Abstract

The unique ability of slot and sub-wavelength grating (SWG) waveguides to confine light outside of the waveguide core material has attracted significant interest in their application to chemical and biological sensing. However, a high sensitivity to sidewall-roughness-induced scattering loss in these structures compared with strip waveguides casts doubt on their efficacy. In this article, we seek to settle the controversy for silicon-on-insulator (SOI) photonic devices by quantitatively comparing the sensing performance of various waveguide geometries through figures of merit that we derive for each mode of sensing. These methods (which may be readily applied to other material systems) take into account both modal confinement and roughness scattering loss, the latter of which is computed using a volume-current (Green’s function) method with a first Born approximation. For devices based on the standard 220 nm SOI platform at telecommunication wavelengths (λ=1550  nm), whose propagation loss is predominantly limited by random line-edge sidewall roughness scattering, our model predicts that properly engineered TM-polarized strip waveguides claim the best performance for refractometry and absorption spectroscopy, whereas optimized slot waveguides demonstrate >5× performance enhancement over the other waveguide geometries for waveguide-enhanced Raman spectroscopy.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides

Valentina Donzella, Ahmed Sherwali, Jonas Flueckiger, Samantha M. Grist, Sahba Talebi Fard, and Lukas Chrostowski
Opt. Express 23(4) 4791-4803 (2015)

Subwavelength grating slot (SWGS) waveguide on silicon platform

Zhengsen Ruan, Li Shen, Shuang Zheng, and Jian Wang
Opt. Express 25(15) 18250-18264 (2017)

Sub-wavelength grating components for integrated optics applications on SOI chips

Valentina Donzella, Ahmed Sherwali, Jonas Flueckiger, Sahba Talebi Fard, Samantha M. Grist, and Lukas Chrostowski
Opt. Express 22(17) 21037-21050 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32, 3080–3082 (2007).
    [Crossref]
  2. T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
    [Crossref]
  3. C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
    [Crossref]
  4. F. Dell’Olio and V. M. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15, 4977–4993 (2007).
    [Crossref]
  5. Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
    [Crossref]
  6. C. A. Barrios, M. J. Bañuls, V. González-Pedro, K. B. Gylfason, B. Sánchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33, 708–710 (2008).
    [Crossref]
  7. J. G. Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39, 4442–4445 (2014).
    [Crossref]
  8. J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Sub-wavelength grating for enhanced ring resonator biosensor,” Opt. Express 24, 15672–15686 (2016).
    [Crossref]
  9. H. Yan, L. Huang, X. Xu, S. Chakravarty, N. Tang, H. Tian, and R. T. Chen, “Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides,” Opt. Express 24, 29724–29733 (2016).
    [Crossref]
  10. A. Dhakal, A. Raza, F. Peyskens, A. Z. Subramanian, S. Clemmen, N. Le Thomas, and R. Baets, “Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides,” Opt. Express 23, 27391–27404 (2015).
    [Crossref]
  11. D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48, 3187–3215 (1969).
    [Crossref]
  12. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  13. F. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
    [Crossref]
  14. S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81, 283–293 (2005).
    [Crossref]
  15. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
    [Crossref]
  16. K. K. Lee, D. R. Lim, and L. C. Kimerling, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
    [Crossref]
  17. F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 1–4 (2010).
    [Crossref]
  18. D. H. Lee, S. J. Choo, U. Jung, K. W. Lee, K. W. Kim, and J. H. Park, “Low-loss silicon waveguides with sidewall roughness reduction using a SiO2 hard mask and fluorine-based dry etching,” J. Micromech. Microeng. 25, 015003 (2015).
    [Crossref]
  19. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006).
    [Crossref]
  20. W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93 (2006).
    [Crossref]
  21. P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. G. Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
    [Crossref]
  22. R. Zafar and M. Salim, “Enhanced figure of merit in Fano resonance-based plasmonic refractive index sensor,” IEEE Sens. J. 15, 6313–6317 (2015).
    [Crossref]
  23. M. Islam, D. R. Chowdhury, A. Ahmad, and G. Kumar, “Terahertz plasmonic waveguide based thin film sensor,” J. Lightwave. Technol. 35, 5215–5221 (2017).
    [Crossref]
  24. Z. Zhang, J. Yang, X. He, J. Zhang, J. Huang, D. Chen, and Y. Han, “Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator,” Sensors 18, 116 (2018).
    [Crossref]
  25. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. 26, 1032–1041 (2009).
    [Crossref]
  26. A. Nitkowski, A. Baeumner, and M. Lipson, “On-chip spectrophotometry for bioanalysis using microring resonators,” Biomed. Opt. Express 2, 271–277 (2011).
    [Crossref]
  27. L. Huang, H. Tian, D. Yang, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Optimization of figure of merit in label-free biochemical sensors by designing a ring defect coupled resonator,” Opt. Commun. 332, 42–49 (2014).
    [Crossref]
  28. A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photon. Res. 3, B47–B59 (2015).
    [Crossref]
  29. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
    [Crossref]
  30. R. Guo, B. Wang, X. Wang, L. Wang, L. Jiang, and Z. Zhou, “Optical amplification in Er/Yb silicate slot waveguide,” Opt. Lett. 37, 1427–1429 (2012).
    [Crossref]
  31. S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, J. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
    [Crossref]
  32. P. Hanggi and P. Jung, “Colored noise in dynamical-systems,” in Advances in Chemical Physics (Wiley, 1994), pp. 239–326.
  33. A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. L. Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).
    [Crossref]
  34. S. A. Holmstrom, T. H. Stievater, D. A. Kozak, M. W. Pruessner, N. Tyndall, W. S. Rabinovich, R. A. Mcgill, and J. B. Khurgin, “Trace gas Raman spectroscopy using functionalized waveguides,” Optica 3, 891–896 (2016).
    [Crossref]
  35. C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photon. 3, 1662–1669 (2016).
    [Crossref]
  36. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
    [Crossref]
  37. V. Passaro, B. Troia, M. La Notte, and F. De Leonardis, “Photonic resonant microcavities for chemical and biochemical sensing,” RSC Adv. 3, 25–44 (2012).
    [Crossref]
  38. R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuators B Chem. 61, 100–127 (1999).
    [Crossref]
  39. H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37, 3780–3782 (2012).
    [Crossref]
  40. V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
    [Crossref]
  41. P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Biosensors and bioelectronics integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
    [Crossref]
  42. F. T. Dullo, S. Lindecrantz, J. Jana, J. H. Hansen, M. Engqvist, S. A. Solbø, and G. Hellesø, “Sensitive on-chip methane detection with a cryptophane-A cladded Mach–Zehnder interferometer,” Opt. Express 23, 31564–31573 (2015).
    [Crossref]
  43. A. R. Bastos, C. M. S. Vicente, R. Oliveira-Silva, N. J. O. Silva, M. Tacao, J. P. da Costa, M. Lima, P. S. Andre, and R. A. S. Ferreira, “Integrated optical Mach–Zehnder interferometer based on organic–inorganic hybrids for photonics-on-a-chip biosensing applications,” Sensors 18, 840 (2018).
    [Crossref]
  44. R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
    [Crossref]
  45. E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, and R. Baets, “Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip,” Biomed. Opt. Express 5, 1636–1648 (2014).
    [Crossref]
  46. W. Weber, S. McCarthy, and G. Ford, “Perturbation theory applied to gain or loss in an optical waveguide,” Appl. Opt. 13, 715–716 (1974).
    [Crossref]
  47. A. Kumar, S. I. Hosain, and A. K. Ghatak, “Propagation characteristics of weakly guiding lossy fibres: an exact and perturbation analysis,” Opt. Acta 28, 559–566 (1981).
    [Crossref]
  48. Z. Pantic and R. Mittra, “Quasi-TEM analysis of microwave transmission lines by the finite-element method,” IEEE Trans. Microwave Theory Tech. 34, 1096–1103 (1986).
    [Crossref]
  49. S. X. She, “Propagation loss in metal-clad waveguides and weakly absorptive waveguides by a perturbation method,” Opt. Lett. 15, 900–902 (1990).
    [Crossref]
  50. V. L. Gupta and E. K. Sharma, “Metal-clad and absorptive multilayer waveguides: an accurate perturbation analysis,” J. Opt. Soc. Am. 9, 953–956 (1992).
    [Crossref]
  51. C. Themistos, B. M. A. Rahman, A. Hadjicharalambous, K. Thomas, and V. Grattan, “Loss/gain characterization of optical waveguides,” J. Lightwave Technol. 13, 1760–1765 (1995).
    [Crossref]
  52. S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljačić, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001).
    [Crossref]
  53. J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16, 16659–16669 (2008).
    [Crossref]
  54. D. Melati, A. Melloni, and F. Morichetti, “Real photonic waveguides: guiding light through imperfections,” Adv. Opt. Photon. 6, 156–224 (2014).
    [Crossref]
  55. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
    [Crossref]
  56. H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
    [Crossref]
  57. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163–3174 (2011).
    [Crossref]
  58. K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).
    [Crossref]
  59. J. Hu, V. Tarasov, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15, 11798–11807 (2007).
    [Crossref]
  60. C. C. Evans, C. Liu, and J. Suntivich, “Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process,” Opt. Express 23, 11160–11169 (2015).
    [Crossref]
  61. J. P. R. Lacey and F. P. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. Optoelectron. 137, 282–289 (1990).
    [Crossref]
  62. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  63. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
    [Crossref]
  64. M. G. Wood, L. Chen, J. R. Burr, and R. M. Reano, “Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides,” J. Nanophoton. 8, 083098 (2014).
    [Crossref]
  65. P. Wang, A. Michael, and C. Y. Kwok, “Fabrication of sub-micro silicon waveguide with vertical sidewall and reduced roughness for low loss applications,” Procedia Eng. 87, 979–982 (2014).
    [Crossref]
  66. T. Barwicz and H. I. Smith, “Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices,” J. Vac. Sci. Technol. B 21, 2892–2896 (2003).
    [Crossref]
  67. G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists. I. A comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21, 1008–1018 (2003).
    [Crossref]
  68. V. Constantoudis, G. P. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists. II. Scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. Technol. B 21, 1019–1026 (2003).
    [Crossref]
  69. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, and D. V. Thourhout, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
    [Crossref]
  70. A. Oskooi and S. G. Johnson, Chapter 4: Electromagnetic Wave Source Conditions (Artech House, 2013).
  71. S. Sardo, F. Giacometti, S. Doneda, U. Colombo, M. Di, A. Donghi, R. Morson, G. Mutinati, A. Nottola, M. Gentili, and M. C. Ubaldi, “Line edge roughness (LER) reduction strategy for SOI waveguides fabrication,” Microelectron. Eng. 85, 1210–1213 (2008).
    [Crossref]
  72. T. Alasaarela, D. Korn, L. Alloatti, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19, 11529–11538 (2011).
    [Crossref]
  73. K. Debnath, A. Z. Khokhar, S. A. Boden, H. Arimoto, S. Z. Oo, H. M. H. Chong, G. T. Reed, and S. Saito, “Low-loss slot waveguides with silicon (111) surfaces realized using anisotropic wet etching,” Front. Mater. 3, 1–5 (2016).
    [Crossref]
  74. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005).
    [Crossref]
  75. R. Ding, T. Baehr-Jones, W.-J. Kim, X. Xiong, R. Bojko, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Low-loss strip-loaded slot waveguides in silicon-on-insulator,” Opt. Express 18, 25061–25067 (2010).
    [Crossref]
  76. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18, 20251–20262 (2010).
    [Crossref]
  77. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
    [Crossref]
  78. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
    [Crossref]
  79. Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, “Azimuthal-order variations of surface-roughness-induced mode splitting and scattering loss in high-Q microdisk resonators,” Opt. Lett. 37, 1586–1588 (2012).
    [Crossref]
  80. E. Jaberansary, T. M. B. Masaud, M. M. Milosevic, M. Nedeljkovic, G. Z. Mashanovich, and H. M. H. Chong, “Scattering loss estimation using 2-D Fourier analysis and modeling of sidewall roughness on optical waveguides,” IEEE Photon. J. 5, 6601010 (2013).
    [Crossref]
  81. H. Zhao, S. Clemmen, A. Raza, and R. Baets, “Stimulated Raman spectroscopy of analytes evanescently probed by a silicon nitride photonic integrated waveguide,” Opt. Lett. 43, 1403–1406 (2018).
    [Crossref]
  82. A. Dhakal, F. Peyskens, A. Z. Subramanian, N. L. Thomas, and R. Baets, “Enhancement of light absorption, scattering and emission in high index contrast waveguides,” in OSA Advanced Photonics Congress (2013), pp. 1–3.
  83. Q. Du, Y. Huang, O. Ogbuu, W. Zhang, J. Li, V. Singh, A. M. Agarwal, and J. Hu, “Gamma radiation effects in amorphous silicon and silicon nitride photonic devices,” Opt. Lett. 42, 587–590 (2017).
    [Crossref]
  84. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced infrared absorption in planar chalcogenide glass microdisk resonators: experiment and analysis,” J. Lightwave Technol. 27, 5240–5245 (2009).
    [Crossref]
  85. B. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
    [Crossref]
  86. Y.-C. Chang, V. Paeder, L. Hvozdara, J.-M. Hartmann, and H. P. Herzig, “Low-loss germanium strip waveguides on silicon for the mid-infrared,” Opt. Lett. 37, 2883–2885 (2012).
    [Crossref]
  87. Q. Liu, J. M. Ramirez, V. Vakarin, X. L. Roux, A. Ballabio, J. Frigerio, D. Chrastina, G. Isella, D. Bouville, L. Vivien, C. A. Ramos, and D. Marris-Morini, “Mid-infrared sensing between 5.2 and 6.6  μm wavelengths using Ge-rich SiGe waveguides,” Opt. Mater. Express 8, 1305–1312 (2018).
    [Crossref]
  88. T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
    [Crossref]
  89. F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, D. Englund, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105, 051103 (2014).
    [Crossref]
  90. R. Sun, P. Dong, N.-N. Feng, C.-Y. Hong, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550  nm,” Opt. Express 15, 17967–17972 (2007).
    [Crossref]

2018 (4)

Z. Zhang, J. Yang, X. He, J. Zhang, J. Huang, D. Chen, and Y. Han, “Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator,” Sensors 18, 116 (2018).
[Crossref]

A. R. Bastos, C. M. S. Vicente, R. Oliveira-Silva, N. J. O. Silva, M. Tacao, J. P. da Costa, M. Lima, P. S. Andre, and R. A. S. Ferreira, “Integrated optical Mach–Zehnder interferometer based on organic–inorganic hybrids for photonics-on-a-chip biosensing applications,” Sensors 18, 840 (2018).
[Crossref]

H. Zhao, S. Clemmen, A. Raza, and R. Baets, “Stimulated Raman spectroscopy of analytes evanescently probed by a silicon nitride photonic integrated waveguide,” Opt. Lett. 43, 1403–1406 (2018).
[Crossref]

Q. Liu, J. M. Ramirez, V. Vakarin, X. L. Roux, A. Ballabio, J. Frigerio, D. Chrastina, G. Isella, D. Bouville, L. Vivien, C. A. Ramos, and D. Marris-Morini, “Mid-infrared sensing between 5.2 and 6.6  μm wavelengths using Ge-rich SiGe waveguides,” Opt. Mater. Express 8, 1305–1312 (2018).
[Crossref]

2017 (2)

Q. Du, Y. Huang, O. Ogbuu, W. Zhang, J. Li, V. Singh, A. M. Agarwal, and J. Hu, “Gamma radiation effects in amorphous silicon and silicon nitride photonic devices,” Opt. Lett. 42, 587–590 (2017).
[Crossref]

M. Islam, D. R. Chowdhury, A. Ahmad, and G. Kumar, “Terahertz plasmonic waveguide based thin film sensor,” J. Lightwave. Technol. 35, 5215–5221 (2017).
[Crossref]

2016 (5)

2015 (7)

C. C. Evans, C. Liu, and J. Suntivich, “Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process,” Opt. Express 23, 11160–11169 (2015).
[Crossref]

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photon. Res. 3, B47–B59 (2015).
[Crossref]

A. Dhakal, A. Raza, F. Peyskens, A. Z. Subramanian, S. Clemmen, N. Le Thomas, and R. Baets, “Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides,” Opt. Express 23, 27391–27404 (2015).
[Crossref]

F. T. Dullo, S. Lindecrantz, J. Jana, J. H. Hansen, M. Engqvist, S. A. Solbø, and G. Hellesø, “Sensitive on-chip methane detection with a cryptophane-A cladded Mach–Zehnder interferometer,” Opt. Express 23, 31564–31573 (2015).
[Crossref]

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).
[Crossref]

R. Zafar and M. Salim, “Enhanced figure of merit in Fano resonance-based plasmonic refractive index sensor,” IEEE Sens. J. 15, 6313–6317 (2015).
[Crossref]

D. H. Lee, S. J. Choo, U. Jung, K. W. Lee, K. W. Kim, and J. H. Park, “Low-loss silicon waveguides with sidewall roughness reduction using a SiO2 hard mask and fluorine-based dry etching,” J. Micromech. Microeng. 25, 015003 (2015).
[Crossref]

2014 (10)

L. Huang, H. Tian, D. Yang, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Optimization of figure of merit in label-free biochemical sensors by designing a ring defect coupled resonator,” Opt. Commun. 332, 42–49 (2014).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Biosensors and bioelectronics integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref]

M. G. Wood, L. Chen, J. R. Burr, and R. M. Reano, “Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides,” J. Nanophoton. 8, 083098 (2014).
[Crossref]

P. Wang, A. Michael, and C. Y. Kwok, “Fabrication of sub-micro silicon waveguide with vertical sidewall and reduced roughness for low loss applications,” Procedia Eng. 87, 979–982 (2014).
[Crossref]

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, D. Englund, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105, 051103 (2014).
[Crossref]

E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, and R. Baets, “Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip,” Biomed. Opt. Express 5, 1636–1648 (2014).
[Crossref]

D. Melati, A. Melloni, and F. Morichetti, “Real photonic waveguides: guiding light through imperfections,” Adv. Opt. Photon. 6, 156–224 (2014).
[Crossref]

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. L. Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).
[Crossref]

J. G. Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39, 4442–4445 (2014).
[Crossref]

2013 (2)

E. Jaberansary, T. M. B. Masaud, M. M. Milosevic, M. Nedeljkovic, G. Z. Mashanovich, and H. M. H. Chong, “Scattering loss estimation using 2-D Fourier analysis and modeling of sidewall roughness on optical waveguides,” IEEE Photon. J. 5, 6601010 (2013).
[Crossref]

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

2012 (6)

2011 (6)

B. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. G. Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

A. Nitkowski, A. Baeumner, and M. Lipson, “On-chip spectrophotometry for bioanalysis using microring resonators,” Biomed. Opt. Express 2, 271–277 (2011).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163–3174 (2011).
[Crossref]

T. Alasaarela, D. Korn, L. Alloatti, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19, 11529–11538 (2011).
[Crossref]

2010 (5)

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref]

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
[Crossref]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18, 20251–20262 (2010).
[Crossref]

R. Ding, T. Baehr-Jones, W.-J. Kim, X. Xiong, R. Bojko, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Low-loss strip-loaded slot waveguides in silicon-on-insulator,” Opt. Express 18, 25061–25067 (2010).
[Crossref]

2009 (4)

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced infrared absorption in planar chalcogenide glass microdisk resonators: experiment and analysis,” J. Lightwave Technol. 27, 5240–5245 (2009).
[Crossref]

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. 26, 1032–1041 (2009).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

2008 (4)

C. A. Barrios, M. J. Bañuls, V. González-Pedro, K. B. Gylfason, B. Sánchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33, 708–710 (2008).
[Crossref]

J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16, 16659–16669 (2008).
[Crossref]

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

S. Sardo, F. Giacometti, S. Doneda, U. Colombo, M. Di, A. Donghi, R. Morson, G. Mutinati, A. Nottola, M. Gentili, and M. C. Ubaldi, “Line edge roughness (LER) reduction strategy for SOI waveguides fabrication,” Microelectron. Eng. 85, 1210–1213 (2008).
[Crossref]

2007 (5)

2006 (2)

P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006).
[Crossref]

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93 (2006).
[Crossref]

2005 (4)

S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81, 283–293 (2005).
[Crossref]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[Crossref]

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[Crossref]

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005).
[Crossref]

2004 (1)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, and D. V. Thourhout, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

2003 (3)

T. Barwicz and H. I. Smith, “Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices,” J. Vac. Sci. Technol. B 21, 2892–2896 (2003).
[Crossref]

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists. I. A comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21, 1008–1018 (2003).
[Crossref]

V. Constantoudis, G. P. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists. II. Scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. Technol. B 21, 1019–1026 (2003).
[Crossref]

2002 (1)

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, J. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

2001 (2)

2000 (2)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[Crossref]

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

1999 (1)

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuators B Chem. 61, 100–127 (1999).
[Crossref]

1995 (1)

C. Themistos, B. M. A. Rahman, A. Hadjicharalambous, K. Thomas, and V. Grattan, “Loss/gain characterization of optical waveguides,” J. Lightwave Technol. 13, 1760–1765 (1995).
[Crossref]

1994 (1)

F. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

1992 (1)

V. L. Gupta and E. K. Sharma, “Metal-clad and absorptive multilayer waveguides: an accurate perturbation analysis,” J. Opt. Soc. Am. 9, 953–956 (1992).
[Crossref]

1990 (2)

S. X. She, “Propagation loss in metal-clad waveguides and weakly absorptive waveguides by a perturbation method,” Opt. Lett. 15, 900–902 (1990).
[Crossref]

J. P. R. Lacey and F. P. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. Optoelectron. 137, 282–289 (1990).
[Crossref]

1986 (1)

Z. Pantic and R. Mittra, “Quasi-TEM analysis of microwave transmission lines by the finite-element method,” IEEE Trans. Microwave Theory Tech. 34, 1096–1103 (1986).
[Crossref]

1981 (1)

A. Kumar, S. I. Hosain, and A. K. Ghatak, “Propagation characteristics of weakly guiding lossy fibres: an exact and perturbation analysis,” Opt. Acta 28, 559–566 (1981).
[Crossref]

1974 (1)

1969 (1)

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48, 3187–3215 (1969).
[Crossref]

Adibi, A.

Aers, G. C.

Agarwal, A.

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced infrared absorption in planar chalcogenide glass microdisk resonators: experiment and analysis,” J. Lightwave Technol. 27, 5240–5245 (2009).
[Crossref]

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. 26, 1032–1041 (2009).
[Crossref]

J. Hu, V. Tarasov, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15, 11798–11807 (2007).
[Crossref]

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Agarwal, A. M.

Q. Du, Y. Huang, O. Ogbuu, W. Zhang, J. Li, V. Singh, A. M. Agarwal, and J. Hu, “Gamma radiation effects in amorphous silicon and silicon nitride photonic devices,” Opt. Lett. 42, 587–590 (2017).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

Ahmad, A.

M. Islam, D. R. Chowdhury, A. Ahmad, and G. Kumar, “Terahertz plasmonic waveguide based thin film sensor,” J. Lightwave. Technol. 35, 5215–5221 (2017).
[Crossref]

Aida, Y.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

Alasaarela, T.

Alloatti, L.

Alonso-Ramos, C.

Andre, P. S.

A. R. Bastos, C. M. S. Vicente, R. Oliveira-Silva, N. J. O. Silva, M. Tacao, J. P. da Costa, M. Lima, P. S. Andre, and R. A. S. Ferreira, “Integrated optical Mach–Zehnder interferometer based on organic–inorganic hybrids for photonics-on-a-chip biosensing applications,” Sensors 18, 840 (2018).
[Crossref]

Arimoto, H.

K. Debnath, A. Z. Khokhar, S. A. Boden, H. Arimoto, S. Z. Oo, H. M. H. Chong, G. T. Reed, and S. Saito, “Low-loss slot waveguides with silicon (111) surfaces realized using anisotropic wet etching,” Front. Mater. 3, 1–5 (2016).
[Crossref]

Asher, W.

Baehr-Jones, T.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
[Crossref]

R. Ding, T. Baehr-Jones, W.-J. Kim, X. Xiong, R. Bojko, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Low-loss strip-loaded slot waveguides in silicon-on-insulator,” Opt. Express 18, 25061–25067 (2010).
[Crossref]

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005).
[Crossref]

Baets, R.

H. Zhao, S. Clemmen, A. Raza, and R. Baets, “Stimulated Raman spectroscopy of analytes evanescently probed by a silicon nitride photonic integrated waveguide,” Opt. Lett. 43, 1403–1406 (2018).
[Crossref]

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photon. Res. 3, B47–B59 (2015).
[Crossref]

A. Dhakal, A. Raza, F. Peyskens, A. Z. Subramanian, S. Clemmen, N. Le Thomas, and R. Baets, “Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides,” Opt. Express 23, 27391–27404 (2015).
[Crossref]

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. L. Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).
[Crossref]

E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, and R. Baets, “Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip,” Biomed. Opt. Express 5, 1636–1648 (2014).
[Crossref]

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

A. Dhakal, F. Peyskens, A. Z. Subramanian, N. L. Thomas, and R. Baets, “Enhancement of light absorption, scattering and emission in high index contrast waveguides,” in OSA Advanced Photonics Congress (2013), pp. 1–3.

Baeumner, A.

Ballabio, A.

Bañuls, M. J.

Bañuls Polo, M. J.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref]

Barnes, W. L.

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93 (2006).
[Crossref]

Barrios, C. A.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref]

C. A. Barrios, M. J. Bañuls, V. González-Pedro, K. B. Gylfason, B. Sánchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33, 708–710 (2008).
[Crossref]

C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32, 3080–3082 (2007).
[Crossref]

Barton, J. S.

Barwicz, T.

T. Barwicz and H. I. Smith, “Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices,” J. Vac. Sci. Technol. B 21, 2892–2896 (2003).
[Crossref]

Bastos, A. R.

A. R. Bastos, C. M. S. Vicente, R. Oliveira-Silva, N. J. O. Silva, M. Tacao, J. P. da Costa, M. Lima, P. S. Andre, and R. A. S. Ferreira, “Integrated optical Mach–Zehnder interferometer based on organic–inorganic hybrids for photonics-on-a-chip biosensing applications,” Sensors 18, 840 (2018).
[Crossref]

Bauters, J. F.

Beckx, S.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, and D. V. Thourhout, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Berini, P.

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Bienstman, P.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photon. Res. 3, B47–B59 (2015).
[Crossref]

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, and D. V. Thourhout, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Bier, F. F.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Biosensors and bioelectronics integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref]

Blumenthal, D. J.

Bock, P. J.

Bockstaele, R.

Boden, S. A.

K. Debnath, A. Z. Khokhar, S. A. Boden, H. Arimoto, S. Z. Oo, H. M. H. Chong, G. T. Reed, and S. Saito, “Low-loss slot waveguides with silicon (111) surfaces realized using anisotropic wet etching,” Front. Mater. 3, 1–5 (2016).
[Crossref]

Bogaerts, W.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photon. Res. 3, B47–B59 (2015).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, and D. V. Thourhout, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Bojko, R.

Bojko, R. J.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

Borselli, M.

Bouville, D.

Bowers, J. E.

Brongersma, S. H.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. G. Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

Burr, J. R.

M. G. Wood, L. Chen, J. R. Burr, and R. M. Reano, “Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides,” J. Nanophoton. 8, 083098 (2014).
[Crossref]

Campenhout, J. V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, and D. V. Thourhout, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Canciamilla, A.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Carlborg, C. F.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref]

Carlie, N.

Casquel, R.

Chakravarty, S.

Chang, Y.-C.

Cheben, P.

Chen, D.

Z. Zhang, J. Yang, X. He, J. Zhang, J. Huang, D. Chen, and Y. Han, “Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator,” Sensors 18, 116 (2018).
[Crossref]

Chen, E. H.

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, D. Englund, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105, 051103 (2014).
[Crossref]

Chen, L.

M. G. Wood, L. Chen, J. R. Burr, and R. M. Reano, “Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides,” J. Nanophoton. 8, 083098 (2014).
[Crossref]

Chen, R. T.

Chen, T.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

Cheung, K. C.

Chong, H. M. H.

K. Debnath, A. Z. Khokhar, S. A. Boden, H. Arimoto, S. Z. Oo, H. M. H. Chong, G. T. Reed, and S. Saito, “Low-loss slot waveguides with silicon (111) surfaces realized using anisotropic wet etching,” Front. Mater. 3, 1–5 (2016).
[Crossref]

E. Jaberansary, T. M. B. Masaud, M. M. Milosevic, M. Nedeljkovic, G. Z. Mashanovich, and H. M. H. Chong, “Scattering loss estimation using 2-D Fourier analysis and modeling of sidewall roughness on optical waveguides,” IEEE Photon. J. 5, 6601010 (2013).
[Crossref]

Choo, S. J.

D. H. Lee, S. J. Choo, U. Jung, K. W. Lee, K. W. Kim, and J. H. Park, “Low-loss silicon waveguides with sidewall roughness reduction using a SiO2 hard mask and fluorine-based dry etching,” J. Micromech. Microeng. 25, 015003 (2015).
[Crossref]

Chowdhury, D. R.

M. Islam, D. R. Chowdhury, A. Ahmad, and G. Kumar, “Terahertz plasmonic waveguide based thin film sensor,” J. Lightwave. Technol. 35, 5215–5221 (2017).
[Crossref]

Chrastina, D.

Chrostowski, L.

Claes, T.

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

Clemmen, S.

Colombo, U.

S. Sardo, F. Giacometti, S. Doneda, U. Colombo, M. Di, A. Donghi, R. Morson, G. Mutinati, A. Nottola, M. Gentili, and M. C. Ubaldi, “Line edge roughness (LER) reduction strategy for SOI waveguides fabrication,” Microelectron. Eng. 85, 1210–1213 (2008).
[Crossref]

Constantoudis, V.

V. Constantoudis, G. P. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists. II. Scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. Technol. B 21, 1019–1026 (2003).
[Crossref]

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists. I. A comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21, 1008–1018 (2003).
[Crossref]

Crego-Calama, M.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. G. Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

da Costa, J. P.

A. R. Bastos, C. M. S. Vicente, R. Oliveira-Silva, N. J. O. Silva, M. Tacao, J. P. da Costa, M. Lima, P. S. Andre, and R. A. S. Ferreira, “Integrated optical Mach–Zehnder interferometer based on organic–inorganic hybrids for photonics-on-a-chip biosensing applications,” Sensors 18, 840 (2018).
[Crossref]

Dai, D.

Danto, S.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

Dave, U. D.

De Groote, A.

De La Rue, R. M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

De Leonardis, F.

V. Passaro, B. Troia, M. La Notte, and F. De Leonardis, “Photonic resonant microcavities for chemical and biochemical sensing,” RSC Adv. 3, 25–44 (2012).
[Crossref]

De Vos, K.

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

Debnath, K.

K. Debnath, A. Z. Khokhar, S. A. Boden, H. Arimoto, S. Z. Oo, H. M. H. Chong, G. T. Reed, and S. Saito, “Low-loss slot waveguides with silicon (111) surfaces realized using anisotropic wet etching,” Front. Mater. 3, 1–5 (2016).
[Crossref]

Delâge, A.

Dell’Olio, F.

Deng, F.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

Densmore, A.

Dhakal, A.

Di, M.

S. Sardo, F. Giacometti, S. Doneda, U. Colombo, M. Di, A. Donghi, R. Morson, G. Mutinati, A. Nottola, M. Gentili, and M. C. Ubaldi, “Line edge roughness (LER) reduction strategy for SOI waveguides fabrication,” Microelectron. Eng. 85, 1210–1213 (2008).
[Crossref]

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Ding, R.

Doneda, S.

S. Sardo, F. Giacometti, S. Doneda, U. Colombo, M. Di, A. Donghi, R. Morson, G. Mutinati, A. Nottola, M. Gentili, and M. C. Ubaldi, “Line edge roughness (LER) reduction strategy for SOI waveguides fabrication,” Microelectron. Eng. 85, 1210–1213 (2008).
[Crossref]

Dong, P.

Donghi, A.

S. Sardo, F. Giacometti, S. Doneda, U. Colombo, M. Di, A. Donghi, R. Morson, G. Mutinati, A. Nottola, M. Gentili, and M. C. Ubaldi, “Line edge roughness (LER) reduction strategy for SOI waveguides fabrication,” Microelectron. Eng. 85, 1210–1213 (2008).
[Crossref]

Donzella, V.

Dortu, F.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref]

Du, Q.

Dullo, F. T.

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, and D. V. Thourhout, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Eftekhar, A. A.

Eggleton, B.

B. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Ehrentreich-Förster, E.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Biosensors and bioelectronics integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref]

Engeness, T.

Englund, D.

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, D. Englund, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105, 051103 (2014).
[Crossref]

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, D. Englund, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105, 051103 (2014).
[Crossref]

Engqvist, M.

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Evans, C. C.

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photon. 3, 1662–1669 (2016).
[Crossref]

C. C. Evans, C. Liu, and J. Suntivich, “Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process,” Opt. Express 23, 11160–11169 (2015).
[Crossref]

Fan, X.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[Crossref]

Fedeli, J.-M.

Feng, N.-N.

Ferrari, C.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Ferreira, R. A. S.

A. R. Bastos, C. M. S. Vicente, R. Oliveira-Silva, N. J. O. Silva, M. Tacao, J. P. da Costa, M. Lima, P. S. Andre, and R. A. S. Ferreira, “Integrated optical Mach–Zehnder interferometer based on organic–inorganic hybrids for photonics-on-a-chip biosensing applications,” Sensors 18, 840 (2018).
[Crossref]

Fink, Y.

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, J. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljačić, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001).
[Crossref]

Flueckiger, J.

Ford, G.

Foresi, J.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Fournier, M.

Freude, W.

T. Alasaarela, D. Korn, L. Alloatti, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19, 11529–11538 (2011).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Frigerio, J.

Gentili, M.

S. Sardo, F. Giacometti, S. Doneda, U. Colombo, M. Di, A. Donghi, R. Morson, G. Mutinati, A. Nottola, M. Gentili, and M. C. Ubaldi, “Line edge roughness (LER) reduction strategy for SOI waveguides fabrication,” Microelectron. Eng. 85, 1210–1213 (2008).
[Crossref]

Ghatak, A. K.

A. Kumar, S. I. Hosain, and A. K. Ghatak, “Propagation characteristics of weakly guiding lossy fibres: an exact and perturbation analysis,” Opt. Acta 28, 559–566 (1981).
[Crossref]

Giacometti, F.

S. Sardo, F. Giacometti, S. Doneda, U. Colombo, M. Di, A. Donghi, R. Morson, G. Mutinati, A. Nottola, M. Gentili, and M. C. Ubaldi, “Line edge roughness (LER) reduction strategy for SOI waveguides fabrication,” Microelectron. Eng. 85, 1210–1213 (2008).
[Crossref]

Giammarco, J.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

Gnan, M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Gogolides, E.

V. Constantoudis, G. P. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists. II. Scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. Technol. B 21, 1019–1026 (2003).
[Crossref]

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists. I. A comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21, 1008–1018 (2003).
[Crossref]

González-Pedro, V.

Grattan, V.

C. Themistos, B. M. A. Rahman, A. Hadjicharalambous, K. Thomas, and V. Grattan, “Loss/gain characterization of optical waveguides,” J. Lightwave Technol. 13, 1760–1765 (1995).
[Crossref]

Griol, A.

Grozev, G.

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists. I. A comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21, 1008–1018 (2003).
[Crossref]

Guo, R.

Gupta, V. L.

V. L. Gupta and E. K. Sharma, “Metal-clad and absorptive multilayer waveguides: an accurate perturbation analysis,” J. Opt. Soc. Am. 9, 953–956 (1992).
[Crossref]

Gylfason, K. B.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref]

C. A. Barrios, M. J. Bañuls, V. González-Pedro, K. B. Gylfason, B. Sánchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33, 708–710 (2008).
[Crossref]

C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32, 3080–3082 (2007).
[Crossref]

Hadjicharalambous, A.

C. Themistos, B. M. A. Rahman, A. Hadjicharalambous, K. Thomas, and V. Grattan, “Loss/gain characterization of optical waveguides,” J. Lightwave Technol. 13, 1760–1765 (1995).
[Crossref]

Halir, R.

Hall, T. J.

Han, K.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Han, Y.

Z. Zhang, J. Yang, X. He, J. Zhang, J. Huang, D. Chen, and Y. Han, “Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator,” Sensors 18, 116 (2018).
[Crossref]

Hanggi, P.

P. Hanggi and P. Jung, “Colored noise in dynamical-systems,” in Advances in Chemical Physics (Wiley, 1994), pp. 239–326.

Hansen, J. H.

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[Crossref]

Harris, N. C.

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, D. Englund, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105, 051103 (2014).
[Crossref]

Hartmann, J.-M.

He, L.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

He, X.

Z. Zhang, J. Yang, X. He, J. Zhang, J. Huang, D. Chen, and Y. Han, “Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator,” Sensors 18, 116 (2018).
[Crossref]

Heck, M. J. R.

Heideman, R. G.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163–3174 (2011).
[Crossref]

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuators B Chem. 61, 100–127 (1999).
[Crossref]

Hellesø, G.

Hens, Z.

Herzig, H. P.

Hochberg, M.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

R. Ding, T. Baehr-Jones, W.-J. Kim, X. Xiong, R. Bojko, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Low-loss strip-loaded slot waveguides in silicon-on-insulator,” Opt. Express 18, 25061–25067 (2010).
[Crossref]

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
[Crossref]

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005).
[Crossref]

Hoekman, M.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).
[Crossref]

Holgado, M.

Holmstrom, S. A.

Hong, C.-Y.

Honkanen, S.

Hosain, S. I.

A. Kumar, S. I. Hosain, and A. K. Ghatak, “Propagation characteristics of weakly guiding lossy fibres: an exact and perturbation analysis,” Opt. Acta 28, 559–566 (1981).
[Crossref]

Hu, J.

Q. Du, Y. Huang, O. Ogbuu, W. Zhang, J. Li, V. Singh, A. M. Agarwal, and J. Hu, “Gamma radiation effects in amorphous silicon and silicon nitride photonic devices,” Opt. Lett. 42, 587–590 (2017).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. 26, 1032–1041 (2009).
[Crossref]

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced infrared absorption in planar chalcogenide glass microdisk resonators: experiment and analysis,” J. Lightwave Technol. 27, 5240–5245 (2009).
[Crossref]

J. Hu, V. Tarasov, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15, 11798–11807 (2007).
[Crossref]

Huang, J.

Z. Zhang, J. Yang, X. He, J. Zhang, J. Huang, D. Chen, and Y. Han, “Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator,” Sensors 18, 116 (2018).
[Crossref]

Huang, L.

H. Yan, L. Huang, X. Xu, S. Chakravarty, N. Tang, H. Tian, and R. T. Chen, “Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides,” Opt. Express 24, 29724–29733 (2016).
[Crossref]

L. Huang, H. Tian, D. Yang, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Optimization of figure of merit in label-free biochemical sensors by designing a ring defect coupled resonator,” Opt. Commun. 332, 42–49 (2014).
[Crossref]

Huang, Y.

Hvozdara, L.

Ibanescu, M.

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, J. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljačić, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001).
[Crossref]

Ilic, R.

Isella, G.

Islam, M.

M. Islam, D. R. Chowdhury, A. Ahmad, and G. Kumar, “Terahertz plasmonic waveguide based thin film sensor,” J. Lightwave. Technol. 35, 5215–5221 (2017).
[Crossref]

Jaberansary, E.

E. Jaberansary, T. M. B. Masaud, M. M. Milosevic, M. Nedeljkovic, G. Z. Mashanovich, and H. M. H. Chong, “Scattering loss estimation using 2-D Fourier analysis and modeling of sidewall roughness on optical waveguides,” IEEE Photon. J. 5, 6601010 (2013).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

Jacobs, S.

S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81, 283–293 (2005).
[Crossref]

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljačić, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001).
[Crossref]

Jana, J.

Janz, S.

Ji, Y.

L. Huang, H. Tian, D. Yang, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Optimization of figure of merit in label-free biochemical sensors by designing a ring defect coupled resonator,” Opt. Commun. 332, 42–49 (2014).
[Crossref]

Jiang, L.

Joannopoulos, J.

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, J. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljačić, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001).
[Crossref]

Joannopoulos, J. D.

S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81, 283–293 (2005).
[Crossref]

John, D.

Johnson, S.

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, J. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljačić, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001).
[Crossref]

Johnson, S. G.

S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81, 283–293 (2005).
[Crossref]

A. Oskooi and S. G. Johnson, Chapter 4: Electromagnetic Wave Source Conditions (Artech House, 2013).

Johnson, T. J.

Jung, P.

P. Hanggi and P. Jung, “Colored noise in dynamical-systems,” in Advances in Chemical Physics (Wiley, 1994), pp. 239–326.

Jung, U.

D. H. Lee, S. J. Choo, U. Jung, K. W. Lee, K. W. Kim, and J. H. Park, “Low-loss silicon waveguides with sidewall roughness reduction using a SiO2 hard mask and fluorine-based dry etching,” J. Micromech. Microeng. 25, 015003 (2015).
[Crossref]

Karalis, A.

S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81, 283–293 (2005).
[Crossref]

Kazmierczak, A.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref]

Kee, J. S.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Kehl, F.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Biosensors and bioelectronics integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref]

Khokhar, A. Z.

K. Debnath, A. Z. Khokhar, S. A. Boden, H. Arimoto, S. Z. Oo, H. M. H. Chong, G. T. Reed, and S. Saito, “Low-loss slot waveguides with silicon (111) surfaces realized using anisotropic wet etching,” Front. Mater. 3, 1–5 (2016).
[Crossref]

Khurgin, J. B.

Kim, K. W.

D. H. Lee, S. J. Choo, U. Jung, K. W. Lee, K. W. Kim, and J. H. Park, “Low-loss silicon waveguides with sidewall roughness reduction using a SiO2 hard mask and fluorine-based dry etching,” J. Micromech. Microeng. 25, 015003 (2015).
[Crossref]

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Kim, W.-J.

Kimerling, L.

Kimerling, L. C.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. 26, 1032–1041 (2009).
[Crossref]

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced infrared absorption in planar chalcogenide glass microdisk resonators: experiment and analysis,” J. Lightwave Technol. 27, 5240–5245 (2009).
[Crossref]

K. K. Lee, D. R. Lim, and L. C. Kimerling, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
[Crossref]

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Koos, C.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Korn, D.

Kozak, D. A.

Kozma, P.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Biosensors and bioelectronics integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref]

Kresbach, G. M.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref]

Kumar, A.

A. Kumar, S. I. Hosain, and A. K. Ghatak, “Propagation characteristics of weakly guiding lossy fibres: an exact and perturbation analysis,” Opt. Acta 28, 559–566 (1981).
[Crossref]

Kumar, G.

M. Islam, D. R. Chowdhury, A. Ahmad, and G. Kumar, “Terahertz plasmonic waveguide based thin film sensor,” J. Lightwave. Technol. 35, 5215–5221 (2017).
[Crossref]

Kuyken, B.

Kwok, C. Y.

P. Wang, A. Michael, and C. Y. Kwok, “Fabrication of sub-micro silicon waveguide with vertical sidewall and reduced roughness for low loss applications,” Procedia Eng. 87, 979–982 (2014).
[Crossref]

Kymissis, I.

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, D. Englund, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105, 051103 (2014).
[Crossref]

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, D. Englund, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105, 051103 (2014).
[Crossref]

La Notte, M.

V. Passaro, B. Troia, M. La Notte, and F. De Leonardis, “Photonic resonant microcavities for chemical and biochemical sensing,” RSC Adv. 3, 25–44 (2012).
[Crossref]

Lacey, J. P. R.

F. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

J. P. R. Lacey and F. P. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. Optoelectron. 137, 282–289 (1990).
[Crossref]

Lambeck, P. V.

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuators B Chem. 61, 100–127 (1999).
[Crossref]

Lapointe, J.

Le Thomas, N.

Lee, D. H.

D. H. Lee, S. J. Choo, U. Jung, K. W. Lee, K. W. Kim, and J. H. Park, “Low-loss silicon waveguides with sidewall roughness reduction using a SiO2 hard mask and fluorine-based dry etching,” J. Micromech. Microeng. 25, 015003 (2015).
[Crossref]

Lee, H.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

Lee, K. K.

K. K. Lee, D. R. Lim, and L. C. Kimerling, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
[Crossref]

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Lee, K. W.

D. H. Lee, S. J. Choo, U. Jung, K. W. Lee, K. W. Kim, and J. H. Park, “Low-loss silicon waveguides with sidewall roughness reduction using a SiO2 hard mask and fluorine-based dry etching,” J. Micromech. Microeng. 25, 015003 (2015).
[Crossref]

Leinse, A.

Leo, F.

Leuthold, J.

T. Alasaarela, D. Korn, L. Alloatti, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19, 11529–11538 (2011).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Li, J.

Q. Du, Y. Huang, O. Ogbuu, W. Zhang, J. Li, V. Singh, A. M. Agarwal, and J. Hu, “Gamma radiation effects in amorphous silicon and silicon nitride photonic devices,” Opt. Lett. 42, 587–590 (2017).
[Crossref]

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

Li, L.

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, D. Englund, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105, 051103 (2014).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

Li, Q.

Lim, D. R.

K. K. Lee, D. R. Lim, and L. C. Kimerling, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
[Crossref]

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Lima, M.

A. R. Bastos, C. M. S. Vicente, R. Oliveira-Silva, N. J. O. Silva, M. Tacao, J. P. da Costa, M. Lima, P. S. Andre, and R. A. S. Ferreira, “Integrated optical Mach–Zehnder interferometer based on organic–inorganic hybrids for photonics-on-a-chip biosensing applications,” Sensors 18, 840 (2018).
[Crossref]

Lin, H.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

Lin, P. T.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

Lindecrantz, S.

Lipson, M.

Liu, C.

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photon. 3, 1662–1669 (2016).
[Crossref]

C. C. Evans, C. Liu, and J. Suntivich, “Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process,” Opt. Express 23, 11160–11169 (2015).
[Crossref]

Liu, Q.

Q. Liu, J. M. Ramirez, V. Vakarin, X. L. Roux, A. Ballabio, J. Frigerio, D. Chrastina, G. Isella, D. Bouville, L. Vivien, C. A. Ramos, and D. Marris-Morini, “Mid-infrared sensing between 5.2 and 6.6  μm wavelengths using Ge-rich SiGe waveguides,” Opt. Mater. Express 8, 1305–1312 (2018).
[Crossref]

L. Huang, H. Tian, D. Yang, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Optimization of figure of merit in label-free biochemical sensors by designing a ring defect coupled resonator,” Opt. Commun. 332, 42–49 (2014).
[Crossref]

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Liu, X.

Lo, G. Q.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Lu, H.

Luan, H.-C.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Luther-Davies, B.

B. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Luyssaert, B.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, and D. V. Thourhout, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Luzinov, I.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

Macintyre, D. S.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Malik, A.

Mao, D.

Maquieira, A.

Maquieira Catala, A.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref]

Marcuse, D.

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48, 3187–3215 (1969).
[Crossref]

Marris-Morini, D.

Martens, D.

Martinelli, M.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Masaud, T. M. B.

E. Jaberansary, T. M. B. Masaud, M. M. Milosevic, M. Nedeljkovic, G. Z. Mashanovich, and H. M. H. Chong, “Scattering loss estimation using 2-D Fourier analysis and modeling of sidewall roughness on optical waveguides,” IEEE Photon. J. 5, 6601010 (2013).
[Crossref]

Mashanovich, G. Z.

E. Jaberansary, T. M. B. Masaud, M. M. Milosevic, M. Nedeljkovic, G. Z. Mashanovich, and H. M. H. Chong, “Scattering loss estimation using 2-D Fourier analysis and modeling of sidewall roughness on optical waveguides,” IEEE Photon. J. 5, 6601010 (2013).
[Crossref]

McCarthy, S.

Mcgill, R. A.

Melati, D.

Melloni, A.

D. Melati, A. Melloni, and F. Morichetti, “Real photonic waveguides: guiding light through imperfections,” Adv. Opt. Photon. 6, 156–224 (2014).
[Crossref]

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Meng, F.

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, D. Englund, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105, 051103 (2014).
[Crossref]

Michael, A.

P. Wang, A. Michael, and C. Y. Kwok, “Fabrication of sub-micro silicon waveguide with vertical sidewall and reduced roughness for low loss applications,” Procedia Eng. 87, 979–982 (2014).
[Crossref]

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Milosevic, M. M.

E. Jaberansary, T. M. B. Masaud, M. M. Milosevic, M. Nedeljkovic, G. Z. Mashanovich, and H. M. H. Chong, “Scattering loss estimation using 2-D Fourier analysis and modeling of sidewall roughness on optical waveguides,” IEEE Photon. J. 5, 6601010 (2013).
[Crossref]

Mittra, R.

Z. Pantic and R. Mittra, “Quasi-TEM analysis of microwave transmission lines by the finite-element method,” IEEE Trans. Microwave Theory Tech. 34, 1096–1103 (1986).
[Crossref]

Moh, T.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref]

Molera, J. G.

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

Molina-Fernández, I.

Morichetti, F.

D. Melati, A. Melloni, and F. Morichetti, “Real photonic waveguides: guiding light through imperfections,” Adv. Opt. Photon. 6, 156–224 (2014).
[Crossref]

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Morson, R.

S. Sardo, F. Giacometti, S. Doneda, U. Colombo, M. Di, A. Donghi, R. Morson, G. Mutinati, A. Nottola, M. Gentili, and M. C. Ubaldi, “Line edge roughness (LER) reduction strategy for SOI waveguides fabrication,” Microelectron. Eng. 85, 1210–1213 (2008).
[Crossref]

Muneeb, M.

Musgraves, J. D.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

Mutinati, G.

S. Sardo, F. Giacometti, S. Doneda, U. Colombo, M. Di, A. Donghi, R. Morson, G. Mutinati, A. Nottola, M. Gentili, and M. C. Ubaldi, “Line edge roughness (LER) reduction strategy for SOI waveguides fabrication,” Microelectron. Eng. 85, 1210–1213 (2008).
[Crossref]

Nedeljkovic, M.

E. Jaberansary, T. M. B. Masaud, M. M. Milosevic, M. Nedeljkovic, G. Z. Mashanovich, and H. M. H. Chong, “Scattering loss estimation using 2-D Fourier analysis and modeling of sidewall roughness on optical waveguides,” IEEE Photon. J. 5, 6601010 (2013).
[Crossref]

Ni, C.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

Nie, J.

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, D. Englund, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105, 051103 (2014).
[Crossref]

Nitkowski, A.

Nottola, A.

S. Sardo, F. Giacometti, S. Doneda, U. Colombo, M. Di, A. Donghi, R. Morson, G. Mutinati, A. Nottola, M. Gentili, and M. C. Ubaldi, “Line edge roughness (LER) reduction strategy for SOI waveguides fabrication,” Microelectron. Eng. 85, 1210–1213 (2008).
[Crossref]

Novak, J.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

Novak, S.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

Offermans, P.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. G. Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

Ogbuu, O.

Oliveira-Silva, R.

A. R. Bastos, C. M. S. Vicente, R. Oliveira-Silva, N. J. O. Silva, M. Tacao, J. P. da Costa, M. Lima, P. S. Andre, and R. A. S. Ferreira, “Integrated optical Mach–Zehnder interferometer based on organic–inorganic hybrids for photonics-on-a-chip biosensing applications,” Sensors 18, 840 (2018).
[Crossref]

Oo, S. Z.

K. Debnath, A. Z. Khokhar, S. A. Boden, H. Arimoto, S. Z. Oo, H. M. H. Chong, G. T. Reed, and S. Saito, “Low-loss slot waveguides with silicon (111) surfaces realized using anisotropic wet etching,” Front. Mater. 3, 1–5 (2016).
[Crossref]

Ortega-Moñux, A.

Oskooi, A.

A. Oskooi and S. G. Johnson, Chapter 4: Electromagnetic Wave Source Conditions (Artech House, 2013).

Paeder, V.

Painter, O.

Palmer, R.

Pantic, Z.

Z. Pantic and R. Mittra, “Quasi-TEM analysis of microwave transmission lines by the finite-element method,” IEEE Trans. Microwave Theory Tech. 34, 1096–1103 (1986).
[Crossref]

Park, J. H.

D. H. Lee, S. J. Choo, U. Jung, K. W. Lee, K. W. Kim, and J. H. Park, “Low-loss silicon waveguides with sidewall roughness reduction using a SiO2 hard mask and fluorine-based dry etching,” J. Micromech. Microeng. 25, 015003 (2015).
[Crossref]

Park, M. K.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Passaro, V.

V. Passaro, B. Troia, M. La Notte, and F. De Leonardis, “Photonic resonant microcavities for chemical and biochemical sensing,” RSC Adv. 3, 25–44 (2012).
[Crossref]

Passaro, V. M.

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[Crossref]

Patel, N.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

Pathak, S.

Patsis, G. P.

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists. I. A comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21, 1008–1018 (2003).
[Crossref]

V. Constantoudis, G. P. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists. II. Scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. Technol. B 21, 1019–1026 (2003).
[Crossref]

Payne, F.

F. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

Payne, F. P.

J. P. R. Lacey and F. P. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. Optoelectron. 137, 282–289 (1990).
[Crossref]

Penkov, B.

Pérez-Galacho, D.

Pervez, N.

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, D. Englund, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105, 051103 (2014).
[Crossref]

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, D. Englund, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105, 051103 (2014).
[Crossref]

Petit, L.

Peyskens, F.

Popplewell, J.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref]

Povinelli, M. L.

S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81, 283–293 (2005).
[Crossref]

Preston, K.

Pruessner, M. W.

Rabinovich, W. S.

Rahman, B. M. A.

C. Themistos, B. M. A. Rahman, A. Hadjicharalambous, K. Thomas, and V. Grattan, “Loss/gain characterization of optical waveguides,” J. Lightwave Technol. 13, 1760–1765 (1995).
[Crossref]

Ramirez, J. M.

Ramos, C. A.

Ratner, D. M.

Raza, A.

Reano, R. M.

M. G. Wood, L. Chen, J. R. Burr, and R. M. Reano, “Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides,” J. Nanophoton. 8, 083098 (2014).
[Crossref]

Reed, G. T.

K. Debnath, A. Z. Khokhar, S. A. Boden, H. Arimoto, S. Z. Oo, H. M. H. Chong, G. T. Reed, and S. Saito, “Low-loss slot waveguides with silicon (111) surfaces realized using anisotropic wet etching,” Front. Mater. 3, 1–5 (2016).
[Crossref]

Richardson, K.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

B. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced infrared absorption in planar chalcogenide glass microdisk resonators: experiment and analysis,” J. Lightwave Technol. 27, 5240–5245 (2009).
[Crossref]

J. Hu, V. Tarasov, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15, 11798–11807 (2007).
[Crossref]

Rivas, J. G.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. G. Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

Robinson, J. T.

Rodriguez, S. R. K.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. G. Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

Roelkens, G.

Ronan, G.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref]

Roux, X. L.

Ruocco, A.

Ryckeboer, E.

Saito, S.

K. Debnath, A. Z. Khokhar, S. A. Boden, H. Arimoto, S. Z. Oo, H. M. H. Chong, G. T. Reed, and S. Saito, “Low-loss slot waveguides with silicon (111) surfaces realized using anisotropic wet etching,” Front. Mater. 3, 1–5 (2016).
[Crossref]

Salim, M.

R. Zafar and M. Salim, “Enhanced figure of merit in Fano resonance-based plasmonic refractive index sensor,” IEEE Sens. J. 15, 6313–6317 (2015).
[Crossref]

Sánchez, B.

Sardo, S.

S. Sardo, F. Giacometti, S. Doneda, U. Colombo, M. Di, A. Donghi, R. Morson, G. Mutinati, A. Nottola, M. Gentili, and M. C. Ubaldi, “Line edge roughness (LER) reduction strategy for SOI waveguides fabrication,” Microelectron. Eng. 85, 1210–1213 (2008).
[Crossref]

Schaafsma, M. C.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. G. Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

Schacht, E.

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

Scherer, A.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005).
[Crossref]

Schmid, J. H.

Schmidt, S.

Schröder, T.

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, D. Englund, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105, 051103 (2014).
[Crossref]

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Sharma, E. K.

V. L. Gupta and E. K. Sharma, “Metal-clad and absorptive multilayer waveguides: an accurate perturbation analysis,” J. Opt. Soc. Am. 9, 953–956 (1992).
[Crossref]

She, S. X.

Sherwali, A.

Shin, Y.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Shiue, R.-J.

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, D. Englund, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105, 051103 (2014).
[Crossref]

Silva, N. J. O.

A. R. Bastos, C. M. S. Vicente, R. Oliveira-Silva, N. J. O. Silva, M. Tacao, J. P. da Costa, M. Lima, P. S. Andre, and R. A. S. Ferreira, “Integrated optical Mach–Zehnder interferometer based on organic–inorganic hybrids for photonics-on-a-chip biosensing applications,” Sensors 18, 840 (2018).
[Crossref]

Singh, V.

Q. Du, Y. Huang, O. Ogbuu, W. Zhang, J. Li, V. Singh, A. M. Agarwal, and J. Hu, “Gamma radiation effects in amorphous silicon and silicon nitride photonic devices,” Opt. Lett. 42, 587–590 (2017).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

Skorobogatiy, M.

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, J. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljačić, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001).
[Crossref]

Smith, H. I.

T. Barwicz and H. I. Smith, “Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices,” J. Vac. Sci. Technol. B 21, 2892–2896 (2003).
[Crossref]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Sohlström, H.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref]

C. A. Barrios, M. J. Bañuls, V. González-Pedro, K. B. Gylfason, B. Sánchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33, 708–710 (2008).
[Crossref]

C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32, 3080–3082 (2007).
[Crossref]

Solbø, S. A.

Soliani, A. P.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

Soljacic, M.

S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81, 283–293 (2005).
[Crossref]

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljačić, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001).
[Crossref]

Sorel, M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Spott, A.

Stamm, C.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Biosensors and bioelectronics integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref]

Stemme, G.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref]

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[Crossref]

Stievater, T. H.

Subramanian, A. Z.

Sun, R.

Sun, X.

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. 26, 1032–1041 (2009).
[Crossref]

Suntivich, J.

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photon. 3, 1662–1669 (2016).
[Crossref]

C. C. Evans, C. Liu, and J. Suntivich, “Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process,” Opt. Express 23, 11160–11169 (2015).
[Crossref]

Tacao, M.

A. R. Bastos, C. M. S. Vicente, R. Oliveira-Silva, N. J. O. Silva, M. Tacao, J. P. da Costa, M. Lima, P. S. Andre, and R. A. S. Ferreira, “Integrated optical Mach–Zehnder interferometer based on organic–inorganic hybrids for photonics-on-a-chip biosensing applications,” Sensors 18, 840 (2018).
[Crossref]

Taillaert, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, and D. V. Thourhout, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Tang, N.

Tarasov, V.

Tervonen, A.

Themistos, C.

C. Themistos, B. M. A. Rahman, A. Hadjicharalambous, K. Thomas, and V. Grattan, “Loss/gain characterization of optical waveguides,” J. Lightwave Technol. 13, 1760–1765 (1995).
[Crossref]

Thomas, K.

C. Themistos, B. M. A. Rahman, A. Hadjicharalambous, K. Thomas, and V. Grattan, “Loss/gain characterization of optical waveguides,” J. Lightwave Technol. 13, 1760–1765 (1995).
[Crossref]

Thomas, N. L.

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. L. Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).
[Crossref]

A. Dhakal, F. Peyskens, A. Z. Subramanian, N. L. Thomas, and R. Baets, “Enhancement of light absorption, scattering and emission in high index contrast waveguides,” in OSA Advanced Photonics Congress (2013), pp. 1–3.

Thoms, S.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Thourhout, D. V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, and D. V. Thourhout, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Tian, H.

H. Yan, L. Huang, X. Xu, S. Chakravarty, N. Tang, H. Tian, and R. T. Chen, “Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides,” Opt. Express 24, 29724–29733 (2016).
[Crossref]

L. Huang, H. Tian, D. Yang, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Optimization of figure of merit in label-free biochemical sensors by designing a ring defect coupled resonator,” Opt. Commun. 332, 42–49 (2014).
[Crossref]

Tien, M.-C.

Torregiani, M.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Troia, B.

V. Passaro, B. Troia, M. La Notte, and F. De Leonardis, “Photonic resonant microcavities for chemical and biochemical sensing,” RSC Adv. 3, 25–44 (2012).
[Crossref]

Tserepi, A.

V. Constantoudis, G. P. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists. II. Scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. Technol. B 21, 1019–1026 (2003).
[Crossref]

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists. I. A comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21, 1008–1018 (2003).
[Crossref]

Tu, X.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Tyndall, N.

Ubaldi, M. C.

S. Sardo, F. Giacometti, S. Doneda, U. Colombo, M. Di, A. Donghi, R. Morson, G. Mutinati, A. Nottola, M. Gentili, and M. C. Ubaldi, “Line edge roughness (LER) reduction strategy for SOI waveguides fabrication,” Microelectron. Eng. 85, 1210–1213 (2008).
[Crossref]

Vahala, K. J.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

Vakarin, V.

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Van Campenhout, J.

van der Wijngaart, W.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref]

Van Dorpe, P.

Van Thourhout, D.

Vanslembrouck, M.

Vicente, C. M. S.

A. R. Bastos, C. M. S. Vicente, R. Oliveira-Silva, N. J. O. Silva, M. Tacao, J. P. da Costa, M. Lima, P. S. Andre, and R. A. S. Ferreira, “Integrated optical Mach–Zehnder interferometer based on organic–inorganic hybrids for photonics-on-a-chip biosensing applications,” Sensors 18, 840 (2018).
[Crossref]

Vivien, L.

Q. Liu, J. M. Ramirez, V. Vakarin, X. L. Roux, A. Ballabio, J. Frigerio, D. Chrastina, G. Isella, D. Bouville, L. Vivien, C. A. Ramos, and D. Marris-Morini, “Mid-infrared sensing between 5.2 and 6.6  μm wavelengths using Ge-rich SiGe waveguides,” Opt. Mater. Express 8, 1305–1312 (2018).
[Crossref]

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Wachtel, P.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

Walker, C.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005).
[Crossref]

Wan, N.

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, D. Englund, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105, 051103 (2014).
[Crossref]

Wang, B.

Wang, G.

Wang, L.

Wang, P.

P. Wang, A. Michael, and C. Y. Kwok, “Fabrication of sub-micro silicon waveguide with vertical sidewall and reduced roughness for low loss applications,” Procedia Eng. 87, 979–982 (2014).
[Crossref]

Wang, X.

Wangüemert-Pérez, J. G.

Weber, W.

Weisberg, O.

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, J. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljačić, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001).
[Crossref]

White, I.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[Crossref]

Wiaux, V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, and D. V. Thourhout, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Wood, M. G.

M. G. Wood, L. Chen, J. R. Burr, and R. M. Reano, “Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides,” J. Nanophoton. 8, 083098 (2014).
[Crossref]

Wörhoff, K.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).
[Crossref]

Wouters, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, and D. V. Thourhout, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Wuytens, P.

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Xia, Z.

Xie, W.

Xiong, X.

Xu, D.-X.

Xu, X.

Yan, H.

Yang, D.

L. Huang, H. Tian, D. Yang, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Optimization of figure of merit in label-free biochemical sensors by designing a ring defect coupled resonator,” Opt. Commun. 332, 42–49 (2014).
[Crossref]

Yang, J.

Z. Zhang, J. Yang, X. He, J. Zhang, J. Huang, D. Chen, and Y. Han, “Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator,” Sensors 18, 116 (2018).
[Crossref]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[Crossref]

Yoon, Y. J.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Zafar, R.

R. Zafar and M. Salim, “Enhanced figure of merit in Fano resonance-based plasmonic refractive index sensor,” IEEE Sens. J. 15, 6313–6317 (2015).
[Crossref]

Zdyrko, B.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

Zhang, J.

Z. Zhang, J. Yang, X. He, J. Zhang, J. Huang, D. Chen, and Y. Han, “Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator,” Sensors 18, 116 (2018).
[Crossref]

Zhang, P.

L. Huang, H. Tian, D. Yang, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Optimization of figure of merit in label-free biochemical sensors by designing a ring defect coupled resonator,” Opt. Commun. 332, 42–49 (2014).
[Crossref]

Zhang, W.

Zhang, Y.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. G. Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

Zhang, Z.

Z. Zhang, J. Yang, X. He, J. Zhang, J. Huang, D. Chen, and Y. Han, “Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator,” Sensors 18, 116 (2018).
[Crossref]

Zhao, H.

Zhou, J.

L. Huang, H. Tian, D. Yang, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Optimization of figure of merit in label-free biochemical sensors by designing a ring defect coupled resonator,” Opt. Commun. 332, 42–49 (2014).
[Crossref]

Zhou, Z.

Zou, Y.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

ACS Nano (1)

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. G. Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

ACS Photon. (1)

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photon. 3, 1662–1669 (2016).
[Crossref]

Adv. Opt. Photon. (1)

Adv. Opt. Technol. (1)

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81, 283–293 (2005).
[Crossref]

Appl. Phys. Lett. (4)

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[Crossref]

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005).
[Crossref]

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, D. Englund, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105, 051103 (2014).
[Crossref]

Bell Syst. Tech. J. (1)

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48, 3187–3215 (1969).
[Crossref]

Biomed. Opt. Express (2)

Biosens. Bioelectron. (1)

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Biosensors and bioelectronics integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref]

Electron. Lett. (2)

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[Crossref]

Front. Mater. (1)

K. Debnath, A. Z. Khokhar, S. A. Boden, H. Arimoto, S. Z. Oo, H. M. H. Chong, G. T. Reed, and S. Saito, “Low-loss slot waveguides with silicon (111) surfaces realized using anisotropic wet etching,” Front. Mater. 3, 1–5 (2016).
[Crossref]

IEE Proc. Optoelectron. (1)

J. P. R. Lacey and F. P. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. Optoelectron. 137, 282–289 (1990).
[Crossref]

IEEE Photon. J. (2)

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

E. Jaberansary, T. M. B. Masaud, M. M. Milosevic, M. Nedeljkovic, G. Z. Mashanovich, and H. M. H. Chong, “Scattering loss estimation using 2-D Fourier analysis and modeling of sidewall roughness on optical waveguides,” IEEE Photon. J. 5, 6601010 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, and D. V. Thourhout, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

IEEE Sens. J. (1)

R. Zafar and M. Salim, “Enhanced figure of merit in Fano resonance-based plasmonic refractive index sensor,” IEEE Sens. J. 15, 6313–6317 (2015).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

Z. Pantic and R. Mittra, “Quasi-TEM analysis of microwave transmission lines by the finite-element method,” IEEE Trans. Microwave Theory Tech. 34, 1096–1103 (1986).
[Crossref]

J. Lightwave Technol. (2)

C. Themistos, B. M. A. Rahman, A. Hadjicharalambous, K. Thomas, and V. Grattan, “Loss/gain characterization of optical waveguides,” J. Lightwave Technol. 13, 1760–1765 (1995).
[Crossref]

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced infrared absorption in planar chalcogenide glass microdisk resonators: experiment and analysis,” J. Lightwave Technol. 27, 5240–5245 (2009).
[Crossref]

J. Lightwave. Technol. (1)

M. Islam, D. R. Chowdhury, A. Ahmad, and G. Kumar, “Terahertz plasmonic waveguide based thin film sensor,” J. Lightwave. Technol. 35, 5215–5221 (2017).
[Crossref]

J. Micromech. Microeng. (1)

D. H. Lee, S. J. Choo, U. Jung, K. W. Lee, K. W. Kim, and J. H. Park, “Low-loss silicon waveguides with sidewall roughness reduction using a SiO2 hard mask and fluorine-based dry etching,” J. Micromech. Microeng. 25, 015003 (2015).
[Crossref]

J. Nanophoton. (1)

M. G. Wood, L. Chen, J. R. Burr, and R. M. Reano, “Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides,” J. Nanophoton. 8, 083098 (2014).
[Crossref]

J. Opt. A (1)

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93 (2006).
[Crossref]

J. Opt. Soc. Am. (2)

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. 26, 1032–1041 (2009).
[Crossref]

V. L. Gupta and E. K. Sharma, “Metal-clad and absorptive multilayer waveguides: an accurate perturbation analysis,” J. Opt. Soc. Am. 9, 953–956 (1992).
[Crossref]

J. Vac. Sci. Technol. B (4)

T. Barwicz and H. I. Smith, “Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices,” J. Vac. Sci. Technol. B 21, 2892–2896 (2003).
[Crossref]

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists. I. A comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21, 1008–1018 (2003).
[Crossref]

V. Constantoudis, G. P. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists. II. Scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. Technol. B 21, 1019–1026 (2003).
[Crossref]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

Lab Chip (1)

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10, 281–290 (2010).
[Crossref]

Microelectron. Eng. (1)

S. Sardo, F. Giacometti, S. Doneda, U. Colombo, M. Di, A. Donghi, R. Morson, G. Mutinati, A. Nottola, M. Gentili, and M. C. Ubaldi, “Line edge roughness (LER) reduction strategy for SOI waveguides fabrication,” Microelectron. Eng. 85, 1210–1213 (2008).
[Crossref]

Nat. Commun. (1)

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

Nat. Photonics (3)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

B. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Opt. Acta (1)

A. Kumar, S. I. Hosain, and A. K. Ghatak, “Propagation characteristics of weakly guiding lossy fibres: an exact and perturbation analysis,” Opt. Acta 28, 559–566 (1981).
[Crossref]

Opt. Commun. (1)

L. Huang, H. Tian, D. Yang, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Optimization of figure of merit in label-free biochemical sensors by designing a ring defect coupled resonator,” Opt. Commun. 332, 42–49 (2014).
[Crossref]

Opt. Express (17)

P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006).
[Crossref]

F. Dell’Olio and V. M. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15, 4977–4993 (2007).
[Crossref]

J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Sub-wavelength grating for enhanced ring resonator biosensor,” Opt. Express 24, 15672–15686 (2016).
[Crossref]

H. Yan, L. Huang, X. Xu, S. Chakravarty, N. Tang, H. Tian, and R. T. Chen, “Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides,” Opt. Express 24, 29724–29733 (2016).
[Crossref]

A. Dhakal, A. Raza, F. Peyskens, A. Z. Subramanian, S. Clemmen, N. Le Thomas, and R. Baets, “Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides,” Opt. Express 23, 27391–27404 (2015).
[Crossref]

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljačić, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001).
[Crossref]

J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16, 16659–16669 (2008).
[Crossref]

F. T. Dullo, S. Lindecrantz, J. Jana, J. H. Hansen, M. Engqvist, S. A. Solbø, and G. Hellesø, “Sensitive on-chip methane detection with a cryptophane-A cladded Mach–Zehnder interferometer,” Opt. Express 23, 31564–31573 (2015).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163–3174 (2011).
[Crossref]

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[Crossref]

J. Hu, V. Tarasov, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15, 11798–11807 (2007).
[Crossref]

C. C. Evans, C. Liu, and J. Suntivich, “Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process,” Opt. Express 23, 11160–11169 (2015).
[Crossref]

R. Sun, P. Dong, N.-N. Feng, C.-Y. Hong, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550  nm,” Opt. Express 15, 17967–17972 (2007).
[Crossref]

T. Alasaarela, D. Korn, L. Alloatti, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19, 11529–11538 (2011).
[Crossref]

R. Ding, T. Baehr-Jones, W.-J. Kim, X. Xiong, R. Bojko, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Low-loss strip-loaded slot waveguides in silicon-on-insulator,” Opt. Express 18, 25061–25067 (2010).
[Crossref]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18, 20251–20262 (2010).
[Crossref]

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
[Crossref]

Opt. Lett. (12)

H. Zhao, S. Clemmen, A. Raza, and R. Baets, “Stimulated Raman spectroscopy of analytes evanescently probed by a silicon nitride photonic integrated waveguide,” Opt. Lett. 43, 1403–1406 (2018).
[Crossref]

Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, “Azimuthal-order variations of surface-roughness-induced mode splitting and scattering loss in high-Q microdisk resonators,” Opt. Lett. 37, 1586–1588 (2012).
[Crossref]

Q. Du, Y. Huang, O. Ogbuu, W. Zhang, J. Li, V. Singh, A. M. Agarwal, and J. Hu, “Gamma radiation effects in amorphous silicon and silicon nitride photonic devices,” Opt. Lett. 42, 587–590 (2017).
[Crossref]

Y.-C. Chang, V. Paeder, L. Hvozdara, J.-M. Hartmann, and H. P. Herzig, “Low-loss germanium strip waveguides on silicon for the mid-infrared,” Opt. Lett. 37, 2883–2885 (2012).
[Crossref]

H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37, 3780–3782 (2012).
[Crossref]

S. X. She, “Propagation loss in metal-clad waveguides and weakly absorptive waveguides by a perturbation method,” Opt. Lett. 15, 900–902 (1990).
[Crossref]

C. A. Barrios, M. J. Bañuls, V. González-Pedro, K. B. Gylfason, B. Sánchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33, 708–710 (2008).
[Crossref]

J. G. Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39, 4442–4445 (2014).
[Crossref]

C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32, 3080–3082 (2007).
[Crossref]

K. K. Lee, D. R. Lim, and L. C. Kimerling, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
[Crossref]

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. L. Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).
[Crossref]

R. Guo, B. Wang, X. Wang, L. Wang, L. Jiang, and Z. Zhou, “Optical amplification in Er/Yb silicate slot waveguide,” Opt. Lett. 37, 1427–1429 (2012).
[Crossref]

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

F. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

Optica (1)

Photon. Res. (1)

Phys. Rev. E (1)

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, J. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Phys. Rev. Lett. (1)

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Procedia Eng. (1)

P. Wang, A. Michael, and C. Y. Kwok, “Fabrication of sub-micro silicon waveguide with vertical sidewall and reduced roughness for low loss applications,” Procedia Eng. 87, 979–982 (2014).
[Crossref]

RSC Adv. (1)

V. Passaro, B. Troia, M. La Notte, and F. De Leonardis, “Photonic resonant microcavities for chemical and biochemical sensing,” RSC Adv. 3, 25–44 (2012).
[Crossref]

Sci. Tech. Adv. Mater. (1)

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Tech. Adv. Mater. 15, 014603 (2014).
[Crossref]

Sens. Actuators B Chem. (2)

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuators B Chem. 61, 100–127 (1999).
[Crossref]

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Sensors (2)

Z. Zhang, J. Yang, X. He, J. Zhang, J. Huang, D. Chen, and Y. Han, “Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator,” Sensors 18, 116 (2018).
[Crossref]

A. R. Bastos, C. M. S. Vicente, R. Oliveira-Silva, N. J. O. Silva, M. Tacao, J. P. da Costa, M. Lima, P. S. Andre, and R. A. S. Ferreira, “Integrated optical Mach–Zehnder interferometer based on organic–inorganic hybrids for photonics-on-a-chip biosensing applications,” Sensors 18, 840 (2018).
[Crossref]

Other (5)

A. Oskooi and S. G. Johnson, Chapter 4: Electromagnetic Wave Source Conditions (Artech House, 2013).

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

P. Hanggi and P. Jung, “Colored noise in dynamical-systems,” in Advances in Chemical Physics (Wiley, 1994), pp. 239–326.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

A. Dhakal, F. Peyskens, A. Z. Subramanian, N. L. Thomas, and R. Baets, “Enhancement of light absorption, scattering and emission in high index contrast waveguides,” in OSA Advanced Photonics Congress (2013), pp. 1–3.

Supplementary Material (1)

NameDescription
» Supplement 1       Supplementary material document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Top row: vertically symmetric surface roughness along a silicon strip waveguide on a silicon dioxide substrate, a slot waveguide, and a SWG waveguide. The electric field magnitude | E | 2 is overlaid at several cross sections. Second (from top) to fourth rows: external (bulk) confinement factor Γ , surface confinement factor Γ (field integral over an 8 nm thin region at the air/solid interface), and the normalized Raman gain coefficient β , respectively, for each single-mode waveguide geometry as a function of relevant design parameters (total width, slot size, and duty cycle). The shaded regions denote the relative y -axis scaling between adjacent plots in each row. For slot waveguides, the total width is denoted as follows: = 450    nm , = 550    nm , and × = 650    nm . For SWG waveguides, the width and period are fixed to 550 and 250 nm, respectively. The surface Γ and bulk Γ are calculated via first-order perturbation theory [which is exactly equivalent to Eq. (3)] with a resolution of 256 pixels/μm and for SWG waveguides with a resolution of 128 pixels/μm. The Raman gain coefficients are computed via Eqs. (4) and (5) in three dimensions with a resolution of 128 pixels/μm.
Fig. 2.
Fig. 2. Relative scattering loss, α s / max ( α s , TE strip ) , computed by FDTD simulations of vertical ( y direction) lines of dipole moments and averaged over all sidewall positions. The dipole moment amplitudes were computed via Eq. (6) with incident field strength and phase determined by numerically computed mode profiles. The results for the TE (red) and TM (blue) strip (left), slot (middle), and SWG (right) waveguides are shown. For the slot waveguides, the total width is denoted as follows: = 450    nm , = 550    nm , and × = 650    nm .
Fig. 3.
Fig. 3. Side-by-side performance comparison for strip (left column), slot (middle column), and SWG (right column) waveguides in the presence of slow-varying ( L c > 10 · σ ) Gaussian random roughness. The normalized absorption sensing figure of merit, FOM Γ , and the normalized Raman gain coefficient, FOM β , are calculated via Eqs. (1) and (2), respectively, as functions of relevant design parameters (total width, slot size, and duty cycle). For the slot waveguides, the total width (as depicted in Fig. 1) is denoted as follows: = 450    nm , = 550    nm , and × = 650    nm .
Fig. 4.
Fig. 4. Comparison of the ratio of scattering losses between different experimentally realized waveguide systems. The red square markers denote the loss ratios computed via the volume-current method described in this work, whereas the black circles denote the reported loss ratios with associated error bars. The slot waveguides reported by Debnath et al. [73] and Baehr-Jones et al. [74] are labeled by the slot size, whereas the slot waveguides reported by Ding et al. [75] are labeled by “slot1,” “slot2,” etc., corresponding to different slot sizes and strip-loading values. Bock et al. [76] and Gnan et al. [77] report losses for SWG and strip waveguides fabricated via electron-beam lithography.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

FOM Γ = Γ clad α s λ ,
FOM β = β α s ,
Γ clad = d n eff d n clad = n g n clad clad ε | E | 2 d 2 x ε | E | 2 d 2 x ,
β = α ram 2 ω n 2 m 4 c 2 · n g 2 ( ω ) n clad 2 clad | E ( x , ω ) | 4 d 2 x ( ε ( x ) | E ( x , ω ) | 2 d 2 x ) 2 ,
β SWG = α ram 2 ω n 2 m 4 c 2 · n g 2 ( ω ) n clad 2 Λ · clad | E ( x , ω ) | 4 d 3 x ( ε ( x ) | E ( x , ω ) | 2 d 3 x ) 2 .
J = i ω Δ h ( Δ ε E ε Δ ( ε 1 ) D ) δ ( x ) .

Metrics