Abstract

Optically storing and addressing data on photonic chips is of particular interest as such capability would eliminate optoelectronic conversion losses in data centers. It would also enable on-chip non-von Neumann photonic computing by allowing multinary data storage with high fidelity. Here, we demonstrate such an optically addressed, multilevel memory capable of storing up to 34 nonvolatile reliable and repeatable levels (over 5 bits) using the phase change material Ge2Sb2Te5 integrated on a photonic waveguide. Crucially, we demonstrate for the first time, to the best of our knowledge, a technique that allows us to program the device with a single pulse regardless of the previous state of the material, providing an order of magnitude improvement over previous demonstrations in terms of both time and energy consumption. We also investigate the influence of write-and-erase pulse parameters on the single-pulse recrystallization, amorphization, and readout error in our multilevel memory, thus tailoring pulse properties for optimum performance. Our work represents a significant step in the development of photonic memories and their potential for novel integrated photonic applications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited]

Carlos Rios, Matthias Stegmaier, Zengguang Cheng, Nathan Youngblood, C. David Wright, Wolfram H. P. Pernice, and Harish Bhaskaran
Opt. Mater. Express 8(9) 2455-2470 (2018)

All-optical non-volatile tuning of an AMZI-coupled ring resonator with GST phase-change material

Hanyu Zhang, Linjie Zhou, Jian Xu, Liangjun Lu, Jianping Chen, and B. M. A. Rahman
Opt. Lett. 43(22) 5539-5542 (2018)

All-optical tuning of EIT-like dielectric metasurfaces by means of chalcogenide phase change materials

E. Petronijevic and C. Sibilia
Opt. Express 24(26) 30411-30420 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Ishiwara, “FeFET and ferroelectric random access memories,” in Multifunctional Oxide Heterostructures (2012), p. 7619–7627.
  2. Y. Arimoto and H. Ishiwara, “Current status of ferroelectric random-access memory,” MRS Bull. 29(11), 823–828 (2004).
    [Crossref]
  3. N. Nishimura, T. Hirai, A. Koganei, T. Ikeda, K. Okano, Y. Sekiguchi, and Y. Osada, “Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory,” J. Appl. Phys. 91, 5246–5249 (2002).
    [Crossref]
  4. S. Tehrani, J. M. Slaughter, M. DeHerrera, B. N. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, “Magnetoresistive random access memory using magnetic tunnel junctions,” Proc. IEEE 91, 703–714 (2003).
    [Crossref]
  5. S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited),” J. Appl. Phys. 85, 5828–5833 (1999).
    [Crossref]
  6. F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. C. Buda, F. Pellizzer, D. W. Chow, A. Cabrini, G. M. A. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande, “A bipolar-selected phase change memory featuring multi-level cell storage,” IEEE J. Solid-State Circuits 44, 217–227 (2009).
    [Crossref]
  7. M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high performance main memory system using phase-change memory technology,” ACM SIGARCH Comput. Archit. News 37(3), 24–33 (2009).
    [Crossref]
  8. B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change memory as a scalable dram alternative,” ACM SIGARCH Comput. Archit. News 37(3), 2–13 (2009).
    [Crossref]
  9. P. Zhou, B. Zhao, J. Yang, Y. Zhang, P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient main memory using phase change memory technology,” in Proceedings of the 36th Annual International Symposium on Computer Architecture—ISCA ‘09 (ACM, 2009), Vol. 37, pp. 14–23.
  10. J. Y. Raty, W. Zhang, J. Luckas, C. Chen, R. Mazzarello, C. Bichara, and M. Wuttig, “Aging mechanisms in amorphous phase-change materials,” Nat. Commun. 6, 7467 (2015).
    [Crossref]
  11. L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. R. Childers, “Improving write operations in MLC phase change memory,” in IEEE International Symposium on High-Performance Comp Architecture (IEEE, 2012), pp. 1–10.
  12. A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3, 703–708 (2004).
    [Crossref]
  13. A. Sebastian, T. Tuma, N. Papandreou, M. Le Gallo, L. Kull, T. Parnell, and E. Eleftheriou, “Temporal correlation detection using computational phase-change memory,” Nat. Commun. 8, 1115 (2017).
    [Crossref]
  14. A. Cabrini, S. Braga, A. Manetto, and G. Torelli, “Voltage-driven multilevel programming in phase change memories,” in 2009 IEEE International Workshop on Memory Technology, Design, and Testing (IEEE, 2009), pp. 3–6.
  15. M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan, “Memristor-based analog computation and neural network classification with a dot product engine,” Adv. Mater. 30, 1–10 (2018).
    [Crossref]
  16. I. V. Karpov, M. Mitra, D. Kau, G. Spadini, Y. A. Kryukov, and V. G. Karpov, “Fundamental drift of parameters in chalcogenide phase change memory,” J. Appl. Phys. 102, 124503 (2007).
    [Crossref]
  17. W. W. Koelmans, A. Sebastian, V. P. Jonnalagadda, D. Krebs, L. Dellmann, and E. Eleftheriou, “Projected phase-change memory devices,” Nat. Commun. 6, 8181 (2015).
    [Crossref]
  18. D. Ielmini, A. L. Lacaita, and D. Mantegazza, “Recovery and drift dynamics of resistance and threshold voltages in phase-change memories,” IEEE Trans. Electron Devices 54, 308–315 (2007).
    [Crossref]
  19. N. Papandreou, H. Pozidis, T. Mittelholzer, G. F. Close, M. Breitwisch, C. Lam, and E. Eleftheriou, “Drift-tolerant multilevel phase-change memory,” in 2011 3rd IEEE International Memory Workshop (IMW) (IEEE, 2011), pp. 1–4.
  20. M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6, 824–832 (2007).
  21. M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
    [Crossref]
  22. M. Paniccia, “Integrating silicon photonics,” Nat. Photonics 4, 498–499 (2010).
    [Crossref]
  23. H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4, 261–263 (2010).
    [Crossref]
  24. Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3, e1700160 (2017).
    [Crossref]
  25. C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
    [Crossref]
  26. J. Feldmann, M. Stegmaier, N. Gruhler, C. Riós, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8, 1–8 (2017).
    [Crossref]
  27. C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26, 1372–1377 (2014).
    [Crossref]
  28. M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
    [Crossref]
  29. C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” arXiv:1801.06228 [cs.ET] (2018).
  30. Y. Liu, M. M. Aziz, A. Shalini, C. D. Wright, and R. J. Hicken, “Crystallization of Ge2Sb2Te5 films by amplified femtosecond optical pulses,” J. Appl. Phys. 112, 123526 (2012).
    [Crossref]
  31. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69, 2849–2856 (1991).
    [Crossref]
  32. M. Stegmaier, C. Rĺos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photon. 3, 828–835 (2016).
    [Crossref]
  33. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [Crossref]
  34. M. Rudé, J. Pello, R. E. Simpson, J. Osmond, and G. Roelkens, “Optical switching at 1.55  μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
    [Crossref]
  35. W. Kim, S. Menzel, D. J. Wouters, R. Waser, and V. Rana, “3-bit multilevel switching by deep reset phenomenon in Pt/W/TaOX/Pt-ReRAM devices,” IEEE Electron Device Lett. 37, 564–567 (2016).
    [Crossref]
  36. J. Liu, H. Yang, Z. Ma, K. Chen, X. Zhang, X. Huang, and S. Oda, “Characteristics of multilevel storage and switching dynamics in resistive switching cell of Al2O3/HfO2/Al2O3 sandwich structure,” J. Phys. D 51, 025102 (2018).
    [Crossref]
  37. M.-F. Chang, C.-C. Kuo, S.-S. Sheu, C.-J. Lin, Y.-C. King, F. T. Chen, T.-K. Ku, M.-J. Tsai, J.-J. Wu, and Y.-D. Chih, “Area-efficient embedded resistive ram (ReRAM) macros using logic-process vertical-parasitic-BJT (VPBJT) switches and read-disturb-free temperature-aware current-mode read scheme,” IEEE J. Solid-State Circuits 49, 908–916 (2014).
    [Crossref]
  38. F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, R. Mazzarello, W. Zhang, and E. Ma, “Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing,” Science 358, 1423–1427 (2017).
    [Crossref]
  39. L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
    [Crossref]
  40. K. Zhang, S. Li, G. Liang, H. Huang, Y. Wang, T. Lai, and Y. Wu, “Different crystallization processes of as-deposited amorphous Ge2Sb2Te5 films on nano- and picosecond single laser pulse irradiation,” Phys. B 407, 2447–2450 (2012).
    [Crossref]
  41. C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23, 3408–3413 (2011).
    [Crossref]
  42. Y. Wang, D. Cai, Y. Chen, Y. Wang, H. Wei, R. Huo, X. Chen, and Z. Song, “Optimizing set performance for phase change memory with dual pulses set method,” ECS Solid State Lett. 4, Q32–Q35 (2015).
    [Crossref]
  43. A. Sebastian, M. Le Gallo, and D. Krebs, “Crystal growth within a phase change memory cell,” Nat. Commun. 5, 4314 (2014).
    [Crossref]

2018 (2)

M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan, “Memristor-based analog computation and neural network classification with a dot product engine,” Adv. Mater. 30, 1–10 (2018).
[Crossref]

J. Liu, H. Yang, Z. Ma, K. Chen, X. Zhang, X. Huang, and S. Oda, “Characteristics of multilevel storage and switching dynamics in resistive switching cell of Al2O3/HfO2/Al2O3 sandwich structure,” J. Phys. D 51, 025102 (2018).
[Crossref]

2017 (5)

F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, R. Mazzarello, W. Zhang, and E. Ma, “Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing,” Science 358, 1423–1427 (2017).
[Crossref]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Riós, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
[Crossref]

A. Sebastian, T. Tuma, N. Papandreou, M. Le Gallo, L. Kull, T. Parnell, and E. Eleftheriou, “Temporal correlation detection using computational phase-change memory,” Nat. Commun. 8, 1115 (2017).
[Crossref]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3, e1700160 (2017).
[Crossref]

2016 (2)

M. Stegmaier, C. Rĺos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photon. 3, 828–835 (2016).
[Crossref]

W. Kim, S. Menzel, D. J. Wouters, R. Waser, and V. Rana, “3-bit multilevel switching by deep reset phenomenon in Pt/W/TaOX/Pt-ReRAM devices,” IEEE Electron Device Lett. 37, 564–567 (2016).
[Crossref]

2015 (5)

L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
[Crossref]

Y. Wang, D. Cai, Y. Chen, Y. Wang, H. Wei, R. Huo, X. Chen, and Z. Song, “Optimizing set performance for phase change memory with dual pulses set method,” ECS Solid State Lett. 4, Q32–Q35 (2015).
[Crossref]

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

W. W. Koelmans, A. Sebastian, V. P. Jonnalagadda, D. Krebs, L. Dellmann, and E. Eleftheriou, “Projected phase-change memory devices,” Nat. Commun. 6, 8181 (2015).
[Crossref]

J. Y. Raty, W. Zhang, J. Luckas, C. Chen, R. Mazzarello, C. Bichara, and M. Wuttig, “Aging mechanisms in amorphous phase-change materials,” Nat. Commun. 6, 7467 (2015).
[Crossref]

2014 (3)

A. Sebastian, M. Le Gallo, and D. Krebs, “Crystal growth within a phase change memory cell,” Nat. Commun. 5, 4314 (2014).
[Crossref]

M.-F. Chang, C.-C. Kuo, S.-S. Sheu, C.-J. Lin, Y.-C. King, F. T. Chen, T.-K. Ku, M.-J. Tsai, J.-J. Wu, and Y.-D. Chih, “Area-efficient embedded resistive ram (ReRAM) macros using logic-process vertical-parasitic-BJT (VPBJT) switches and read-disturb-free temperature-aware current-mode read scheme,” IEEE J. Solid-State Circuits 49, 908–916 (2014).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26, 1372–1377 (2014).
[Crossref]

2013 (1)

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, and G. Roelkens, “Optical switching at 1.55  μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

2012 (2)

Y. Liu, M. M. Aziz, A. Shalini, C. D. Wright, and R. J. Hicken, “Crystallization of Ge2Sb2Te5 films by amplified femtosecond optical pulses,” J. Appl. Phys. 112, 123526 (2012).
[Crossref]

K. Zhang, S. Li, G. Liang, H. Huang, Y. Wang, T. Lai, and Y. Wu, “Different crystallization processes of as-deposited amorphous Ge2Sb2Te5 films on nano- and picosecond single laser pulse irradiation,” Phys. B 407, 2447–2450 (2012).
[Crossref]

2011 (2)

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23, 3408–3413 (2011).
[Crossref]

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
[Crossref]

2010 (2)

M. Paniccia, “Integrating silicon photonics,” Nat. Photonics 4, 498–499 (2010).
[Crossref]

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4, 261–263 (2010).
[Crossref]

2009 (3)

F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. C. Buda, F. Pellizzer, D. W. Chow, A. Cabrini, G. M. A. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande, “A bipolar-selected phase change memory featuring multi-level cell storage,” IEEE J. Solid-State Circuits 44, 217–227 (2009).
[Crossref]

M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high performance main memory system using phase-change memory technology,” ACM SIGARCH Comput. Archit. News 37(3), 24–33 (2009).
[Crossref]

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change memory as a scalable dram alternative,” ACM SIGARCH Comput. Archit. News 37(3), 2–13 (2009).
[Crossref]

2007 (3)

D. Ielmini, A. L. Lacaita, and D. Mantegazza, “Recovery and drift dynamics of resistance and threshold voltages in phase-change memories,” IEEE Trans. Electron Devices 54, 308–315 (2007).
[Crossref]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6, 824–832 (2007).

I. V. Karpov, M. Mitra, D. Kau, G. Spadini, Y. A. Kryukov, and V. G. Karpov, “Fundamental drift of parameters in chalcogenide phase change memory,” J. Appl. Phys. 102, 124503 (2007).
[Crossref]

2004 (2)

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3, 703–708 (2004).
[Crossref]

Y. Arimoto and H. Ishiwara, “Current status of ferroelectric random-access memory,” MRS Bull. 29(11), 823–828 (2004).
[Crossref]

2003 (1)

S. Tehrani, J. M. Slaughter, M. DeHerrera, B. N. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, “Magnetoresistive random access memory using magnetic tunnel junctions,” Proc. IEEE 91, 703–714 (2003).
[Crossref]

2002 (1)

N. Nishimura, T. Hirai, A. Koganei, T. Ikeda, K. Okano, Y. Sekiguchi, and Y. Osada, “Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory,” J. Appl. Phys. 91, 5246–5249 (2002).
[Crossref]

1999 (1)

S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited),” J. Appl. Phys. 85, 5828–5833 (1999).
[Crossref]

1991 (1)

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69, 2849–2856 (1991).
[Crossref]

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Abraham, D. W.

S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited),” J. Appl. Phys. 85, 5828–5833 (1999).
[Crossref]

Akahira, N.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69, 2849–2856 (1991).
[Crossref]

Ankudinov, A. L.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3, 703–708 (2004).
[Crossref]

Arimoto, Y.

Y. Arimoto and H. Ishiwara, “Current status of ferroelectric random-access memory,” MRS Bull. 29(11), 823–828 (2004).
[Crossref]

Asghari, M.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
[Crossref]

Aziz, M. M.

Y. Liu, M. M. Aziz, A. Shalini, C. D. Wright, and R. J. Hicken, “Crystallization of Ge2Sb2Te5 films by amplified femtosecond optical pulses,” J. Appl. Phys. 112, 123526 (2012).
[Crossref]

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23, 3408–3413 (2011).
[Crossref]

Bedeschi, F.

F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. C. Buda, F. Pellizzer, D. W. Chow, A. Cabrini, G. M. A. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande, “A bipolar-selected phase change memory featuring multi-level cell storage,” IEEE J. Solid-State Circuits 44, 217–227 (2009).
[Crossref]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Bertoni, R.

L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
[Crossref]

Beyers, R. B.

S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited),” J. Appl. Phys. 85, 5828–5833 (1999).
[Crossref]

Bhaskaran, H.

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3, e1700160 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
[Crossref]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Riós, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

M. Stegmaier, C. Rĺos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photon. 3, 828–835 (2016).
[Crossref]

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26, 1372–1377 (2014).
[Crossref]

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” arXiv:1801.06228 [cs.ET] (2018).

Bichara, C.

J. Y. Raty, W. Zhang, J. Luckas, C. Chen, R. Mazzarello, C. Bichara, and M. Wuttig, “Aging mechanisms in amorphous phase-change materials,” Nat. Commun. 6, 7467 (2015).
[Crossref]

Braga, S.

A. Cabrini, S. Braga, A. Manetto, and G. Torelli, “Voltage-driven multilevel programming in phase change memories,” in 2009 IEEE International Workshop on Memory Technology, Design, and Testing (IEEE, 2009), pp. 3–6.

Breitwisch, M.

N. Papandreou, H. Pozidis, T. Mittelholzer, G. F. Close, M. Breitwisch, C. Lam, and E. Eleftheriou, “Drift-tolerant multilevel phase-change memory,” in 2011 3rd IEEE International Memory Workshop (IMW) (IEEE, 2011), pp. 1–4.

Brown, S. L.

S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited),” J. Appl. Phys. 85, 5828–5833 (1999).
[Crossref]

Bucchigano, J.

S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited),” J. Appl. Phys. 85, 5828–5833 (1999).
[Crossref]

Buda, E. C.

F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. C. Buda, F. Pellizzer, D. W. Chow, A. Cabrini, G. M. A. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande, “A bipolar-selected phase change memory featuring multi-level cell storage,” IEEE J. Solid-State Circuits 44, 217–227 (2009).
[Crossref]

Burger, D.

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change memory as a scalable dram alternative,” ACM SIGARCH Comput. Archit. News 37(3), 2–13 (2009).
[Crossref]

Butcher, B.

S. Tehrani, J. M. Slaughter, M. DeHerrera, B. N. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, “Magnetoresistive random access memory using magnetic tunnel junctions,” Proc. IEEE 91, 703–714 (2003).
[Crossref]

Cabrini, A.

F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. C. Buda, F. Pellizzer, D. W. Chow, A. Cabrini, G. M. A. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande, “A bipolar-selected phase change memory featuring multi-level cell storage,” IEEE J. Solid-State Circuits 44, 217–227 (2009).
[Crossref]

A. Cabrini, S. Braga, A. Manetto, and G. Torelli, “Voltage-driven multilevel programming in phase change memories,” in 2009 IEEE International Workshop on Memory Technology, Design, and Testing (IEEE, 2009), pp. 3–6.

Cai, D.

Y. Wang, D. Cai, Y. Chen, Y. Wang, H. Wei, R. Huo, X. Chen, and Z. Song, “Optimizing set performance for phase change memory with dual pulses set method,” ECS Solid State Lett. 4, Q32–Q35 (2015).
[Crossref]

Calvi, G. M. A.

F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. C. Buda, F. Pellizzer, D. W. Chow, A. Cabrini, G. M. A. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande, “A bipolar-selected phase change memory featuring multi-level cell storage,” IEEE J. Solid-State Circuits 44, 217–227 (2009).
[Crossref]

Casagrande, G.

F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. C. Buda, F. Pellizzer, D. W. Chow, A. Cabrini, G. M. A. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande, “A bipolar-selected phase change memory featuring multi-level cell storage,” IEEE J. Solid-State Circuits 44, 217–227 (2009).
[Crossref]

Caulfield, H. J.

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4, 261–263 (2010).
[Crossref]

Chang, M.-F.

M.-F. Chang, C.-C. Kuo, S.-S. Sheu, C.-J. Lin, Y.-C. King, F. T. Chen, T.-K. Ku, M.-J. Tsai, J.-J. Wu, and Y.-D. Chih, “Area-efficient embedded resistive ram (ReRAM) macros using logic-process vertical-parasitic-BJT (VPBJT) switches and read-disturb-free temperature-aware current-mode read scheme,” IEEE J. Solid-State Circuits 49, 908–916 (2014).
[Crossref]

Chen, C.

J. Y. Raty, W. Zhang, J. Luckas, C. Chen, R. Mazzarello, C. Bichara, and M. Wuttig, “Aging mechanisms in amorphous phase-change materials,” Nat. Commun. 6, 7467 (2015).
[Crossref]

Chen, F. T.

M.-F. Chang, C.-C. Kuo, S.-S. Sheu, C.-J. Lin, Y.-C. King, F. T. Chen, T.-K. Ku, M.-J. Tsai, J.-J. Wu, and Y.-D. Chih, “Area-efficient embedded resistive ram (ReRAM) macros using logic-process vertical-parasitic-BJT (VPBJT) switches and read-disturb-free temperature-aware current-mode read scheme,” IEEE J. Solid-State Circuits 49, 908–916 (2014).
[Crossref]

Chen, K.

J. Liu, H. Yang, Z. Ma, K. Chen, X. Zhang, X. Huang, and S. Oda, “Characteristics of multilevel storage and switching dynamics in resistive switching cell of Al2O3/HfO2/Al2O3 sandwich structure,” J. Phys. D 51, 025102 (2018).
[Crossref]

Chen, X.

Y. Wang, D. Cai, Y. Chen, Y. Wang, H. Wei, R. Huo, X. Chen, and Z. Song, “Optimizing set performance for phase change memory with dual pulses set method,” ECS Solid State Lett. 4, Q32–Q35 (2015).
[Crossref]

Chen, Y.

Y. Wang, D. Cai, Y. Chen, Y. Wang, H. Wei, R. Huo, X. Chen, and Z. Song, “Optimizing set performance for phase change memory with dual pulses set method,” ECS Solid State Lett. 4, Q32–Q35 (2015).
[Crossref]

Cheng, Z.

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3, e1700160 (2017).
[Crossref]

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” arXiv:1801.06228 [cs.ET] (2018).

Chih, Y.-D.

M.-F. Chang, C.-C. Kuo, S.-S. Sheu, C.-J. Lin, Y.-C. King, F. T. Chen, T.-K. Ku, M.-J. Tsai, J.-J. Wu, and Y.-D. Chih, “Area-efficient embedded resistive ram (ReRAM) macros using logic-process vertical-parasitic-BJT (VPBJT) switches and read-disturb-free temperature-aware current-mode read scheme,” IEEE J. Solid-State Circuits 49, 908–916 (2014).
[Crossref]

Childers, B. R.

L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. R. Childers, “Improving write operations in MLC phase change memory,” in IEEE International Symposium on High-Performance Comp Architecture (IEEE, 2012), pp. 1–10.

Chow, D. W.

F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. C. Buda, F. Pellizzer, D. W. Chow, A. Cabrini, G. M. A. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande, “A bipolar-selected phase change memory featuring multi-level cell storage,” IEEE J. Solid-State Circuits 44, 217–227 (2009).
[Crossref]

Close, G. F.

N. Papandreou, H. Pozidis, T. Mittelholzer, G. F. Close, M. Breitwisch, C. Lam, and E. Eleftheriou, “Drift-tolerant multilevel phase-change memory,” in 2011 3rd IEEE International Memory Workshop (IMW) (IEEE, 2011), pp. 1–4.

Dave, R. W.

S. Tehrani, J. M. Slaughter, M. DeHerrera, B. N. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, “Magnetoresistive random access memory using magnetic tunnel junctions,” Proc. IEEE 91, 703–714 (2003).
[Crossref]

Davila, N.

M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan, “Memristor-based analog computation and neural network classification with a dot product engine,” Adv. Mater. 30, 1–10 (2018).
[Crossref]

DeHerrera, M.

S. Tehrani, J. M. Slaughter, M. DeHerrera, B. N. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, “Magnetoresistive random access memory using magnetic tunnel junctions,” Proc. IEEE 91, 703–714 (2003).
[Crossref]

Dellmann, L.

W. W. Koelmans, A. Sebastian, V. P. Jonnalagadda, D. Krebs, L. Dellmann, and E. Eleftheriou, “Projected phase-change memory devices,” Nat. Commun. 6, 8181 (2015).
[Crossref]

Ding, K.

F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, R. Mazzarello, W. Zhang, and E. Ma, “Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing,” Science 358, 1423–1427 (2017).
[Crossref]

Dolev, S.

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4, 261–263 (2010).
[Crossref]

Donze, E. M.

F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. C. Buda, F. Pellizzer, D. W. Chow, A. Cabrini, G. M. A. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande, “A bipolar-selected phase change memory featuring multi-level cell storage,” IEEE J. Solid-State Circuits 44, 217–227 (2009).
[Crossref]

Durlam, M.

S. Tehrani, J. M. Slaughter, M. DeHerrera, B. N. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, “Magnetoresistive random access memory using magnetic tunnel junctions,” Proc. IEEE 91, 703–714 (2003).
[Crossref]

Eleftheriou, E.

A. Sebastian, T. Tuma, N. Papandreou, M. Le Gallo, L. Kull, T. Parnell, and E. Eleftheriou, “Temporal correlation detection using computational phase-change memory,” Nat. Commun. 8, 1115 (2017).
[Crossref]

W. W. Koelmans, A. Sebastian, V. P. Jonnalagadda, D. Krebs, L. Dellmann, and E. Eleftheriou, “Projected phase-change memory devices,” Nat. Commun. 6, 8181 (2015).
[Crossref]

N. Papandreou, H. Pozidis, T. Mittelholzer, G. F. Close, M. Breitwisch, C. Lam, and E. Eleftheriou, “Drift-tolerant multilevel phase-change memory,” in 2011 3rd IEEE International Memory Workshop (IMW) (IEEE, 2011), pp. 1–4.

Engel, B. N.

S. Tehrani, J. M. Slaughter, M. DeHerrera, B. N. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, “Magnetoresistive random access memory using magnetic tunnel junctions,” Proc. IEEE 91, 703–714 (2003).
[Crossref]

Ernstorfer, R.

L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
[Crossref]

Fackenthal, R.

F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. C. Buda, F. Pellizzer, D. W. Chow, A. Cabrini, G. M. A. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande, “A bipolar-selected phase change memory featuring multi-level cell storage,” IEEE J. Solid-State Circuits 44, 217–227 (2009).
[Crossref]

Fantini, A.

F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. C. Buda, F. Pellizzer, D. W. Chow, A. Cabrini, G. M. A. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande, “A bipolar-selected phase change memory featuring multi-level cell storage,” IEEE J. Solid-State Circuits 44, 217–227 (2009).
[Crossref]

Faravelli, R.

F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. C. Buda, F. Pellizzer, D. W. Chow, A. Cabrini, G. M. A. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande, “A bipolar-selected phase change memory featuring multi-level cell storage,” IEEE J. Solid-State Circuits 44, 217–227 (2009).
[Crossref]

Feldmann, J.

J. Feldmann, M. Stegmaier, N. Gruhler, C. Riós, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

Feng, S.

F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, R. Mazzarello, W. Zhang, and E. Ma, “Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing,” Science 358, 1423–1427 (2017).
[Crossref]

Fons, P.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3, 703–708 (2004).
[Crossref]

Frenkel, A. I.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3, 703–708 (2004).
[Crossref]

Gallagher, W. J.

S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited),” J. Appl. Phys. 85, 5828–5833 (1999).
[Crossref]

Gastaldi, R.

F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. C. Buda, F. Pellizzer, D. W. Chow, A. Cabrini, G. M. A. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande, “A bipolar-selected phase change memory featuring multi-level cell storage,” IEEE J. Solid-State Circuits 44, 217–227 (2009).
[Crossref]

Ge, N.

M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan, “Memristor-based analog computation and neural network classification with a dot product engine,” Adv. Mater. 30, 1–10 (2018).
[Crossref]

Graves, C. E.

M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan, “Memristor-based analog computation and neural network classification with a dot product engine,” Adv. Mater. 30, 1–10 (2018).
[Crossref]

Gruhler, N.

J. Feldmann, M. Stegmaier, N. Gruhler, C. Riós, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

Grynkewich, G.

S. Tehrani, J. M. Slaughter, M. DeHerrera, B. N. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, “Magnetoresistive random access memory using magnetic tunnel junctions,” Proc. IEEE 91, 703–714 (2003).
[Crossref]

Hicken, R. J.

Y. Liu, M. M. Aziz, A. Shalini, C. D. Wright, and R. J. Hicken, “Crystallization of Ge2Sb2Te5 films by amplified femtosecond optical pulses,” J. Appl. Phys. 112, 123526 (2012).
[Crossref]

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23, 3408–3413 (2011).
[Crossref]

Hirai, T.

N. Nishimura, T. Hirai, A. Koganei, T. Ikeda, K. Okano, Y. Sekiguchi, and Y. Osada, “Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory,” J. Appl. Phys. 91, 5246–5249 (2002).
[Crossref]

Hosseini, P.

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26, 1372–1377 (2014).
[Crossref]

Hu, M.

M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan, “Memristor-based analog computation and neural network classification with a dot product engine,” Adv. Mater. 30, 1–10 (2018).
[Crossref]

Huang, H.

K. Zhang, S. Li, G. Liang, H. Huang, Y. Wang, T. Lai, and Y. Wu, “Different crystallization processes of as-deposited amorphous Ge2Sb2Te5 films on nano- and picosecond single laser pulse irradiation,” Phys. B 407, 2447–2450 (2012).
[Crossref]

Huang, X.

J. Liu, H. Yang, Z. Ma, K. Chen, X. Zhang, X. Huang, and S. Oda, “Characteristics of multilevel storage and switching dynamics in resistive switching cell of Al2O3/HfO2/Al2O3 sandwich structure,” J. Phys. D 51, 025102 (2018).
[Crossref]

Huo, R.

Y. Wang, D. Cai, Y. Chen, Y. Wang, H. Wei, R. Huo, X. Chen, and Z. Song, “Optimizing set performance for phase change memory with dual pulses set method,” ECS Solid State Lett. 4, Q32–Q35 (2015).
[Crossref]

Ielmini, D.

D. Ielmini, A. L. Lacaita, and D. Mantegazza, “Recovery and drift dynamics of resistance and threshold voltages in phase-change memories,” IEEE Trans. Electron Devices 54, 308–315 (2007).
[Crossref]

Ikeda, T.

N. Nishimura, T. Hirai, A. Koganei, T. Ikeda, K. Okano, Y. Sekiguchi, and Y. Osada, “Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory,” J. Appl. Phys. 91, 5246–5249 (2002).
[Crossref]

Ipek, E.

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change memory as a scalable dram alternative,” ACM SIGARCH Comput. Archit. News 37(3), 2–13 (2009).
[Crossref]

Ishiwara, H.

Y. Arimoto and H. Ishiwara, “Current status of ferroelectric random-access memory,” MRS Bull. 29(11), 823–828 (2004).
[Crossref]

H. Ishiwara, “FeFET and ferroelectric random access memories,” in Multifunctional Oxide Heterostructures (2012), p. 7619–7627.

Jagasivamani, M.

F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. C. Buda, F. Pellizzer, D. W. Chow, A. Cabrini, G. M. A. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande, “A bipolar-selected phase change memory featuring multi-level cell storage,” IEEE J. Solid-State Circuits 44, 217–227 (2009).
[Crossref]

Janesky, J.

S. Tehrani, J. M. Slaughter, M. DeHerrera, B. N. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, “Magnetoresistive random access memory using magnetic tunnel junctions,” Proc. IEEE 91, 703–714 (2003).
[Crossref]

Jiang, H.

M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan, “Memristor-based analog computation and neural network classification with a dot product engine,” Adv. Mater. 30, 1–10 (2018).
[Crossref]

Jiang, L.

L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. R. Childers, “Improving write operations in MLC phase change memory,” in IEEE International Symposium on High-Performance Comp Architecture (IEEE, 2012), pp. 1–10.

Jonnalagadda, V. P.

W. W. Koelmans, A. Sebastian, V. P. Jonnalagadda, D. Krebs, L. Dellmann, and E. Eleftheriou, “Projected phase-change memory devices,” Nat. Commun. 6, 8181 (2015).
[Crossref]

Karpov, I. V.

I. V. Karpov, M. Mitra, D. Kau, G. Spadini, Y. A. Kryukov, and V. G. Karpov, “Fundamental drift of parameters in chalcogenide phase change memory,” J. Appl. Phys. 102, 124503 (2007).
[Crossref]

Karpov, V. G.

I. V. Karpov, M. Mitra, D. Kau, G. Spadini, Y. A. Kryukov, and V. G. Karpov, “Fundamental drift of parameters in chalcogenide phase change memory,” J. Appl. Phys. 102, 124503 (2007).
[Crossref]

Kau, D.

I. V. Karpov, M. Mitra, D. Kau, G. Spadini, Y. A. Kryukov, and V. G. Karpov, “Fundamental drift of parameters in chalcogenide phase change memory,” J. Appl. Phys. 102, 124503 (2007).
[Crossref]

Kim, W.

W. Kim, S. Menzel, D. J. Wouters, R. Waser, and V. Rana, “3-bit multilevel switching by deep reset phenomenon in Pt/W/TaOX/Pt-ReRAM devices,” IEEE Electron Device Lett. 37, 564–567 (2016).
[Crossref]

King, Y.-C.

M.-F. Chang, C.-C. Kuo, S.-S. Sheu, C.-J. Lin, Y.-C. King, F. T. Chen, T.-K. Ku, M.-J. Tsai, J.-J. Wu, and Y.-D. Chih, “Area-efficient embedded resistive ram (ReRAM) macros using logic-process vertical-parasitic-BJT (VPBJT) switches and read-disturb-free temperature-aware current-mode read scheme,” IEEE J. Solid-State Circuits 49, 908–916 (2014).
[Crossref]

Koelmans, W. W.

W. W. Koelmans, A. Sebastian, V. P. Jonnalagadda, D. Krebs, L. Dellmann, and E. Eleftheriou, “Projected phase-change memory devices,” Nat. Commun. 6, 8181 (2015).
[Crossref]

Koganei, A.

N. Nishimura, T. Hirai, A. Koganei, T. Ikeda, K. Okano, Y. Sekiguchi, and Y. Osada, “Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory,” J. Appl. Phys. 91, 5246–5249 (2002).
[Crossref]

Kohary, K. I.

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23, 3408–3413 (2011).
[Crossref]

Kolobov, A. V.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3, 703–708 (2004).
[Crossref]

Krebs, D.

W. W. Koelmans, A. Sebastian, V. P. Jonnalagadda, D. Krebs, L. Dellmann, and E. Eleftheriou, “Projected phase-change memory devices,” Nat. Commun. 6, 8181 (2015).
[Crossref]

A. Sebastian, M. Le Gallo, and D. Krebs, “Crystal growth within a phase change memory cell,” Nat. Commun. 5, 4314 (2014).
[Crossref]

Krishnamoorthy, A. V.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
[Crossref]

Kryukov, Y. A.

I. V. Karpov, M. Mitra, D. Kau, G. Spadini, Y. A. Kryukov, and V. G. Karpov, “Fundamental drift of parameters in chalcogenide phase change memory,” J. Appl. Phys. 102, 124503 (2007).
[Crossref]

Ku, T.-K.

M.-F. Chang, C.-C. Kuo, S.-S. Sheu, C.-J. Lin, Y.-C. King, F. T. Chen, T.-K. Ku, M.-J. Tsai, J.-J. Wu, and Y.-D. Chih, “Area-efficient embedded resistive ram (ReRAM) macros using logic-process vertical-parasitic-BJT (VPBJT) switches and read-disturb-free temperature-aware current-mode read scheme,” IEEE J. Solid-State Circuits 49, 908–916 (2014).
[Crossref]

Kull, L.

A. Sebastian, T. Tuma, N. Papandreou, M. Le Gallo, L. Kull, T. Parnell, and E. Eleftheriou, “Temporal correlation detection using computational phase-change memory,” Nat. Commun. 8, 1115 (2017).
[Crossref]

Kuo, C.-C.

M.-F. Chang, C.-C. Kuo, S.-S. Sheu, C.-J. Lin, Y.-C. King, F. T. Chen, T.-K. Ku, M.-J. Tsai, J.-J. Wu, and Y.-D. Chih, “Area-efficient embedded resistive ram (ReRAM) macros using logic-process vertical-parasitic-BJT (VPBJT) switches and read-disturb-free temperature-aware current-mode read scheme,” IEEE J. Solid-State Circuits 49, 908–916 (2014).
[Crossref]

Lacaita, A. L.

D. Ielmini, A. L. Lacaita, and D. Mantegazza, “Recovery and drift dynamics of resistance and threshold voltages in phase-change memories,” IEEE Trans. Electron Devices 54, 308–315 (2007).
[Crossref]

Lai, T.

K. Zhang, S. Li, G. Liang, H. Huang, Y. Wang, T. Lai, and Y. Wu, “Different crystallization processes of as-deposited amorphous Ge2Sb2Te5 films on nano- and picosecond single laser pulse irradiation,” Phys. B 407, 2447–2450 (2012).
[Crossref]

Lam, C.

N. Papandreou, H. Pozidis, T. Mittelholzer, G. F. Close, M. Breitwisch, C. Lam, and E. Eleftheriou, “Drift-tolerant multilevel phase-change memory,” in 2011 3rd IEEE International Memory Workshop (IMW) (IEEE, 2011), pp. 1–4.

Le Gallo, M.

A. Sebastian, T. Tuma, N. Papandreou, M. Le Gallo, L. Kull, T. Parnell, and E. Eleftheriou, “Temporal correlation detection using computational phase-change memory,” Nat. Commun. 8, 1115 (2017).
[Crossref]

A. Sebastian, M. Le Gallo, and D. Krebs, “Crystal growth within a phase change memory cell,” Nat. Commun. 5, 4314 (2014).
[Crossref]

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” arXiv:1801.06228 [cs.ET] (2018).

Lee, B. C.

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change memory as a scalable dram alternative,” ACM SIGARCH Comput. Archit. News 37(3), 2–13 (2009).
[Crossref]

Li, C.

M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan, “Memristor-based analog computation and neural network classification with a dot product engine,” Adv. Mater. 30, 1–10 (2018).
[Crossref]

Li, S.

K. Zhang, S. Li, G. Liang, H. Huang, Y. Wang, T. Lai, and Y. Wu, “Different crystallization processes of as-deposited amorphous Ge2Sb2Te5 films on nano- and picosecond single laser pulse irradiation,” Phys. B 407, 2447–2450 (2012).
[Crossref]

Li, Y.

M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan, “Memristor-based analog computation and neural network classification with a dot product engine,” Adv. Mater. 30, 1–10 (2018).
[Crossref]

Liang, G.

K. Zhang, S. Li, G. Liang, H. Huang, Y. Wang, T. Lai, and Y. Wu, “Different crystallization processes of as-deposited amorphous Ge2Sb2Te5 films on nano- and picosecond single laser pulse irradiation,” Phys. B 407, 2447–2450 (2012).
[Crossref]

Lin, C.-J.

M.-F. Chang, C.-C. Kuo, S.-S. Sheu, C.-J. Lin, Y.-C. King, F. T. Chen, T.-K. Ku, M.-J. Tsai, J.-J. Wu, and Y.-D. Chih, “Area-efficient embedded resistive ram (ReRAM) macros using logic-process vertical-parasitic-BJT (VPBJT) switches and read-disturb-free temperature-aware current-mode read scheme,” IEEE J. Solid-State Circuits 49, 908–916 (2014).
[Crossref]

Liu, J.

J. Liu, H. Yang, Z. Ma, K. Chen, X. Zhang, X. Huang, and S. Oda, “Characteristics of multilevel storage and switching dynamics in resistive switching cell of Al2O3/HfO2/Al2O3 sandwich structure,” J. Phys. D 51, 025102 (2018).
[Crossref]

Liu, Y.

Y. Liu, M. M. Aziz, A. Shalini, C. D. Wright, and R. J. Hicken, “Crystallization of Ge2Sb2Te5 films by amplified femtosecond optical pulses,” J. Appl. Phys. 112, 123526 (2012).
[Crossref]

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23, 3408–3413 (2011).
[Crossref]

Lu, Y.

S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited),” J. Appl. Phys. 85, 5828–5833 (1999).
[Crossref]

Luckas, J.

J. Y. Raty, W. Zhang, J. Luckas, C. Chen, R. Mazzarello, C. Bichara, and M. Wuttig, “Aging mechanisms in amorphous phase-change materials,” Nat. Commun. 6, 7467 (2015).
[Crossref]

Lv, S.

F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, R. Mazzarello, W. Zhang, and E. Ma, “Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing,” Science 358, 1423–1427 (2017).
[Crossref]

Ma, E.

F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, R. Mazzarello, W. Zhang, and E. Ma, “Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing,” Science 358, 1423–1427 (2017).
[Crossref]

Ma, Z.

J. Liu, H. Yang, Z. Ma, K. Chen, X. Zhang, X. Huang, and S. Oda, “Characteristics of multilevel storage and switching dynamics in resistive switching cell of Al2O3/HfO2/Al2O3 sandwich structure,” J. Phys. D 51, 025102 (2018).
[Crossref]

Manetto, A.

A. Cabrini, S. Braga, A. Manetto, and G. Torelli, “Voltage-driven multilevel programming in phase change memories,” in 2009 IEEE International Workshop on Memory Technology, Design, and Testing (IEEE, 2009), pp. 3–6.

Mantegazza, D.

D. Ielmini, A. L. Lacaita, and D. Mantegazza, “Recovery and drift dynamics of resistance and threshold voltages in phase-change memories,” IEEE Trans. Electron Devices 54, 308–315 (2007).
[Crossref]

Mazzarello, R.

F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, R. Mazzarello, W. Zhang, and E. Ma, “Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing,” Science 358, 1423–1427 (2017).
[Crossref]

J. Y. Raty, W. Zhang, J. Luckas, C. Chen, R. Mazzarello, C. Bichara, and M. Wuttig, “Aging mechanisms in amorphous phase-change materials,” Nat. Commun. 6, 7467 (2015).
[Crossref]

Menzel, S.

W. Kim, S. Menzel, D. J. Wouters, R. Waser, and V. Rana, “3-bit multilevel switching by deep reset phenomenon in Pt/W/TaOX/Pt-ReRAM devices,” IEEE Electron Device Lett. 37, 564–567 (2016).
[Crossref]

Miller, T. A.

L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
[Crossref]

Mills, D.

F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. C. Buda, F. Pellizzer, D. W. Chow, A. Cabrini, G. M. A. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande, “A bipolar-selected phase change memory featuring multi-level cell storage,” IEEE J. Solid-State Circuits 44, 217–227 (2009).
[Crossref]

Mitra, M.

I. V. Karpov, M. Mitra, D. Kau, G. Spadini, Y. A. Kryukov, and V. G. Karpov, “Fundamental drift of parameters in chalcogenide phase change memory,” J. Appl. Phys. 102, 124503 (2007).
[Crossref]

Mittelholzer, T.

N. Papandreou, H. Pozidis, T. Mittelholzer, G. F. Close, M. Breitwisch, C. Lam, and E. Eleftheriou, “Drift-tolerant multilevel phase-change memory,” in 2011 3rd IEEE International Memory Workshop (IMW) (IEEE, 2011), pp. 1–4.

Montgomery, E.

M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan, “Memristor-based analog computation and neural network classification with a dot product engine,” Adv. Mater. 30, 1–10 (2018).
[Crossref]

Mutlu, O.

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change memory as a scalable dram alternative,” ACM SIGARCH Comput. Archit. News 37(3), 2–13 (2009).
[Crossref]

Nishimura, N.

N. Nishimura, T. Hirai, A. Koganei, T. Ikeda, K. Okano, Y. Sekiguchi, and Y. Osada, “Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory,” J. Appl. Phys. 91, 5246–5249 (2002).
[Crossref]

Nishiuchi, K.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69, 2849–2856 (1991).
[Crossref]

O’sullivan, E. J.

S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited),” J. Appl. Phys. 85, 5828–5833 (1999).
[Crossref]

Oda, S.

J. Liu, H. Yang, Z. Ma, K. Chen, X. Zhang, X. Huang, and S. Oda, “Characteristics of multilevel storage and switching dynamics in resistive switching cell of Al2O3/HfO2/Al2O3 sandwich structure,” J. Phys. D 51, 025102 (2018).
[Crossref]

Ohno, E.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69, 2849–2856 (1991).
[Crossref]

Okano, K.

N. Nishimura, T. Hirai, A. Koganei, T. Ikeda, K. Okano, Y. Sekiguchi, and Y. Osada, “Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory,” J. Appl. Phys. 91, 5246–5249 (2002).
[Crossref]

Osada, Y.

N. Nishimura, T. Hirai, A. Koganei, T. Ikeda, K. Okano, Y. Sekiguchi, and Y. Osada, “Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory,” J. Appl. Phys. 91, 5246–5249 (2002).
[Crossref]

Osmond, J.

L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
[Crossref]

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, and G. Roelkens, “Optical switching at 1.55  μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

Paniccia, M.

M. Paniccia, “Integrating silicon photonics,” Nat. Photonics 4, 498–499 (2010).
[Crossref]

Papandreou, N.

A. Sebastian, T. Tuma, N. Papandreou, M. Le Gallo, L. Kull, T. Parnell, and E. Eleftheriou, “Temporal correlation detection using computational phase-change memory,” Nat. Commun. 8, 1115 (2017).
[Crossref]

N. Papandreou, H. Pozidis, T. Mittelholzer, G. F. Close, M. Breitwisch, C. Lam, and E. Eleftheriou, “Drift-tolerant multilevel phase-change memory,” in 2011 3rd IEEE International Memory Workshop (IMW) (IEEE, 2011), pp. 1–4.

Parkin, S. S. P.

S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited),” J. Appl. Phys. 85, 5828–5833 (1999).
[Crossref]

Parnell, T.

A. Sebastian, T. Tuma, N. Papandreou, M. Le Gallo, L. Kull, T. Parnell, and E. Eleftheriou, “Temporal correlation detection using computational phase-change memory,” Nat. Commun. 8, 1115 (2017).
[Crossref]

Pellizzer, F.

F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. C. Buda, F. Pellizzer, D. W. Chow, A. Cabrini, G. M. A. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande, “A bipolar-selected phase change memory featuring multi-level cell storage,” IEEE J. Solid-State Circuits 44, 217–227 (2009).
[Crossref]

Pello, J.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, and G. Roelkens, “Optical switching at 1.55  μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

Pernice, W. H. P.

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
[Crossref]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Riós, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3, e1700160 (2017).
[Crossref]

M. Stegmaier, C. Rĺos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photon. 3, 828–835 (2016).
[Crossref]

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26, 1372–1377 (2014).
[Crossref]

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” arXiv:1801.06228 [cs.ET] (2018).

Pozidis, H.

N. Papandreou, H. Pozidis, T. Mittelholzer, G. F. Close, M. Breitwisch, C. Lam, and E. Eleftheriou, “Drift-tolerant multilevel phase-change memory,” in 2011 3rd IEEE International Memory Workshop (IMW) (IEEE, 2011), pp. 1–4.

Pruneri, V.

L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
[Crossref]

Qureshi, M. K.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high performance main memory system using phase-change memory technology,” ACM SIGARCH Comput. Archit. News 37(3), 24–33 (2009).
[Crossref]

Rana, V.

W. Kim, S. Menzel, D. J. Wouters, R. Waser, and V. Rana, “3-bit multilevel switching by deep reset phenomenon in Pt/W/TaOX/Pt-ReRAM devices,” IEEE Electron Device Lett. 37, 564–567 (2016).
[Crossref]

Rao, F.

F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, R. Mazzarello, W. Zhang, and E. Ma, “Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing,” Science 358, 1423–1427 (2017).
[Crossref]

Raty, J. Y.

J. Y. Raty, W. Zhang, J. Luckas, C. Chen, R. Mazzarello, C. Bichara, and M. Wuttig, “Aging mechanisms in amorphous phase-change materials,” Nat. Commun. 6, 7467 (2015).
[Crossref]

Resta, C.

F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. C. Buda, F. Pellizzer, D. W. Chow, A. Cabrini, G. M. A. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande, “A bipolar-selected phase change memory featuring multi-level cell storage,” IEEE J. Solid-State Circuits 44, 217–227 (2009).
[Crossref]

Rice, P. M.

S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited),” J. Appl. Phys. 85, 5828–5833 (1999).
[Crossref]

Rios, C.

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26, 1372–1377 (2014).
[Crossref]

Riós, C.

J. Feldmann, M. Stegmaier, N. Gruhler, C. Riós, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

Ríos, C.

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
[Crossref]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3, e1700160 (2017).
[Crossref]

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” arXiv:1801.06228 [cs.ET] (2018).

Rivers, J. A.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high performance main memory system using phase-change memory technology,” ACM SIGARCH Comput. Archit. News 37(3), 24–33 (2009).
[Crossref]

Rizzo, N. D.

S. Tehrani, J. M. Slaughter, M. DeHerrera, B. N. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, “Magnetoresistive random access memory using magnetic tunnel junctions,” Proc. IEEE 91, 703–714 (2003).
[Crossref]

Rlos, C.

M. Stegmaier, C. Rĺos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photon. 3, 828–835 (2016).
[Crossref]

Roche, K. P.

S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited),” J. Appl. Phys. 85, 5828–5833 (1999).
[Crossref]

Roelkens, G.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, and G. Roelkens, “Optical switching at 1.55  μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

Ronneberger, I.

F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, R. Mazzarello, W. Zhang, and E. Ma, “Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing,” Science 358, 1423–1427 (2017).
[Crossref]

Rooks, M.

S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited),” J. Appl. Phys. 85, 5828–5833 (1999).
[Crossref]

Rudé, M.

L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
[Crossref]

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, and G. Roelkens, “Optical switching at 1.55  μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

Salter, J.

S. Tehrani, J. M. Slaughter, M. DeHerrera, B. N. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, “Magnetoresistive random access memory using magnetic tunnel junctions,” Proc. IEEE 91, 703–714 (2003).
[Crossref]

Samant, M. G.

S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited),” J. Appl. Phys. 85, 5828–5833 (1999).
[Crossref]

Scherer, T.

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Scheuerlein, R. E.

S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited),” J. Appl. Phys. 85, 5828–5833 (1999).
[Crossref]

Sebastian, A.

A. Sebastian, T. Tuma, N. Papandreou, M. Le Gallo, L. Kull, T. Parnell, and E. Eleftheriou, “Temporal correlation detection using computational phase-change memory,” Nat. Commun. 8, 1115 (2017).
[Crossref]

W. W. Koelmans, A. Sebastian, V. P. Jonnalagadda, D. Krebs, L. Dellmann, and E. Eleftheriou, “Projected phase-change memory devices,” Nat. Commun. 6, 8181 (2015).
[Crossref]

A. Sebastian, M. Le Gallo, and D. Krebs, “Crystal growth within a phase change memory cell,” Nat. Commun. 5, 4314 (2014).
[Crossref]

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” arXiv:1801.06228 [cs.ET] (2018).

Sekiguchi, Y.

N. Nishimura, T. Hirai, A. Koganei, T. Ikeda, K. Okano, Y. Sekiguchi, and Y. Osada, “Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory,” J. Appl. Phys. 91, 5246–5249 (2002).
[Crossref]

Shalini, A.

Y. Liu, M. M. Aziz, A. Shalini, C. D. Wright, and R. J. Hicken, “Crystallization of Ge2Sb2Te5 films by amplified femtosecond optical pulses,” J. Appl. Phys. 112, 123526 (2012).
[Crossref]

Sheu, S.-S.

M.-F. Chang, C.-C. Kuo, S.-S. Sheu, C.-J. Lin, Y.-C. King, F. T. Chen, T.-K. Ku, M.-J. Tsai, J.-J. Wu, and Y.-D. Chih, “Area-efficient embedded resistive ram (ReRAM) macros using logic-process vertical-parasitic-BJT (VPBJT) switches and read-disturb-free temperature-aware current-mode read scheme,” IEEE J. Solid-State Circuits 49, 908–916 (2014).
[Crossref]

Simpson, R. E.

L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
[Crossref]

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, and G. Roelkens, “Optical switching at 1.55  μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

Slaughter, J. M.

S. Tehrani, J. M. Slaughter, M. DeHerrera, B. N. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, “Magnetoresistive random access memory using magnetic tunnel junctions,” Proc. IEEE 91, 703–714 (2003).
[Crossref]

Smith, K.

S. Tehrani, J. M. Slaughter, M. DeHerrera, B. N. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, “Magnetoresistive random access memory using magnetic tunnel junctions,” Proc. IEEE 91, 703–714 (2003).
[Crossref]

Song, Z.

F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, R. Mazzarello, W. Zhang, and E. Ma, “Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing,” Science 358, 1423–1427 (2017).
[Crossref]

Y. Wang, D. Cai, Y. Chen, Y. Wang, H. Wei, R. Huo, X. Chen, and Z. Song, “Optimizing set performance for phase change memory with dual pulses set method,” ECS Solid State Lett. 4, Q32–Q35 (2015).
[Crossref]

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Spadini, G.

I. V. Karpov, M. Mitra, D. Kau, G. Spadini, Y. A. Kryukov, and V. G. Karpov, “Fundamental drift of parameters in chalcogenide phase change memory,” J. Appl. Phys. 102, 124503 (2007).
[Crossref]

Srinivasan, V.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high performance main memory system using phase-change memory technology,” ACM SIGARCH Comput. Archit. News 37(3), 24–33 (2009).
[Crossref]

Stegmaier, M.

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
[Crossref]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Riós, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

M. Stegmaier, C. Rĺos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photon. 3, 828–835 (2016).
[Crossref]

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Strachan, J. P.

M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan, “Memristor-based analog computation and neural network classification with a dot product engine,” Adv. Mater. 30, 1–10 (2018).
[Crossref]

Takao, M.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69, 2849–2856 (1991).
[Crossref]

Tehrani, S.

S. Tehrani, J. M. Slaughter, M. DeHerrera, B. N. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, “Magnetoresistive random access memory using magnetic tunnel junctions,” Proc. IEEE 91, 703–714 (2003).
[Crossref]

Tominaga, J.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3, 703–708 (2004).
[Crossref]

Torelli, G.

F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. C. Buda, F. Pellizzer, D. W. Chow, A. Cabrini, G. M. A. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande, “A bipolar-selected phase change memory featuring multi-level cell storage,” IEEE J. Solid-State Circuits 44, 217–227 (2009).
[Crossref]

A. Cabrini, S. Braga, A. Manetto, and G. Torelli, “Voltage-driven multilevel programming in phase change memories,” in 2009 IEEE International Workshop on Memory Technology, Design, and Testing (IEEE, 2009), pp. 3–6.

Trouilloud, P. L.

S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited),” J. Appl. Phys. 85, 5828–5833 (1999).
[Crossref]

Tsai, M.-J.

M.-F. Chang, C.-C. Kuo, S.-S. Sheu, C.-J. Lin, Y.-C. King, F. T. Chen, T.-K. Ku, M.-J. Tsai, J.-J. Wu, and Y.-D. Chih, “Area-efficient embedded resistive ram (ReRAM) macros using logic-process vertical-parasitic-BJT (VPBJT) switches and read-disturb-free temperature-aware current-mode read scheme,” IEEE J. Solid-State Circuits 49, 908–916 (2014).
[Crossref]

Tuma, T.

A. Sebastian, T. Tuma, N. Papandreou, M. Le Gallo, L. Kull, T. Parnell, and E. Eleftheriou, “Temporal correlation detection using computational phase-change memory,” Nat. Commun. 8, 1115 (2017).
[Crossref]

Uruga, T.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3, 703–708 (2004).
[Crossref]

Waldecker, L.

L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
[Crossref]

Wall, S.

L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
[Crossref]

Wang, D.

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Wang, Y.

Y. Wang, D. Cai, Y. Chen, Y. Wang, H. Wei, R. Huo, X. Chen, and Z. Song, “Optimizing set performance for phase change memory with dual pulses set method,” ECS Solid State Lett. 4, Q32–Q35 (2015).
[Crossref]

Y. Wang, D. Cai, Y. Chen, Y. Wang, H. Wei, R. Huo, X. Chen, and Z. Song, “Optimizing set performance for phase change memory with dual pulses set method,” ECS Solid State Lett. 4, Q32–Q35 (2015).
[Crossref]

K. Zhang, S. Li, G. Liang, H. Huang, Y. Wang, T. Lai, and Y. Wu, “Different crystallization processes of as-deposited amorphous Ge2Sb2Te5 films on nano- and picosecond single laser pulse irradiation,” Phys. B 407, 2447–2450 (2012).
[Crossref]

Wanner, R. A.

S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited),” J. Appl. Phys. 85, 5828–5833 (1999).
[Crossref]

Waser, R.

W. Kim, S. Menzel, D. J. Wouters, R. Waser, and V. Rana, “3-bit multilevel switching by deep reset phenomenon in Pt/W/TaOX/Pt-ReRAM devices,” IEEE Electron Device Lett. 37, 564–567 (2016).
[Crossref]

Wei, H.

Y. Wang, D. Cai, Y. Chen, Y. Wang, H. Wei, R. Huo, X. Chen, and Z. Song, “Optimizing set performance for phase change memory with dual pulses set method,” ECS Solid State Lett. 4, Q32–Q35 (2015).
[Crossref]

Williams, R. S.

M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan, “Memristor-based analog computation and neural network classification with a dot product engine,” Adv. Mater. 30, 1–10 (2018).
[Crossref]

Wouters, D. J.

W. Kim, S. Menzel, D. J. Wouters, R. Waser, and V. Rana, “3-bit multilevel switching by deep reset phenomenon in Pt/W/TaOX/Pt-ReRAM devices,” IEEE Electron Device Lett. 37, 564–567 (2016).
[Crossref]

Wright, C. D.

J. Feldmann, M. Stegmaier, N. Gruhler, C. Riós, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
[Crossref]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3, e1700160 (2017).
[Crossref]

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26, 1372–1377 (2014).
[Crossref]

Y. Liu, M. M. Aziz, A. Shalini, C. D. Wright, and R. J. Hicken, “Crystallization of Ge2Sb2Te5 films by amplified femtosecond optical pulses,” J. Appl. Phys. 112, 123526 (2012).
[Crossref]

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23, 3408–3413 (2011).
[Crossref]

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” arXiv:1801.06228 [cs.ET] (2018).

Wu, J.-J.

M.-F. Chang, C.-C. Kuo, S.-S. Sheu, C.-J. Lin, Y.-C. King, F. T. Chen, T.-K. Ku, M.-J. Tsai, J.-J. Wu, and Y.-D. Chih, “Area-efficient embedded resistive ram (ReRAM) macros using logic-process vertical-parasitic-BJT (VPBJT) switches and read-disturb-free temperature-aware current-mode read scheme,” IEEE J. Solid-State Circuits 49, 908–916 (2014).
[Crossref]

Wu, Y.

K. Zhang, S. Li, G. Liang, H. Huang, Y. Wang, T. Lai, and Y. Wu, “Different crystallization processes of as-deposited amorphous Ge2Sb2Te5 films on nano- and picosecond single laser pulse irradiation,” Phys. B 407, 2447–2450 (2012).
[Crossref]

Wuttig, M.

J. Y. Raty, W. Zhang, J. Luckas, C. Chen, R. Mazzarello, C. Bichara, and M. Wuttig, “Aging mechanisms in amorphous phase-change materials,” Nat. Commun. 6, 7467 (2015).
[Crossref]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6, 824–832 (2007).

Xia, M.

F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, R. Mazzarello, W. Zhang, and E. Ma, “Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing,” Science 358, 1423–1427 (2017).
[Crossref]

Xia, Q.

M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan, “Memristor-based analog computation and neural network classification with a dot product engine,” Adv. Mater. 30, 1–10 (2018).
[Crossref]

Yamada, N.

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6, 824–832 (2007).

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69, 2849–2856 (1991).
[Crossref]

Yang, H.

J. Liu, H. Yang, Z. Ma, K. Chen, X. Zhang, X. Huang, and S. Oda, “Characteristics of multilevel storage and switching dynamics in resistive switching cell of Al2O3/HfO2/Al2O3 sandwich structure,” J. Phys. D 51, 025102 (2018).
[Crossref]

Yang, J.

L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. R. Childers, “Improving write operations in MLC phase change memory,” in IEEE International Symposium on High-Performance Comp Architecture (IEEE, 2012), pp. 1–10.

P. Zhou, B. Zhao, J. Yang, Y. Zhang, P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient main memory using phase change memory technology,” in Proceedings of the 36th Annual International Symposium on Computer Architecture—ISCA ‘09 (ACM, 2009), Vol. 37, pp. 14–23.

P. Zhou, B. Zhao, J. Yang, Y. Zhang, P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient main memory using phase change memory technology,” in Proceedings of the 36th Annual International Symposium on Computer Architecture—ISCA ‘09 (ACM, 2009), Vol. 37, pp. 14–23.

Yang, J. J.

M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan, “Memristor-based analog computation and neural network classification with a dot product engine,” Adv. Mater. 30, 1–10 (2018).
[Crossref]

Youngblood, N.

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” arXiv:1801.06228 [cs.ET] (2018).

Zhang, K.

K. Zhang, S. Li, G. Liang, H. Huang, Y. Wang, T. Lai, and Y. Wu, “Different crystallization processes of as-deposited amorphous Ge2Sb2Te5 films on nano- and picosecond single laser pulse irradiation,” Phys. B 407, 2447–2450 (2012).
[Crossref]

Zhang, W.

F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, R. Mazzarello, W. Zhang, and E. Ma, “Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing,” Science 358, 1423–1427 (2017).
[Crossref]

J. Y. Raty, W. Zhang, J. Luckas, C. Chen, R. Mazzarello, C. Bichara, and M. Wuttig, “Aging mechanisms in amorphous phase-change materials,” Nat. Commun. 6, 7467 (2015).
[Crossref]

Zhang, X.

J. Liu, H. Yang, Z. Ma, K. Chen, X. Zhang, X. Huang, and S. Oda, “Characteristics of multilevel storage and switching dynamics in resistive switching cell of Al2O3/HfO2/Al2O3 sandwich structure,” J. Phys. D 51, 025102 (2018).
[Crossref]

Zhang, Y.

P. Zhou, B. Zhao, J. Yang, Y. Zhang, P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient main memory using phase change memory technology,” in Proceedings of the 36th Annual International Symposium on Computer Architecture—ISCA ‘09 (ACM, 2009), Vol. 37, pp. 14–23.

P. Zhou, B. Zhao, J. Yang, Y. Zhang, P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient main memory using phase change memory technology,” in Proceedings of the 36th Annual International Symposium on Computer Architecture—ISCA ‘09 (ACM, 2009), Vol. 37, pp. 14–23.

L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. R. Childers, “Improving write operations in MLC phase change memory,” in IEEE International Symposium on High-Performance Comp Architecture (IEEE, 2012), pp. 1–10.

Zhao, B.

L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. R. Childers, “Improving write operations in MLC phase change memory,” in IEEE International Symposium on High-Performance Comp Architecture (IEEE, 2012), pp. 1–10.

P. Zhou, B. Zhao, J. Yang, Y. Zhang, P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient main memory using phase change memory technology,” in Proceedings of the 36th Annual International Symposium on Computer Architecture—ISCA ‘09 (ACM, 2009), Vol. 37, pp. 14–23.

P. Zhou, B. Zhao, J. Yang, Y. Zhang, P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient main memory using phase change memory technology,” in Proceedings of the 36th Annual International Symposium on Computer Architecture—ISCA ‘09 (ACM, 2009), Vol. 37, pp. 14–23.

Zheng, Y.

F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, R. Mazzarello, W. Zhang, and E. Ma, “Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing,” Science 358, 1423–1427 (2017).
[Crossref]

Zhou, P.

P. Zhou, B. Zhao, J. Yang, Y. Zhang, P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient main memory using phase change memory technology,” in Proceedings of the 36th Annual International Symposium on Computer Architecture—ISCA ‘09 (ACM, 2009), Vol. 37, pp. 14–23.

P. Zhou, B. Zhao, J. Yang, Y. Zhang, P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient main memory using phase change memory technology,” in Proceedings of the 36th Annual International Symposium on Computer Architecture—ISCA ‘09 (ACM, 2009), Vol. 37, pp. 14–23.

Zhou, Y.

F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, R. Mazzarello, W. Zhang, and E. Ma, “Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing,” Science 358, 1423–1427 (2017).
[Crossref]

ACM SIGARCH Comput. Archit. News (2)

M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high performance main memory system using phase-change memory technology,” ACM SIGARCH Comput. Archit. News 37(3), 24–33 (2009).
[Crossref]

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change memory as a scalable dram alternative,” ACM SIGARCH Comput. Archit. News 37(3), 2–13 (2009).
[Crossref]

ACS Photon. (1)

M. Stegmaier, C. Rĺos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photon. 3, 828–835 (2016).
[Crossref]

Adv. Mater. (3)

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26, 1372–1377 (2014).
[Crossref]

M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan, “Memristor-based analog computation and neural network classification with a dot product engine,” Adv. Mater. 30, 1–10 (2018).
[Crossref]

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23, 3408–3413 (2011).
[Crossref]

Adv. Opt. Mater. (1)

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
[Crossref]

Appl. Phys. Lett. (1)

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, and G. Roelkens, “Optical switching at 1.55  μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

ECS Solid State Lett. (1)

Y. Wang, D. Cai, Y. Chen, Y. Wang, H. Wei, R. Huo, X. Chen, and Z. Song, “Optimizing set performance for phase change memory with dual pulses set method,” ECS Solid State Lett. 4, Q32–Q35 (2015).
[Crossref]

IEEE Electron Device Lett. (1)

W. Kim, S. Menzel, D. J. Wouters, R. Waser, and V. Rana, “3-bit multilevel switching by deep reset phenomenon in Pt/W/TaOX/Pt-ReRAM devices,” IEEE Electron Device Lett. 37, 564–567 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

IEEE J. Solid-State Circuits (2)

M.-F. Chang, C.-C. Kuo, S.-S. Sheu, C.-J. Lin, Y.-C. King, F. T. Chen, T.-K. Ku, M.-J. Tsai, J.-J. Wu, and Y.-D. Chih, “Area-efficient embedded resistive ram (ReRAM) macros using logic-process vertical-parasitic-BJT (VPBJT) switches and read-disturb-free temperature-aware current-mode read scheme,” IEEE J. Solid-State Circuits 49, 908–916 (2014).
[Crossref]

F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. C. Buda, F. Pellizzer, D. W. Chow, A. Cabrini, G. M. A. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande, “A bipolar-selected phase change memory featuring multi-level cell storage,” IEEE J. Solid-State Circuits 44, 217–227 (2009).
[Crossref]

IEEE Trans. Electron Devices (1)

D. Ielmini, A. L. Lacaita, and D. Mantegazza, “Recovery and drift dynamics of resistance and threshold voltages in phase-change memories,” IEEE Trans. Electron Devices 54, 308–315 (2007).
[Crossref]

J. Appl. Phys. (5)

I. V. Karpov, M. Mitra, D. Kau, G. Spadini, Y. A. Kryukov, and V. G. Karpov, “Fundamental drift of parameters in chalcogenide phase change memory,” J. Appl. Phys. 102, 124503 (2007).
[Crossref]

S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited),” J. Appl. Phys. 85, 5828–5833 (1999).
[Crossref]

N. Nishimura, T. Hirai, A. Koganei, T. Ikeda, K. Okano, Y. Sekiguchi, and Y. Osada, “Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory,” J. Appl. Phys. 91, 5246–5249 (2002).
[Crossref]

Y. Liu, M. M. Aziz, A. Shalini, C. D. Wright, and R. J. Hicken, “Crystallization of Ge2Sb2Te5 films by amplified femtosecond optical pulses,” J. Appl. Phys. 112, 123526 (2012).
[Crossref]

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69, 2849–2856 (1991).
[Crossref]

J. Phys. D (1)

J. Liu, H. Yang, Z. Ma, K. Chen, X. Zhang, X. Huang, and S. Oda, “Characteristics of multilevel storage and switching dynamics in resistive switching cell of Al2O3/HfO2/Al2O3 sandwich structure,” J. Phys. D 51, 025102 (2018).
[Crossref]

MRS Bull. (1)

Y. Arimoto and H. Ishiwara, “Current status of ferroelectric random-access memory,” MRS Bull. 29(11), 823–828 (2004).
[Crossref]

Nat. Commun. (5)

W. W. Koelmans, A. Sebastian, V. P. Jonnalagadda, D. Krebs, L. Dellmann, and E. Eleftheriou, “Projected phase-change memory devices,” Nat. Commun. 6, 8181 (2015).
[Crossref]

J. Y. Raty, W. Zhang, J. Luckas, C. Chen, R. Mazzarello, C. Bichara, and M. Wuttig, “Aging mechanisms in amorphous phase-change materials,” Nat. Commun. 6, 7467 (2015).
[Crossref]

A. Sebastian, T. Tuma, N. Papandreou, M. Le Gallo, L. Kull, T. Parnell, and E. Eleftheriou, “Temporal correlation detection using computational phase-change memory,” Nat. Commun. 8, 1115 (2017).
[Crossref]

A. Sebastian, M. Le Gallo, and D. Krebs, “Crystal growth within a phase change memory cell,” Nat. Commun. 5, 4314 (2014).
[Crossref]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Riós, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

Nat. Mater. (3)

L. Waldecker, T. A. Miller, M. Rudé, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, “Time-domain separation of optical properties from structural transitions in resonantly bonded materials,” Nat. Mater. 14, 991–995 (2015).
[Crossref]

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3, 703–708 (2004).
[Crossref]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6, 824–832 (2007).

Nat. Photonics (4)

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
[Crossref]

M. Paniccia, “Integrating silicon photonics,” Nat. Photonics 4, 498–499 (2010).
[Crossref]

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4, 261–263 (2010).
[Crossref]

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Phys. B (1)

K. Zhang, S. Li, G. Liang, H. Huang, Y. Wang, T. Lai, and Y. Wu, “Different crystallization processes of as-deposited amorphous Ge2Sb2Te5 films on nano- and picosecond single laser pulse irradiation,” Phys. B 407, 2447–2450 (2012).
[Crossref]

Proc. IEEE (1)

S. Tehrani, J. M. Slaughter, M. DeHerrera, B. N. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, “Magnetoresistive random access memory using magnetic tunnel junctions,” Proc. IEEE 91, 703–714 (2003).
[Crossref]

Sci. Adv. (1)

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3, e1700160 (2017).
[Crossref]

Science (1)

F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, R. Mazzarello, W. Zhang, and E. Ma, “Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing,” Science 358, 1423–1427 (2017).
[Crossref]

Other (6)

C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” arXiv:1801.06228 [cs.ET] (2018).

H. Ishiwara, “FeFET and ferroelectric random access memories,” in Multifunctional Oxide Heterostructures (2012), p. 7619–7627.

P. Zhou, B. Zhao, J. Yang, Y. Zhang, P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient main memory using phase change memory technology,” in Proceedings of the 36th Annual International Symposium on Computer Architecture—ISCA ‘09 (ACM, 2009), Vol. 37, pp. 14–23.

A. Cabrini, S. Braga, A. Manetto, and G. Torelli, “Voltage-driven multilevel programming in phase change memories,” in 2009 IEEE International Workshop on Memory Technology, Design, and Testing (IEEE, 2009), pp. 3–6.

L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. R. Childers, “Improving write operations in MLC phase change memory,” in IEEE International Symposium on High-Performance Comp Architecture (IEEE, 2012), pp. 1–10.

N. Papandreou, H. Pozidis, T. Mittelholzer, G. F. Close, M. Breitwisch, C. Lam, and E. Eleftheriou, “Drift-tolerant multilevel phase-change memory,” in 2011 3rd IEEE International Memory Workshop (IMW) (IEEE, 2011), pp. 1–4.

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Concept of the dual-pulse programming technique. (a) From left to right, optical image of our device with a GST photonic memory cell, magnified image of GST on top of the waveguide, and schematic cross section of the completed device. (b) Schematic of the optical pulse shapes used to amorphize and crystallize the integrated phase-change photonic memory cell. A rectangular programming pulse with increasing peak powers (red pillars) amorphizes an increasing fraction of GST while a fixed ERASE pulse returns the material back to a fully crystalline state. (c) Simulated transmission and crystalline fraction as a function of the programming pulse energy. The optical transmission through the waveguide (and the corresponding absorption in the GST) increases (decreases) as the crystalline fraction decreases. (d) Simulated temperature distribution in the GST memory cell after a 20 ns programming pulse. Area surpassing the melting temperature of GST (890 K [31]) is marked by the dark red region and is inversely related to the crystalline fraction plotted in (c).
Fig. 2.
Fig. 2. Measurements of multilevel operation using a dual-pulse programming technique. (a) Recorded transmission of one programming iteration with a monotonically increasing programming pulse amplitude and a fixed ERASE pulse. Thirty-four unique levels are resolved in this 4-μm-long device. (b) Average transmission and standard deviation for a series of 10 write cycles as a function of programming pulse energy as measured in the waveguide before the GST. (c) Histogram plots of the difference between the desired transmission level and the actual transmission level from (b) measured after a single programming or ERASE pulse. Red lines are Gaussian fits to the error distribution and quantify the accuracy we can achieve from a single programming/ERASE pulse. (d) Amorphization and recrystallization pulses for various delays between the two pulses. As the delay increases, the GST transmission saturates to a fixed value due to the thermo-optic effect. Pulse power (red) shown in the right-hand plots correspond to the measured pulse power in the waveguide before the GST.
Fig. 3.
Fig. 3. Measurement of the final transmission state of GST after various double-step programming pulses. (a) Illustration of experiment where the trailing end of the double-step programming pulse is varying in both amplitude and time. (b) The final transmission state of GST for increasing amplitude of the pulse’s trailing end. Once the relative amplitude surpasses 0.2, the crystallization temperature of GST is reached and recrystallization begins to occur much more rapidly. Inset: Histogram of the error distribution between the expected transmission level and the actual level reached. (c) The final transmission state of GST for double-step programming pulses with a trailing end of increasing duration. Increasing the duration allows the GST to reach the fully crystalline state. Inset: Histogram of the error distribution between the expected transmission level and the actual level reached.
Fig. 4.
Fig. 4. Single-pulse programming of the multilevel optical PCM memory cell. (a) Schematic of the method to achieve dual-pulse programming and recrystallization. An ERASE pulse is needed before programming each memory level. (b) Schematic of the method to achieve single-pulse programming. The initial 50 ns portion of the double-step pulse serves to remove memory of the previous state by bringing the PCM above its melting temperature before recrystallization. (c) Time-dependent trace of transmission when multiple double-step programming pulses of random durations are sent to the device. The device is able to switch to higher or lower transmission levels with no dependence on the previous state of the material. (d) Transmission levels and total deviation distribution and separate error bar distribution of different levels of random programming pulse durations.