Abstract

Controlling the electric and magnetic dipole moments of optical nanostructures is a fundamental prerequisite for light routing and polarization multiplexing at the nanoscale. A versatile approach for inducing tailored dipole moments is structured illumination. Here, we discuss the excitation of a chiral dipole moment in an achiral silicon nanoparticle. In particular, we make use of the electric and magnetic polarizabilities of the silicon nanoparticle to coherently excite a superposition of parallel electric and magnetic dipole moments phase-shifted by ±π/2, which resembles the fundamental mode of a three-dimensional chiral nanostructure. We demonstrate the wavelength dependence of the excitation scheme and measure the spin and orbital angular momenta in the emission of the induced chiral dipole moments. Our results highlight the capabilities of such tunable chiral dipole emitters—not limited by structural properties—as flexible sources of spin-polarized light for nanoscopic devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Circular-polarization-dependent mode hybridization and slow light in vertically coupled planar chiral and achiral plasmonic nanostructures

Kun Jiang, Cheng He, Xiao-Ping Liu, Ming-Hui Lu, Bo Cui, and Yan-Feng Chen
J. Opt. Soc. Am. B 32(10) 2088-2095 (2015)

Beaming photons with spin and orbital angular momentum via a dipole-coupled plasmonic spiral antenna

Guanghao Rui, Robert L. Nelson, and Qiwen Zhan
Opt. Express 20(17) 18819-18826 (2012)

Giant plasmonic circular dichroism in Ag staircase nanostructures

Chunrui Han, Ho Ming Leung, C. T. Chan, and Wing Yim Tam
Opt. Express 23(26) 33065-33078 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
    [Crossref]
  2. L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
    [Crossref]
  3. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
    [Crossref]
  4. I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11, 274–284 (2017).
    [Crossref]
  5. P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
    [Crossref]
  6. M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nat. Commun. 7, 11286 (2016).
    [Crossref]
  7. L. Wei, N. Bhattacharya, and H. Paul Urbach, “Adding a spin to Kerker’s condition: angular tuning of directional scattering with designed excitation,” Opt. Lett. 42, 1776–1779 (2017).
    [Crossref]
  8. M. F. Picardi, A. V. Zayats, and F. J. Rodríguez-Fortuño, “Janus and Huygens dipoles: near-field directionality beyond spin-momentum locking,” Phys. Rev. Lett. 120, 117402 (2018).
    [Crossref]
  9. M. Neugebauer, J. S. Eismann, T. Bauer, and P. Banzer, “Magnetic and electric transverse spin density of spatially confined light,” Phys. Rev. X 8, 021042 (2018).
    [Crossref]
  10. X. Zambrana-Puyalto, I. Fernandez-Corbaton, M. L. Juan, X. Vidal, and G. Molina-Terriza, “Duality symmetry and Kerker conditions,” Opt. Lett. 38, 1857–1859 (2013).
    [Crossref]
  11. I. Fernandez-Corbaton and G. Molina-Terriza, “Role of duality symmetry in transformation optics,” Phys. Rev. B 88, 085111 (2013).
    [Crossref]
  12. X. Zambrana-Puyalto and N. Bonod, “Tailoring the chirality of light emission with spherical Si-based antennas,” Nanoscale 8, 10441–10452 (2016).
    [Crossref]
  13. L. D. Barron, An Introduction to Chirality at the Nanoscale (Wiley-Blackwell, 2009), Chap. 1, pp. 1–27.
  14. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
    [Crossref]
  15. M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photon. 1, 530–537 (2014).
    [Crossref]
  16. P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” arXiv: 1804.05641 (2018).
  17. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  18. K. Y. Bliokh, Y. S. Kivshar, and F. Nori, “Magnetoelectric effects in local light-matter interactions,” Phys. Rev. Lett. 113, 033601 (2014).
    [Crossref]
  19. D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5, 5327 (2014).
    [Crossref]
  20. W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” J. Opt. Soc. Am. 69, 1495–1503 (1979).
    [Crossref]
  21. L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2006).
  22. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
    [Crossref]
  23. R. Alaee, M. Albooyeh, A. Rahimzadegan, M. S. Mirmoosa, Y. S. Kivshar, and C. Rockstuhl, “All-dielectric reciprocal bianisotropic nanoparticles,” Phys. Rev. B 92, 245130 (2015).
    [Crossref]
  24. Y. Nakamine, T. Kodera, K. Uchida, and S. Oda, “Removal of surface oxide layer from silicon nanocrystals by hydrogen fluoride vapor etching,” Jpn. J. Appl. Phys. 50, 115002 (2011).
    [Crossref]
  25. M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18, 103001 (2016).
    [Crossref]
  26. P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express 18, 10905–10923 (2010).
    [Crossref]
  27. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
    [Crossref]
  28. U. Mick, P. Banzer, S. Christiansen, and G. Leuchs, “AFM-based pick-and-place handling of individual nanoparticles inside an SEM for the fabrication of plasmonic nano-patterns,” in Conference on Lasers and Electro-Optics (2014), paper STu1H.1.
  29. B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys. 75, 163–168 (2007).
    [Crossref]
  30. A. Bekshaev, K. Y. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 053001 (2011).
    [Crossref]
  31. A. Dogariu and C. Schwartz, “Conservation of angular momentum of light in single scattering,” Opt. Express 14, 8425–8433 (2006).
    [Crossref]
  32. K. Y. Bliokh, J. Dressel, and F. Nori, “Conservation of the spin and orbital angular momenta in electromagnetism,” New J. Phys. 16, 093037 (2014).
    [Crossref]
  33. K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
    [Crossref]
  34. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [Crossref]
  35. Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
    [Crossref]

2018 (2)

M. F. Picardi, A. V. Zayats, and F. J. Rodríguez-Fortuño, “Janus and Huygens dipoles: near-field directionality beyond spin-momentum locking,” Phys. Rev. Lett. 120, 117402 (2018).
[Crossref]

M. Neugebauer, J. S. Eismann, T. Bauer, and P. Banzer, “Magnetic and electric transverse spin density of spatially confined light,” Phys. Rev. X 8, 021042 (2018).
[Crossref]

2017 (2)

2016 (3)

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18, 103001 (2016).
[Crossref]

M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nat. Commun. 7, 11286 (2016).
[Crossref]

X. Zambrana-Puyalto and N. Bonod, “Tailoring the chirality of light emission with spherical Si-based antennas,” Nanoscale 8, 10441–10452 (2016).
[Crossref]

2015 (3)

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
[Crossref]

R. Alaee, M. Albooyeh, A. Rahimzadegan, M. S. Mirmoosa, Y. S. Kivshar, and C. Rockstuhl, “All-dielectric reciprocal bianisotropic nanoparticles,” Phys. Rev. B 92, 245130 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

2014 (4)

K. Y. Bliokh, J. Dressel, and F. Nori, “Conservation of the spin and orbital angular momenta in electromagnetism,” New J. Phys. 16, 093037 (2014).
[Crossref]

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photon. 1, 530–537 (2014).
[Crossref]

K. Y. Bliokh, Y. S. Kivshar, and F. Nori, “Magnetoelectric effects in local light-matter interactions,” Phys. Rev. Lett. 113, 033601 (2014).
[Crossref]

D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5, 5327 (2014).
[Crossref]

2013 (3)

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

X. Zambrana-Puyalto, I. Fernandez-Corbaton, M. L. Juan, X. Vidal, and G. Molina-Terriza, “Duality symmetry and Kerker conditions,” Opt. Lett. 38, 1857–1859 (2013).
[Crossref]

I. Fernandez-Corbaton and G. Molina-Terriza, “Role of duality symmetry in transformation optics,” Phys. Rev. B 88, 085111 (2013).
[Crossref]

2012 (2)

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

2011 (2)

Y. Nakamine, T. Kodera, K. Uchida, and S. Oda, “Removal of surface oxide layer from silicon nanocrystals by hydrogen fluoride vapor etching,” Jpn. J. Appl. Phys. 50, 115002 (2011).
[Crossref]

A. Bekshaev, K. Y. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 053001 (2011).
[Crossref]

2010 (2)

2009 (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

2007 (1)

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys. 75, 163–168 (2007).
[Crossref]

2006 (2)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

A. Dogariu and C. Schwartz, “Conservation of angular momentum of light in single scattering,” Opt. Express 14, 8425–8433 (2006).
[Crossref]

2000 (1)

1982 (1)

1979 (1)

Alaee, R.

R. Alaee, M. Albooyeh, A. Rahimzadegan, M. S. Mirmoosa, Y. S. Kivshar, and C. Rockstuhl, “All-dielectric reciprocal bianisotropic nanoparticles,” Phys. Rev. B 92, 245130 (2015).
[Crossref]

Albooyeh, M.

R. Alaee, M. Albooyeh, A. Rahimzadegan, M. S. Mirmoosa, Y. S. Kivshar, and C. Rockstuhl, “All-dielectric reciprocal bianisotropic nanoparticles,” Phys. Rev. B 92, 245130 (2015).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Bag, A.

M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nat. Commun. 7, 11286 (2016).
[Crossref]

Banzer, P.

M. Neugebauer, J. S. Eismann, T. Bauer, and P. Banzer, “Magnetic and electric transverse spin density of spatially confined light,” Phys. Rev. X 8, 021042 (2018).
[Crossref]

M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nat. Commun. 7, 11286 (2016).
[Crossref]

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
[Crossref]

P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express 18, 10905–10923 (2010).
[Crossref]

U. Mick, P. Banzer, S. Christiansen, and G. Leuchs, “AFM-based pick-and-place handling of individual nanoparticles inside an SEM for the fabrication of plasmonic nano-patterns,” in Conference on Lasers and Electro-Optics (2014), paper STu1H.1.

P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” arXiv: 1804.05641 (2018).

Barrett, D.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys. 75, 163–168 (2007).
[Crossref]

Barron, L. D.

L. D. Barron, An Introduction to Chirality at the Nanoscale (Wiley-Blackwell, 2009), Chap. 1, pp. 1–27.

Bauer, T.

M. Neugebauer, J. S. Eismann, T. Bauer, and P. Banzer, “Magnetic and electric transverse spin density of spatially confined light,” Phys. Rev. X 8, 021042 (2018).
[Crossref]

Bekshaev, A.

A. Bekshaev, K. Y. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 053001 (2011).
[Crossref]

Bhattacharya, N.

Bliokh, K. Y.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

K. Y. Bliokh, J. Dressel, and F. Nori, “Conservation of the spin and orbital angular momenta in electromagnetism,” New J. Phys. 16, 093037 (2014).
[Crossref]

K. Y. Bliokh, Y. S. Kivshar, and F. Nori, “Magnetoelectric effects in local light-matter interactions,” Phys. Rev. Lett. 113, 033601 (2014).
[Crossref]

A. Bekshaev, K. Y. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 053001 (2011).
[Crossref]

Bonod, N.

X. Zambrana-Puyalto and N. Bonod, “Tailoring the chirality of light emission with spherical Si-based antennas,” Nanoscale 8, 10441–10452 (2016).
[Crossref]

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Brown, T.

Chichkov, B. N.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Christiansen, S.

P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” arXiv: 1804.05641 (2018).

U. Mick, P. Banzer, S. Christiansen, and G. Leuchs, “AFM-based pick-and-place handling of individual nanoparticles inside an SEM for the fabrication of plasmonic nano-patterns,” in Conference on Lasers and Electro-Optics (2014), paper STu1H.1.

Cohen, A. E.

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref]

Collett, E.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys. 75, 163–168 (2007).
[Crossref]

De Leon, I.

P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” arXiv: 1804.05641 (2018).

Decker, M.

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18, 103001 (2016).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Dogariu, A.

Dressel, J.

K. Y. Bliokh, J. Dressel, and F. Nori, “Conservation of the spin and orbital angular momenta in electromagnetism,” New J. Phys. 16, 093037 (2014).
[Crossref]

Eismann, J. S.

M. Neugebauer, J. S. Eismann, T. Bauer, and P. Banzer, “Magnetic and electric transverse spin density of spatially confined light,” Phys. Rev. X 8, 021042 (2018).
[Crossref]

Engheta, N.

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photon. 1, 530–537 (2014).
[Crossref]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Evlyukhin, A. B.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Fenollosa, R.

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

Fernandez-Corbaton, I.

I. Fernandez-Corbaton and G. Molina-Terriza, “Role of duality symmetry in transformation optics,” Phys. Rev. B 88, 085111 (2013).
[Crossref]

X. Zambrana-Puyalto, I. Fernandez-Corbaton, M. L. Juan, X. Vidal, and G. Molina-Terriza, “Duality symmetry and Kerker conditions,” Opt. Lett. 38, 1857–1859 (2013).
[Crossref]

Fraher, B.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys. 75, 163–168 (2007).
[Crossref]

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Giessen, H.

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photon. 1, 530–537 (2014).
[Crossref]

Ginzburg, P.

D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5, 5327 (2014).
[Crossref]

Haverkamp, C.

P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” arXiv: 1804.05641 (2018).

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2006).

Höflich, K.

P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” arXiv: 1804.05641 (2018).

Ina, H.

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

Juan, M. L.

Kivshar, Y. S.

R. Alaee, M. Albooyeh, A. Rahimzadegan, M. S. Mirmoosa, Y. S. Kivshar, and C. Rockstuhl, “All-dielectric reciprocal bianisotropic nanoparticles,” Phys. Rev. B 92, 245130 (2015).
[Crossref]

K. Y. Bliokh, Y. S. Kivshar, and F. Nori, “Magnetoelectric effects in local light-matter interactions,” Phys. Rev. Lett. 113, 033601 (2014).
[Crossref]

Kobayashi, S.

Kodera, T.

Y. Nakamine, T. Kodera, K. Uchida, and S. Oda, “Removal of surface oxide layer from silicon nanocrystals by hydrogen fluoride vapor etching,” Jpn. J. Appl. Phys. 50, 115002 (2011).
[Crossref]

Kuznetsov, A. I.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

Leuchs, G.

M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nat. Commun. 7, 11286 (2016).
[Crossref]

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
[Crossref]

P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express 18, 10905–10923 (2010).
[Crossref]

U. Mick, P. Banzer, S. Christiansen, and G. Leuchs, “AFM-based pick-and-place handling of individual nanoparticles inside an SEM for the fabrication of plasmonic nano-patterns,” in Conference on Lasers and Electro-Optics (2014), paper STu1H.1.

P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” arXiv: 1804.05641 (2018).

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Luk’yanchuk, B.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

Lukosz, W.

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

Marrucci, L.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

Meseguer, F.

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

Mick, U.

U. Mick, P. Banzer, S. Christiansen, and G. Leuchs, “AFM-based pick-and-place handling of individual nanoparticles inside an SEM for the fabrication of plasmonic nano-patterns,” in Conference on Lasers and Electro-Optics (2014), paper STu1H.1.

Mirmoosa, M. S.

R. Alaee, M. Albooyeh, A. Rahimzadegan, M. S. Mirmoosa, Y. S. Kivshar, and C. Rockstuhl, “All-dielectric reciprocal bianisotropic nanoparticles,” Phys. Rev. B 92, 245130 (2015).
[Crossref]

Miroshnichenko, A. E.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

Molina-Terriza, G.

I. Fernandez-Corbaton and G. Molina-Terriza, “Role of duality symmetry in transformation optics,” Phys. Rev. B 88, 085111 (2013).
[Crossref]

X. Zambrana-Puyalto, I. Fernandez-Corbaton, M. L. Juan, X. Vidal, and G. Molina-Terriza, “Duality symmetry and Kerker conditions,” Opt. Lett. 38, 1857–1859 (2013).
[Crossref]

Nakamine, Y.

Y. Nakamine, T. Kodera, K. Uchida, and S. Oda, “Removal of surface oxide layer from silicon nanocrystals by hydrogen fluoride vapor etching,” Jpn. J. Appl. Phys. 50, 115002 (2011).
[Crossref]

Neugebauer, M.

M. Neugebauer, J. S. Eismann, T. Bauer, and P. Banzer, “Magnetic and electric transverse spin density of spatially confined light,” Phys. Rev. X 8, 021042 (2018).
[Crossref]

M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nat. Commun. 7, 11286 (2016).
[Crossref]

Nori, F.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

K. Y. Bliokh, J. Dressel, and F. Nori, “Conservation of the spin and orbital angular momenta in electromagnetism,” New J. Phys. 16, 093037 (2014).
[Crossref]

K. Y. Bliokh, Y. S. Kivshar, and F. Nori, “Magnetoelectric effects in local light-matter interactions,” Phys. Rev. Lett. 113, 033601 (2014).
[Crossref]

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2006).

O’Connor, D.

D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5, 5327 (2014).
[Crossref]

Oda, S.

Y. Nakamine, T. Kodera, K. Uchida, and S. Oda, “Removal of surface oxide layer from silicon nanocrystals by hydrogen fluoride vapor etching,” Jpn. J. Appl. Phys. 50, 115002 (2011).
[Crossref]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

Paul Urbach, H.

Peschel, U.

Picardi, M. F.

M. F. Picardi, A. V. Zayats, and F. J. Rodríguez-Fortuño, “Janus and Huygens dipoles: near-field directionality beyond spin-momentum locking,” Phys. Rev. Lett. 120, 117402 (2018).
[Crossref]

Quabis, S.

Rahimzadegan, A.

R. Alaee, M. Albooyeh, A. Rahimzadegan, M. S. Mirmoosa, Y. S. Kivshar, and C. Rockstuhl, “All-dielectric reciprocal bianisotropic nanoparticles,” Phys. Rev. B 92, 245130 (2015).
[Crossref]

Reinhardt, C.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Rockstuhl, C.

R. Alaee, M. Albooyeh, A. Rahimzadegan, M. S. Mirmoosa, Y. S. Kivshar, and C. Rockstuhl, “All-dielectric reciprocal bianisotropic nanoparticles,” Phys. Rev. B 92, 245130 (2015).
[Crossref]

Rodríguez-Fortuño, F. J.

M. F. Picardi, A. V. Zayats, and F. J. Rodríguez-Fortuño, “Janus and Huygens dipoles: near-field directionality beyond spin-momentum locking,” Phys. Rev. Lett. 120, 117402 (2018).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5, 5327 (2014).
[Crossref]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Schaefer, B.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys. 75, 163–168 (2007).
[Crossref]

Schäferling, M.

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photon. 1, 530–537 (2014).
[Crossref]

Schilling, J.

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11, 274–284 (2017).
[Crossref]

Schwartz, C.

Shi, L.

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

Smyth, R.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys. 75, 163–168 (2007).
[Crossref]

Soskin, M.

A. Bekshaev, K. Y. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 053001 (2011).
[Crossref]

Staude, I.

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11, 274–284 (2017).
[Crossref]

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18, 103001 (2016).
[Crossref]

Takeda, M.

Tang, Y.

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Tuzer, T. U.

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

Uchida, K.

Y. Nakamine, T. Kodera, K. Uchida, and S. Oda, “Removal of surface oxide layer from silicon nanocrystals by hydrogen fluoride vapor etching,” Jpn. J. Appl. Phys. 50, 115002 (2011).
[Crossref]

Vidal, X.

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Wei, L.

Wozniak, P.

M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nat. Commun. 7, 11286 (2016).
[Crossref]

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
[Crossref]

P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” arXiv: 1804.05641 (2018).

Wurtz, G. A.

D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5, 5327 (2014).
[Crossref]

Yin, X.

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photon. 1, 530–537 (2014).
[Crossref]

Youngworth, K.

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

Zambrana-Puyalto, X.

X. Zambrana-Puyalto and N. Bonod, “Tailoring the chirality of light emission with spherical Si-based antennas,” Nanoscale 8, 10441–10452 (2016).
[Crossref]

X. Zambrana-Puyalto, I. Fernandez-Corbaton, M. L. Juan, X. Vidal, and G. Molina-Terriza, “Duality symmetry and Kerker conditions,” Opt. Lett. 38, 1857–1859 (2013).
[Crossref]

Zayats, A. V.

M. F. Picardi, A. V. Zayats, and F. J. Rodríguez-Fortuño, “Janus and Huygens dipoles: near-field directionality beyond spin-momentum locking,” Phys. Rev. Lett. 120, 117402 (2018).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5, 5327 (2014).
[Crossref]

Zywietz, U.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

ACS Photon. (1)

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photon. 1, 530–537 (2014).
[Crossref]

Adv. Mater. (1)

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

Am. J. Phys. (1)

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys. 75, 163–168 (2007).
[Crossref]

J. Opt. (2)

A. Bekshaev, K. Y. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 053001 (2011).
[Crossref]

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18, 103001 (2016).
[Crossref]

J. Opt. Soc. Am. (2)

Jpn. J. Appl. Phys. (1)

Y. Nakamine, T. Kodera, K. Uchida, and S. Oda, “Removal of surface oxide layer from silicon nanocrystals by hydrogen fluoride vapor etching,” Jpn. J. Appl. Phys. 50, 115002 (2011).
[Crossref]

Laser Photon. Rev. (1)

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
[Crossref]

Nano Lett. (1)

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Nanoscale (1)

X. Zambrana-Puyalto and N. Bonod, “Tailoring the chirality of light emission with spherical Si-based antennas,” Nanoscale 8, 10441–10452 (2016).
[Crossref]

Nat. Commun. (3)

D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5, 5327 (2014).
[Crossref]

M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nat. Commun. 7, 11286 (2016).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

Nat. Photonics (2)

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11, 274–284 (2017).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

New J. Phys. (1)

K. Y. Bliokh, J. Dressel, and F. Nori, “Conservation of the spin and orbital angular momenta in electromagnetism,” New J. Phys. 16, 093037 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (2)

I. Fernandez-Corbaton and G. Molina-Terriza, “Role of duality symmetry in transformation optics,” Phys. Rev. B 88, 085111 (2013).
[Crossref]

R. Alaee, M. Albooyeh, A. Rahimzadegan, M. S. Mirmoosa, Y. S. Kivshar, and C. Rockstuhl, “All-dielectric reciprocal bianisotropic nanoparticles,” Phys. Rev. B 92, 245130 (2015).
[Crossref]

Phys. Rev. Lett. (4)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref]

M. F. Picardi, A. V. Zayats, and F. J. Rodríguez-Fortuño, “Janus and Huygens dipoles: near-field directionality beyond spin-momentum locking,” Phys. Rev. Lett. 120, 117402 (2018).
[Crossref]

K. Y. Bliokh, Y. S. Kivshar, and F. Nori, “Magnetoelectric effects in local light-matter interactions,” Phys. Rev. Lett. 113, 033601 (2014).
[Crossref]

Phys. Rev. X (1)

M. Neugebauer, J. S. Eismann, T. Bauer, and P. Banzer, “Magnetic and electric transverse spin density of spatially confined light,” Phys. Rev. X 8, 021042 (2018).
[Crossref]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Other (5)

L. D. Barron, An Introduction to Chirality at the Nanoscale (Wiley-Blackwell, 2009), Chap. 1, pp. 1–27.

P. Woźniak, I. De Leon, K. Höflich, C. Haverkamp, S. Christiansen, G. Leuchs, and P. Banzer, “Chiroptical response of a single plasmonic nanohelix,” arXiv: 1804.05641 (2018).

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

U. Mick, P. Banzer, S. Christiansen, and G. Leuchs, “AFM-based pick-and-place handling of individual nanoparticles inside an SEM for the fabrication of plasmonic nano-patterns,” in Conference on Lasers and Electro-Optics (2014), paper STu1H.1.

L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2006).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplementary information

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Radiation patterns of a spinning dipole and σ dipoles. The color code corresponds to the helicity σ. The upper row shows the emission in free-space, the lower row shows the emission of the same dipoles placed 88 nm above a glass substrate (nG=1.53). (a), (d) Spinning dipole with dipole moment p=p0(1,ı,0). (b), (e), (c), (f) σ dipoles with dipole moments p=p0(0,0,±ı) and m=m0(0,0,1).
Fig. 2.
Fig. 2. (a) Spiral polarization beam. The polarization distributions of the electric and magnetic fields before focusing are depicted on the left by purple and green arrows, respectively. The field plots show the calculated electric and magnetic intensity components of the tightly focused beam in the focal plane at 640 nm. The phases are shown as insets. (b) Scanning electron microscope image of the nanoparticle, used in the experiment. (c) Sketch of the system utilized for FDTD simulation. The particle has a crystalline silicon core with radius rSi=84  nm, a silicon dioxide (SiO2) shell of thickness δ=4  nm, and it is placed on an air–glass interface. (d) Total intensity (gray line) scattered into the angular region defined by 0.92k/k01.28 (glass half-space), retrieved from FDTD simulations. The purple and green lines depict the decomposition into p- and s-polarized intensities. (k) Relative phase ϕs,p between the scattered fields Es and Ep.
Fig. 3.
Fig. 3. Schematic draft of the measurement setup. The incoming linearly polarized Gaussian beam is split into two parts. The main beam is tailored into the desired spiral polarization beam and afterwards focused on a silicon nanostructure by a microscope objective (MO) with a numerical aperture of NA=0.9. A second MO collects the incoming beam as well as the scattered light up to NA=1.3. A rotatable quarter-wave plate and a linear polarizer are implemented for polarization analysis. Additionally, the reference beam can be superimposed for interferometric measurements.
Fig. 4.
Fig. 4. (a) Spectral measurement of average helicity σ¯ and chirality C depicted as orange dots and gray circles, respectively. The solid lines show corresponding results achieved by FDTD simulation. The region where the magnetic quadrupole should be taken into account for a more accurate evaluation of the chirality is shaded gray. (b)–(d) Measured BFP images showing S3 for three different wavelengths, where σ¯ is maximum, minimum, and close to zero. The images computed by fitting the far fields to the measured data are shown as insets. (e) Interference pattern of left-handed circular (lhc) polarized field, measured at 640 nm with (f) reconstructed experimental phase of the lhc polarized field component and (g) associated theoretical phase distribution for lhc field component. (h)–(j) Corresponding images for right-handed circular (rhc) polarization at 710 nm.

Tables (1)

Tables Icon

Table 1. Results of the Calculated Parameters

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ±=A±(±ı1),
[EpEs](kx,ky)CT^[A+(ı1)+A(ı1)],
T^=(tp00ts).
C(A±)=|A+|2|A|2|A+|2+|A|2.