. Mod. Phys. (1)

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Other (1)

R. Colbeck, Quantum and relativistic protocols for secure multi-party computation, Ph.D thesis (University of Cambridge, 2009).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental Document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Scheme of entanglement generation from single photons. The fundamental working principle is founded on the mode-mixing of two identical single photons on a 50:50 beam splitter. If these photons are prepared in two orthogonal polarizations and subsequently detected in the two output ports, the resulting polarization-entangled state is represented as | Ψ = ( 1 / 2 ) ( | H | V | V | H ) . The output photons violate the locality principle, and are suitable for schemes such as quantum teleportation and key distribution. The emission of single photons from single molecules is ideal for this scheme due to their narrow-band nature (ca. 12–20 MHz) and brightness. Furthermore, the molecular photons can be tailored to be compatible with a variety of stationary qubits such as atoms and ions.
Fig. 2.
Fig. 2. Experimental configuration. (a) The molecule dibenzanthanthrene (DBATT) is selected for this study. (b) Simplified level scheme. The optical excitation transfers the system to the vibronic excited state, and the system emits Fourier limited photons from the first electronic excited state. This has a lifetime of approximately 10 ns. (c) Experimental configuration. Left, the molecule in the cryostat; Middle, the emitted photons are filtered by a Faraday filter composed of hot atomic sodium vapor and a magnetic field. Right, the generated single-photon stream is split, relatively delayed, and interfaced on a beam splitter. (d) Spectrum of the single molecule under 0–0 excitation. Superimposed orange, transmission spectrum of the Faraday filter. (e) Single-photon antibunching, measured after Faraday filtering. (f) Time-correlated single-photon counting of the output ports of the HOM interferometer.
Fig. 3.
Fig. 3. Bell violation. (a) Relevant experimental configuration with orthogonal incoming photons. (b) Raw recorded data for different analyzer positions, presented as photon–photon correlation functions, g ( 2 ) ( τ ) . Time range is ± 30    ns . (c) Theoretical expectation values for the maximal entangled | Ψ Bell state. (d)  g ( 2 ) ( τ = 0 ) is estimated by a fit of the data in subfigure (b). These fitted values result in a Bell parameter of S = 2.26 ± 0.05 , which is clearly above the classical limit of S = 2.0 . (e) Raw analysis of the inner time window (indicated in gray). These are the coinciding photons on the non-polarizing beam-splitter of subfigure (a). Based on the recorded raw coincidence clicks, an entanglement with S = 2.24 ± 0.12 is determined.
Fig. 4.
Fig. 4. Density matrix of the entangled two-photon state. The quantum state tomography provides a full description of the generated state. This measurement requires two additional quarter wave plates in the setup of Fig. 3(a). (a) real part of the density matrix. (b) imaginary part of the density matrix. The overall fidelity to the | Ψ -Bell state is measured to be 82%, and it predicts a Bell-parameter of S = 2.2 .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E = ( N h h + N v v ) ( N h v + N v h ) ( N h h + N v v ) + ( N h v + N v h ) .
S = E ( α , β ) E ( α , β ) + E ( α , β ) + E ( α , β ) .
ρ ^ = ( x = 1 4 y = 1 4 M ^ x , y N x , y ) / ( x = 1 4 y = 1 4 t r ( M ^ x , y ) N x , y ) .

Metrics