Abstract

Efficient and long-lived interfaces between light and matter are crucial for the development of quantum information technologies. Integrated photonic solutions for quantum storage devices offer improved performances due to light confinement and enable more complex and scalable designs. We demonstrate a novel platform for quantum light storage based on laser written waveguides. The new adopted writing regime allows us to attain waveguides with improved confining capabilities compared to previous demonstrations. We report the first demonstration of single-photon storage in laser written waveguides. While we achieve storage efficiencies comparable to those observed in massive samples, the power involved for the memory preparation is strongly reduced, by a factor 100, due to an enhancement of the light–matter interaction of almost one order of magnitude. Moreover, we demonstrate excited-state storage times 100 times longer than previous realizations with single photons in integrated quantum memories. Our system promises to effectively fulfill the requirements for efficient and scalable integrated quantum storage devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantum frequency conversion of memory-compatible single photons from 606  nm to the telecom C-band

Nicolas Maring, Dario Lago-Rivera, Andreas Lenhard, Georg Heinze, and Hugues de Riedmatten
Optica 5(5) 507-513 (2018)

Material platforms for integrated quantum photonics

S. Bogdanov, M. Y. Shalaginov, A. Boltasseva, and V. M. Shalaev
Opt. Mater. Express 7(1) 111-132 (2017)

Integrated frequency comb source of heralded single photons

Christian Reimer, Lucia Caspani, Matteo Clerici, Marcello Ferrera, Michael Kues, Marco Peccianti, Alessia Pasquazi, Luca Razzari, Brent E. Little, Sai T. Chu, David J. Moss, and Roberto Morandotti
Opt. Express 22(6) 6535-6546 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Orieux and E. Diamanti, “Recent advances on integrated quantum communications,” J. Opt. 18, 083002 (2016).
    [Crossref]
  2. P. Vergyris, F. Kaiser, E. Gouzien, G. Sauder, T. Lunghi, and S. Tanzilli, “Fully guided-wave photon pair source for quantum applications,” Quantum Sci. Technol. 2, 024007 (2017).
    [Crossref]
  3. I. Pitsios, L. Banchi, A. S. Rab, M. Bentivegna, D. Caprara, A. Crespi, N. Spagnolo, S. Bose, P. Mataloni, R. Osellame, and F. Sciarrino, “Photonic simulation of entanglement growth and engineering after a spin chain quench,” Nat. Commun. 8, 1569 (2017).
    [Crossref]
  4. F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
    [Crossref]
  5. F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519–1537 (2013).
    [Crossref]
  6. H. Riedmatten and M. Afzelius, “Quantum light storage in solid state atomic ensembles,” in Engineering the Atom-Photon Interaction: Controlling Fundamental Processes with Photons, Atoms and Solids (Springer, 2015), pp. 241–273.
  7. E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
    [Crossref]
  8. M. F. Askarani, M. Grimau Puigbert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and retrieval of heralded telecommunication-wavelength photons using a solid-state waveguide quantum memory,” arXiv: 1804.05699 (2018).
  9. T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392–1395 (2017).
    [Crossref]
  10. S. Marzban, J. G. Bartholomew, S. Madden, K. Vu, and M. J. Sellars, “Observation of photon echoes from evanescently coupled rare-earth ions in a planar waveguide,” Phys. Rev. Lett. 115, 013601 (2015).
    [Crossref]
  11. M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
    [Crossref]
  12. G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
    [Crossref]
  13. F. Chen and J. Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
    [Crossref]
  14. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18, 24994–24999 (2010).
    [Crossref]
  15. T. Calmano, J. Siebenmorgen, F. Reichert, M. Fechner, A.-G. Paschke, N.-O. Hansen, K. Petermann, and G. Huber, “Crystalline Pr:SrAl12O19 waveguide laser in the visible spectral region,” Opt. Lett. 36, 4620–4622 (2011).
    [Crossref]
  16. C. Grivas, C. Corbari, G. Brambilla, and P. G. Lagoudakis, “Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses,” Opt. Lett. 37, 4630–4632 (2012).
    [Crossref]
  17. G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5, 054013 (2016).
    [Crossref]
  18. T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21, 401–413 (2015).
    [Crossref]
  19. A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19, 17820–17833 (2011).
    [Crossref]
  20. L. Li, W. Nie, Z. Li, C. Romero, R. I. Rodriguez, J. Aldana, and F. Chen, “Laser-writing of ring-shaped waveguides in BGO crystal for telecommunication band,” Opt. Express 25, 24236–24241 (2017).
    [Crossref]
  21. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89, 127–132 (2007).
    [Crossref]
  22. R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).
    [Crossref]
  23. R. Thomson, S. Campbell, I. Blewett, A. Kar, and D. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNnO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88, 111109 (2006).
    [Crossref]
  24. L. Huang, P. Salter, M. Karpinski, B. Smith, F. Payne, and M. Booth, “Waveguide fabrication in KDP crystals with femtosecond laser pulses,” Appl. Phys. A 118, 831–836 (2015).
    [Crossref]
  25. A. Rodenas, A. Benayas, J. Macdonald, J. Zhang, D. Tang, D. Jaque, and A. Kar, “Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG,” Opt. Lett. 36, 3395–3397 (2011).
    [Crossref]
  26. J. Macdonald, R. Thomson, S. Beecher, N. Psaila, H. Bookey, and A. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35, 4036–4038 (2010).
    [Crossref]
  27. I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Lightwave Technol. 14, 423–428 (1996).
    [Crossref]
  28. R. G. Hunsperger, Integrated Optics (Springer, 1995), vol. 4.
  29. Supplement 1 contains details about the experimental setup and the characterization measurements of the heralded single photons from the SPDC source.
  30. N. Maring, D. Lago-Rivera, A. Lenhard, G. Heinze, and H. de Riedmatten, “Quantum frequency conversion of storable single photons from 606  nm to the telecom c-band,” arXiv: 1801.03727 (2018).
  31. J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
    [Crossref]
  32. D. Rieländer, A. Lenhard, M. Mazzera, and H. de Riedmatten, “Cavity enhanced telecom heralded single photons for spin-wave solid state quantum memories,” New J. Phys. 18, 123013 (2016).
    [Crossref]
  33. M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214111 (2004).
    [Crossref]
  34. A. V. Durrant, J. Manners, and P. M. Clark, “Understanding optical echoes using Schrodinger’s equation: I. echoes excited by two optical pulses,” Eur. J. Phys. 10, 291–297 (1989).
    [Crossref]
  35. A. V. Durrant, J. Manners, and P. M. Clark, “Understanding optical echoes using Schrodinger’s equation: II. three pulse echoes and collision effects,” Eur. J. Phys. 12, 234–239 (1991).
    [Crossref]
  36. R. Yano, M. Mitsunaga, and N. Uesugi, “Stimulated-photon-echo spectroscopy. I. Spectral diffusion in Eu3+:YAlO3,” Phys. Rev. B 45, 12752–12759 (1992).
    [Crossref]
  37. Y. Sun, G. M. Wang, R. L. Cone, R. W. Equall, and M. J. M. Leask, “Symmetry considerations regarding light propagation and light polarization for coherent interactions with ions in crystals,” Phys. Rev. B 62, 15443–15451 (2000).
    [Crossref]
  38. P. Sekatski, N. Sangouard, F. Bussières, C. Clausen, N. Gisin, and H. Zbinden, “Detector imperfections in photon-pair source characterization,” J. Phys. B 45, 124016 (2012).
    [Crossref]
  39. S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
    [Crossref]
  40. D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. de Riedmatten, “Quantum storage of heralded single photons in a praseodymium-doped crystal,” Phys. Rev. Lett. 112, 040504 (2014).
    [Crossref]
  41. H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kröll, L. V. Wang, and P. R. Hemmer, “Using quantum memory techniques for optical detection of ultrasound,” Appl. Phys. Lett. 100, 131102 (2012).
    [Crossref]
  42. S. Beavan, E. A. Goldschmidt, and M. J. Sellars, “Demonstration of a dynamic bandpass frequency filter in a rare-earth ion-doped crystal,” J. Opt. Soc. Am. B 30, 1173–1177 (2013).
    [Crossref]
  43. M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
    [Crossref]
  44. A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. de Riedmatten, “Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory,” Phys. Rev. X 7, 021028 (2017).
    [Crossref]
  45. P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93, 032327 (2016).
    [Crossref]
  46. M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
    [Crossref]
  47. P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
    [Crossref]
  48. G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, “Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating,” Opt. Lett. 33, 956 (2008).
    [Crossref]
  49. S. Atzeni, A. S. Rab, G. Corrielli, E. Polino, M. Valeri, P. Mataloni, N. Spagnolo, A. Crespi, F. Sciarrino, and R. Osellame, “Integrated sources of entangled photons at the telecom wavelength in femtosecond-laser-written circuits,” Optica 5, 311–314 (2018).
    [Crossref]

2018 (2)

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

S. Atzeni, A. S. Rab, G. Corrielli, E. Polino, M. Valeri, P. Mataloni, N. Spagnolo, A. Crespi, F. Sciarrino, and R. Osellame, “Integrated sources of entangled photons at the telecom wavelength in femtosecond-laser-written circuits,” Optica 5, 311–314 (2018).
[Crossref]

2017 (5)

A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. de Riedmatten, “Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory,” Phys. Rev. X 7, 021028 (2017).
[Crossref]

P. Vergyris, F. Kaiser, E. Gouzien, G. Sauder, T. Lunghi, and S. Tanzilli, “Fully guided-wave photon pair source for quantum applications,” Quantum Sci. Technol. 2, 024007 (2017).
[Crossref]

I. Pitsios, L. Banchi, A. S. Rab, M. Bentivegna, D. Caprara, A. Crespi, N. Spagnolo, S. Bose, P. Mataloni, R. Osellame, and F. Sciarrino, “Photonic simulation of entanglement growth and engineering after a spin chain quench,” Nat. Commun. 8, 1569 (2017).
[Crossref]

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392–1395 (2017).
[Crossref]

L. Li, W. Nie, Z. Li, C. Romero, R. I. Rodriguez, J. Aldana, and F. Chen, “Laser-writing of ring-shaped waveguides in BGO crystal for telecommunication band,” Opt. Express 25, 24236–24241 (2017).
[Crossref]

2016 (4)

A. Orieux and E. Diamanti, “Recent advances on integrated quantum communications,” J. Opt. 18, 083002 (2016).
[Crossref]

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5, 054013 (2016).
[Crossref]

D. Rieländer, A. Lenhard, M. Mazzera, and H. de Riedmatten, “Cavity enhanced telecom heralded single photons for spin-wave solid state quantum memories,” New J. Phys. 18, 123013 (2016).
[Crossref]

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93, 032327 (2016).
[Crossref]

2015 (5)

M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
[Crossref]

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21, 401–413 (2015).
[Crossref]

L. Huang, P. Salter, M. Karpinski, B. Smith, F. Payne, and M. Booth, “Waveguide fabrication in KDP crystals with femtosecond laser pulses,” Appl. Phys. A 118, 831–836 (2015).
[Crossref]

S. Marzban, J. G. Bartholomew, S. Madden, K. Vu, and M. J. Sellars, “Observation of photon echoes from evanescently coupled rare-earth ions in a planar waveguide,” Phys. Rev. Lett. 115, 013601 (2015).
[Crossref]

2014 (2)

F. Chen and J. Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. de Riedmatten, “Quantum storage of heralded single photons in a praseodymium-doped crystal,” Phys. Rev. Lett. 112, 040504 (2014).
[Crossref]

2013 (4)

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519–1537 (2013).
[Crossref]

S. Beavan, E. A. Goldschmidt, and M. J. Sellars, “Demonstration of a dynamic bandpass frequency filter in a rare-earth ion-doped crystal,” J. Opt. Soc. Am. B 30, 1173–1177 (2013).
[Crossref]

2012 (3)

C. Grivas, C. Corbari, G. Brambilla, and P. G. Lagoudakis, “Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses,” Opt. Lett. 37, 4630–4632 (2012).
[Crossref]

H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kröll, L. V. Wang, and P. R. Hemmer, “Using quantum memory techniques for optical detection of ultrasound,” Appl. Phys. Lett. 100, 131102 (2012).
[Crossref]

P. Sekatski, N. Sangouard, F. Bussières, C. Clausen, N. Gisin, and H. Zbinden, “Detector imperfections in photon-pair source characterization,” J. Phys. B 45, 124016 (2012).
[Crossref]

2011 (4)

2010 (3)

2009 (1)

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

2008 (1)

2007 (2)

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89, 127–132 (2007).
[Crossref]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).
[Crossref]

2006 (1)

R. Thomson, S. Campbell, I. Blewett, A. Kar, and D. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNnO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88, 111109 (2006).
[Crossref]

2004 (2)

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214111 (2004).
[Crossref]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

2000 (1)

Y. Sun, G. M. Wang, R. L. Cone, R. W. Equall, and M. J. M. Leask, “Symmetry considerations regarding light propagation and light polarization for coherent interactions with ions in crystals,” Phys. Rev. B 62, 15443–15451 (2000).
[Crossref]

1996 (1)

I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Lightwave Technol. 14, 423–428 (1996).
[Crossref]

1992 (1)

R. Yano, M. Mitsunaga, and N. Uesugi, “Stimulated-photon-echo spectroscopy. I. Spectral diffusion in Eu3+:YAlO3,” Phys. Rev. B 45, 12752–12759 (1992).
[Crossref]

1991 (1)

A. V. Durrant, J. Manners, and P. M. Clark, “Understanding optical echoes using Schrodinger’s equation: II. three pulse echoes and collision effects,” Eur. J. Phys. 12, 234–239 (1991).
[Crossref]

1989 (1)

A. V. Durrant, J. Manners, and P. M. Clark, “Understanding optical echoes using Schrodinger’s equation: I. echoes excited by two optical pulses,” Eur. J. Phys. 10, 291–297 (1989).
[Crossref]

Afzelius, M.

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93, 032327 (2016).
[Crossref]

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519–1537 (2013).
[Crossref]

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

H. Riedmatten and M. Afzelius, “Quantum light storage in solid state atomic ensembles,” in Engineering the Atom-Photon Interaction: Controlling Fundamental Processes with Photons, Atoms and Solids (Springer, 2015), pp. 241–273.

Aldana, J.

L. Li, W. Nie, Z. Li, C. Romero, R. I. Rodriguez, J. Aldana, and F. Chen, “Laser-writing of ring-shaped waveguides in BGO crystal for telecommunication band,” Opt. Express 25, 24236–24241 (2017).
[Crossref]

F. Chen and J. Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

Alibart, O.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Ams, M.

Askarani, M. F.

M. F. Askarani, M. Grimau Puigbert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and retrieval of heralded telecommunication-wavelength photons using a solid-state waveguide quantum memory,” arXiv: 1804.05699 (2018).

Atzeni, S.

Baldi, P.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Banchi, L.

I. Pitsios, L. Banchi, A. S. Rab, M. Bentivegna, D. Caprara, A. Crespi, N. Spagnolo, S. Bose, P. Mataloni, R. Osellame, and F. Sciarrino, “Photonic simulation of entanglement growth and engineering after a spin chain quench,” Nat. Commun. 8, 1569 (2017).
[Crossref]

Bartholomew, J. G.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392–1395 (2017).
[Crossref]

S. Marzban, J. G. Bartholomew, S. Madden, K. Vu, and M. J. Sellars, “Observation of photon echoes from evanescently coupled rare-earth ions in a planar waveguide,” Phys. Rev. Lett. 115, 013601 (2015).
[Crossref]

Beavan, S.

Beecher, S.

Benayas, A.

Bentivegna, M.

I. Pitsios, L. Banchi, A. S. Rab, M. Bentivegna, D. Caprara, A. Crespi, N. Spagnolo, S. Bose, P. Mataloni, R. Osellame, and F. Sciarrino, “Photonic simulation of entanglement growth and engineering after a spin chain quench,” Nat. Commun. 8, 1569 (2017).
[Crossref]

Bettinelli, M.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392–1395 (2017).
[Crossref]

Beveratos, A.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Beyer, A. D.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392–1395 (2017).
[Crossref]

Blewett, I.

R. Thomson, S. Campbell, I. Blewett, A. Kar, and D. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNnO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88, 111109 (2006).
[Crossref]

Bonneau, D.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

Bookey, H.

Bookey, H. T.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).
[Crossref]

Booth, M.

L. Huang, P. Salter, M. Karpinski, B. Smith, F. Payne, and M. Booth, “Waveguide fabrication in KDP crystals with femtosecond laser pulses,” Appl. Phys. A 118, 831–836 (2015).
[Crossref]

Bose, S.

I. Pitsios, L. Banchi, A. S. Rab, M. Bentivegna, D. Caprara, A. Crespi, N. Spagnolo, S. Bose, P. Mataloni, R. Osellame, and F. Sciarrino, “Photonic simulation of entanglement growth and engineering after a spin chain quench,” Nat. Commun. 8, 1569 (2017).
[Crossref]

Brambilla, G.

Burghoff, J.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89, 127–132 (2007).
[Crossref]

Bussieres, F.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Bussières, F.

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519–1537 (2013).
[Crossref]

P. Sekatski, N. Sangouard, F. Bussières, C. Clausen, N. Gisin, and H. Zbinden, “Detector imperfections in photon-pair source characterization,” J. Phys. B 45, 124016 (2012).
[Crossref]

Caccavale, F.

I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Lightwave Technol. 14, 423–428 (1996).
[Crossref]

Calmano, T.

T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21, 401–413 (2015).
[Crossref]

T. Calmano, J. Siebenmorgen, F. Reichert, M. Fechner, A.-G. Paschke, N.-O. Hansen, K. Petermann, and G. Huber, “Crystalline Pr:SrAl12O19 waveguide laser in the visible spectral region,” Opt. Lett. 36, 4620–4622 (2011).
[Crossref]

Campbell, S.

R. Thomson, S. Campbell, I. Blewett, A. Kar, and D. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNnO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88, 111109 (2006).
[Crossref]

Caprara, D.

I. Pitsios, L. Banchi, A. S. Rab, M. Bentivegna, D. Caprara, A. Crespi, N. Spagnolo, S. Bose, P. Mataloni, R. Osellame, and F. Sciarrino, “Photonic simulation of entanglement growth and engineering after a spin chain quench,” Nat. Commun. 8, 1569 (2017).
[Crossref]

Cavalli, E.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392–1395 (2017).
[Crossref]

Cerullo, G.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).
[Crossref]

Chen, F.

Chiodo, N.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).
[Crossref]

Clark, P. M.

A. V. Durrant, J. Manners, and P. M. Clark, “Understanding optical echoes using Schrodinger’s equation: II. three pulse echoes and collision effects,” Eur. J. Phys. 12, 234–239 (1991).
[Crossref]

A. V. Durrant, J. Manners, and P. M. Clark, “Understanding optical echoes using Schrodinger’s equation: I. echoes excited by two optical pulses,” Eur. J. Phys. 10, 291–297 (1989).
[Crossref]

Clausen, C.

P. Sekatski, N. Sangouard, F. Bussières, C. Clausen, N. Gisin, and H. Zbinden, “Detector imperfections in photon-pair source characterization,” J. Phys. B 45, 124016 (2012).
[Crossref]

Cone, R. L.

Y. Sun, G. M. Wang, R. L. Cone, R. W. Equall, and M. J. M. Leask, “Symmetry considerations regarding light propagation and light polarization for coherent interactions with ions in crystals,” Phys. Rev. B 62, 15443–15451 (2000).
[Crossref]

Corbari, C.

Corrielli, G.

Craiciu, I.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392–1395 (2017).
[Crossref]

Crespi, A.

S. Atzeni, A. S. Rab, G. Corrielli, E. Polino, M. Valeri, P. Mataloni, N. Spagnolo, A. Crespi, F. Sciarrino, and R. Osellame, “Integrated sources of entangled photons at the telecom wavelength in femtosecond-laser-written circuits,” Optica 5, 311–314 (2018).
[Crossref]

I. Pitsios, L. Banchi, A. S. Rab, M. Bentivegna, D. Caprara, A. Crespi, N. Spagnolo, S. Bose, P. Mataloni, R. Osellame, and F. Sciarrino, “Photonic simulation of entanglement growth and engineering after a spin chain quench,” Nat. Commun. 8, 1569 (2017).
[Crossref]

Cristiani, M.

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

de Riedmatten, H.

A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. de Riedmatten, “Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory,” Phys. Rev. X 7, 021028 (2017).
[Crossref]

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5, 054013 (2016).
[Crossref]

D. Rieländer, A. Lenhard, M. Mazzera, and H. de Riedmatten, “Cavity enhanced telecom heralded single photons for spin-wave solid state quantum memories,” New J. Phys. 18, 123013 (2016).
[Crossref]

M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
[Crossref]

D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. de Riedmatten, “Quantum storage of heralded single photons in a praseodymium-doped crystal,” Phys. Rev. Lett. 112, 040504 (2014).
[Crossref]

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519–1537 (2013).
[Crossref]

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

N. Maring, D. Lago-Rivera, A. Lenhard, G. Heinze, and H. de Riedmatten, “Quantum frequency conversion of storable single photons from 606  nm to the telecom c-band,” arXiv: 1801.03727 (2018).

Dekker, P.

Diamanti, E.

A. Orieux and E. Diamanti, “Recent advances on integrated quantum communications,” J. Opt. 18, 083002 (2016).
[Crossref]

Durrant, A. V.

A. V. Durrant, J. Manners, and P. M. Clark, “Understanding optical echoes using Schrodinger’s equation: II. three pulse echoes and collision effects,” Eur. J. Phys. 12, 234–239 (1991).
[Crossref]

A. V. Durrant, J. Manners, and P. M. Clark, “Understanding optical echoes using Schrodinger’s equation: I. echoes excited by two optical pulses,” Eur. J. Phys. 10, 291–297 (1989).
[Crossref]

Equall, R. W.

Y. Sun, G. M. Wang, R. L. Cone, R. W. Equall, and M. J. M. Leask, “Symmetry considerations regarding light propagation and light polarization for coherent interactions with ions in crystals,” Phys. Rev. B 62, 15443–15451 (2000).
[Crossref]

Etesse, J.

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93, 032327 (2016).
[Crossref]

Faraon, A.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392–1395 (2017).
[Crossref]

Fasel, S.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Fechner, M.

Fekete, J.

D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. de Riedmatten, “Quantum storage of heralded single photons in a praseodymium-doped crystal,” Phys. Rev. Lett. 112, 040504 (2014).
[Crossref]

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

Ferranti, G.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

Ferrier, A.

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93, 032327 (2016).
[Crossref]

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

George, M.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Gisin, N.

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93, 032327 (2016).
[Crossref]

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

P. Sekatski, N. Sangouard, F. Bussières, C. Clausen, N. Gisin, and H. Zbinden, “Detector imperfections in photon-pair source characterization,” J. Phys. B 45, 124016 (2012).
[Crossref]

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Goldner, P.

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93, 032327 (2016).
[Crossref]

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

Goldschmidt, E. A.

Gouzien, E.

P. Vergyris, F. Kaiser, E. Gouzien, G. Sauder, T. Lunghi, and S. Tanzilli, “Fully guided-wave photon pair source for quantum applications,” Quantum Sci. Technol. 2, 024007 (2017).
[Crossref]

Grimau Puigbert, M.

M. F. Askarani, M. Grimau Puigbert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and retrieval of heralded telecommunication-wavelength photons using a solid-state waveguide quantum memory,” arXiv: 1804.05699 (2018).

Grivas, C.

Gündogan, M.

A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. de Riedmatten, “Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory,” Phys. Rev. X 7, 021028 (2017).
[Crossref]

M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
[Crossref]

D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. de Riedmatten, “Quantum storage of heralded single photons in a praseodymium-doped crystal,” Phys. Rev. Lett. 112, 040504 (2014).
[Crossref]

Halfmann, T.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

Hansen, N.-O.

Hedges, M. P.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref]

Heinze, G.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

N. Maring, D. Lago-Rivera, A. Lenhard, G. Heinze, and H. de Riedmatten, “Quantum frequency conversion of storable single photons from 606  nm to the telecom c-band,” arXiv: 1801.03727 (2018).

Hemmer, P. R.

H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kröll, L. V. Wang, and P. R. Hemmer, “Using quantum memory techniques for optical detection of ultrasound,” Appl. Phys. Lett. 100, 131102 (2012).
[Crossref]

Huang, L.

L. Huang, P. Salter, M. Karpinski, B. Smith, F. Payne, and M. Booth, “Waveguide fabrication in KDP crystals with femtosecond laser pulses,” Appl. Phys. A 118, 831–836 (2015).
[Crossref]

Huber, G.

Hubrich, C.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics (Springer, 1995), vol. 4.

Jaque, D.

Jin, J.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Jobez, P.

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93, 032327 (2016).
[Crossref]

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

Kaiser, F.

P. Vergyris, F. Kaiser, E. Gouzien, G. Sauder, T. Lunghi, and S. Tanzilli, “Fully guided-wave photon pair source for quantum applications,” Quantum Sci. Technol. 2, 024007 (2017).
[Crossref]

Kar, A.

Kar, A. K.

A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19, 17820–17833 (2011).
[Crossref]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18, 24994–24999 (2010).
[Crossref]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).
[Crossref]

Karpinski, M.

L. Huang, P. Salter, M. Karpinski, B. Smith, F. Payne, and M. Booth, “Waveguide fabrication in KDP crystals with femtosecond laser pulses,” Appl. Phys. A 118, 831–836 (2015).
[Crossref]

Kennard, J. E.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

Kim, C.

H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kröll, L. V. Wang, and P. R. Hemmer, “Using quantum memory techniques for optical detection of ultrasound,” Appl. Phys. Lett. 100, 131102 (2012).
[Crossref]

Kindem, J. M.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392–1395 (2017).
[Crossref]

Klieber, R.

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214111 (2004).
[Crossref]

Kröll, S.

H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kröll, L. V. Wang, and P. R. Hemmer, “Using quantum memory techniques for optical detection of ultrasound,” Appl. Phys. Lett. 100, 131102 (2012).
[Crossref]

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214111 (2004).
[Crossref]

Kutluer, K.

M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
[Crossref]

D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. de Riedmatten, “Quantum storage of heralded single photons in a praseodymium-doped crystal,” Phys. Rev. Lett. 112, 040504 (2014).
[Crossref]

Lago-Rivera, D.

N. Maring, D. Lago-Rivera, A. Lenhard, G. Heinze, and H. de Riedmatten, “Quantum frequency conversion of storable single photons from 606  nm to the telecom c-band,” arXiv: 1801.03727 (2018).

Lagoudakis, P. G.

Laplane, C.

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93, 032327 (2016).
[Crossref]

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

Leask, M. J. M.

Y. Sun, G. M. Wang, R. L. Cone, R. W. Equall, and M. J. M. Leask, “Symmetry considerations regarding light propagation and light polarization for coherent interactions with ions in crystals,” Phys. Rev. B 62, 15443–15451 (2000).
[Crossref]

Ledingham, P. M.

A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. de Riedmatten, “Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory,” Phys. Rev. X 7, 021028 (2017).
[Crossref]

M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
[Crossref]

D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. de Riedmatten, “Quantum storage of heralded single photons in a praseodymium-doped crystal,” Phys. Rev. Lett. 112, 040504 (2014).
[Crossref]

Lenhard, A.

A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. de Riedmatten, “Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory,” Phys. Rev. X 7, 021028 (2017).
[Crossref]

D. Rieländer, A. Lenhard, M. Mazzera, and H. de Riedmatten, “Cavity enhanced telecom heralded single photons for spin-wave solid state quantum memories,” New J. Phys. 18, 123013 (2016).
[Crossref]

N. Maring, D. Lago-Rivera, A. Lenhard, G. Heinze, and H. de Riedmatten, “Quantum frequency conversion of storable single photons from 606  nm to the telecom c-band,” arXiv: 1801.03727 (2018).

Li, L.

Li, Y.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref]

Li, Z.

Lobino, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).
[Crossref]

Longdell, J. J.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref]

Lu, Q.

Lunghi, T.

P. Vergyris, F. Kaiser, E. Gouzien, G. Sauder, T. Lunghi, and S. Tanzilli, “Fully guided-wave photon pair source for quantum applications,” Quantum Sci. Technol. 2, 024007 (2017).
[Crossref]

Lutz, T.

M. F. Askarani, M. Grimau Puigbert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and retrieval of heralded telecommunication-wavelength photons using a solid-state waveguide quantum memory,” arXiv: 1804.05699 (2018).

Macdonald, J.

Madden, S.

S. Marzban, J. G. Bartholomew, S. Madden, K. Vu, and M. J. Sellars, “Observation of photon echoes from evanescently coupled rare-earth ions in a planar waveguide,” Phys. Rev. Lett. 115, 013601 (2015).
[Crossref]

Mahler, D. H.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

Manners, J.

A. V. Durrant, J. Manners, and P. M. Clark, “Understanding optical echoes using Schrodinger’s equation: II. three pulse echoes and collision effects,” Eur. J. Phys. 12, 234–239 (1991).
[Crossref]

A. V. Durrant, J. Manners, and P. M. Clark, “Understanding optical echoes using Schrodinger’s equation: I. echoes excited by two optical pulses,” Eur. J. Phys. 10, 291–297 (1989).
[Crossref]

Mansour, I.

I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Lightwave Technol. 14, 423–428 (1996).
[Crossref]

Marangoni, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).
[Crossref]

Maring, N.

N. Maring, D. Lago-Rivera, A. Lenhard, G. Heinze, and H. de Riedmatten, “Quantum frequency conversion of storable single photons from 606  nm to the telecom c-band,” arXiv: 1801.03727 (2018).

Marshall, G. D.

Marsili, F.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392–1395 (2017).
[Crossref]

Marzban, S.

S. Marzban, J. G. Bartholomew, S. Madden, K. Vu, and M. J. Sellars, “Observation of photon echoes from evanescently coupled rare-earth ions in a planar waveguide,” Phys. Rev. Lett. 115, 013601 (2015).
[Crossref]

Mataloni, P.

S. Atzeni, A. S. Rab, G. Corrielli, E. Polino, M. Valeri, P. Mataloni, N. Spagnolo, A. Crespi, F. Sciarrino, and R. Osellame, “Integrated sources of entangled photons at the telecom wavelength in femtosecond-laser-written circuits,” Optica 5, 311–314 (2018).
[Crossref]

I. Pitsios, L. Banchi, A. S. Rab, M. Bentivegna, D. Caprara, A. Crespi, N. Spagnolo, S. Bose, P. Mataloni, R. Osellame, and F. Sciarrino, “Photonic simulation of entanglement growth and engineering after a spin chain quench,” Nat. Commun. 8, 1569 (2017).
[Crossref]

Matthews, J. C. F.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

Mazzera, M.

A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. de Riedmatten, “Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory,” Phys. Rev. X 7, 021028 (2017).
[Crossref]

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5, 054013 (2016).
[Crossref]

D. Rieländer, A. Lenhard, M. Mazzera, and H. de Riedmatten, “Cavity enhanced telecom heralded single photons for spin-wave solid state quantum memories,” New J. Phys. 18, 123013 (2016).
[Crossref]

M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
[Crossref]

D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. de Riedmatten, “Quantum storage of heralded single photons in a praseodymium-doped crystal,” Phys. Rev. Lett. 112, 040504 (2014).
[Crossref]

Mitsunaga, M.

R. Yano, M. Mitsunaga, and N. Uesugi, “Stimulated-photon-echo spectroscopy. I. Spectral diffusion in Eu3+:YAlO3,” Phys. Rev. B 45, 12752–12759 (1992).
[Crossref]

Miyazono, E.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392–1395 (2017).
[Crossref]

Müller, S.

T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21, 401–413 (2015).
[Crossref]

Nam, S. W.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392–1395 (2017).
[Crossref]

M. F. Askarani, M. Grimau Puigbert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and retrieval of heralded telecommunication-wavelength photons using a solid-state waveguide quantum memory,” arXiv: 1804.05699 (2018).

Nie, W.

Nilsson, M.

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214111 (2004).
[Crossref]

Nolte, S.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89, 127–132 (2007).
[Crossref]

Oblak, D.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

M. F. Askarani, M. Grimau Puigbert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and retrieval of heralded telecommunication-wavelength photons using a solid-state waveguide quantum memory,” arXiv: 1804.05699 (2018).

Orieux, A.

A. Orieux and E. Diamanti, “Recent advances on integrated quantum communications,” J. Opt. 18, 083002 (2016).
[Crossref]

Osellame, R.

S. Atzeni, A. S. Rab, G. Corrielli, E. Polino, M. Valeri, P. Mataloni, N. Spagnolo, A. Crespi, F. Sciarrino, and R. Osellame, “Integrated sources of entangled photons at the telecom wavelength in femtosecond-laser-written circuits,” Optica 5, 311–314 (2018).
[Crossref]

I. Pitsios, L. Banchi, A. S. Rab, M. Bentivegna, D. Caprara, A. Crespi, N. Spagnolo, S. Bose, P. Mataloni, R. Osellame, and F. Sciarrino, “Photonic simulation of entanglement growth and engineering after a spin chain quench,” Nat. Commun. 8, 1569 (2017).
[Crossref]

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5, 054013 (2016).
[Crossref]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).
[Crossref]

Paschke, A.-G.

Payne, F.

L. Huang, P. Salter, M. Karpinski, B. Smith, F. Payne, and M. Booth, “Waveguide fabrication in KDP crystals with femtosecond laser pulses,” Appl. Phys. A 118, 831–836 (2015).
[Crossref]

Petermann, K.

Piper, J. A.

Pitsios, I.

I. Pitsios, L. Banchi, A. S. Rab, M. Bentivegna, D. Caprara, A. Crespi, N. Spagnolo, S. Bose, P. Mataloni, R. Osellame, and F. Sciarrino, “Photonic simulation of entanglement growth and engineering after a spin chain quench,” Nat. Commun. 8, 1569 (2017).
[Crossref]

Polino, E.

Psaila, N.

Psaila, N. D.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).
[Crossref]

Rab, A. S.

S. Atzeni, A. S. Rab, G. Corrielli, E. Polino, M. Valeri, P. Mataloni, N. Spagnolo, A. Crespi, F. Sciarrino, and R. Osellame, “Integrated sources of entangled photons at the telecom wavelength in femtosecond-laser-written circuits,” Optica 5, 311–314 (2018).
[Crossref]

I. Pitsios, L. Banchi, A. S. Rab, M. Bentivegna, D. Caprara, A. Crespi, N. Spagnolo, S. Bose, P. Mataloni, R. Osellame, and F. Sciarrino, “Photonic simulation of entanglement growth and engineering after a spin chain quench,” Nat. Commun. 8, 1569 (2017).
[Crossref]

Raffaelli, F.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

Ramponi, R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).
[Crossref]

Reichert, F.

Reid, D.

R. Thomson, S. Campbell, I. Blewett, A. Kar, and D. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNnO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88, 111109 (2006).
[Crossref]

Ricken, R.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Riedmatten, H.

H. Riedmatten and M. Afzelius, “Quantum light storage in solid state atomic ensembles,” in Engineering the Atom-Photon Interaction: Controlling Fundamental Processes with Photons, Atoms and Solids (Springer, 2015), pp. 241–273.

Rieländer, D.

A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. de Riedmatten, “Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory,” Phys. Rev. X 7, 021028 (2017).
[Crossref]

D. Rieländer, A. Lenhard, M. Mazzera, and H. de Riedmatten, “Cavity enhanced telecom heralded single photons for spin-wave solid state quantum memories,” New J. Phys. 18, 123013 (2016).
[Crossref]

D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. de Riedmatten, “Quantum storage of heralded single photons in a praseodymium-doped crystal,” Phys. Rev. Lett. 112, 040504 (2014).
[Crossref]

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

Rippe, L.

H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kröll, L. V. Wang, and P. R. Hemmer, “Using quantum memory techniques for optical detection of ultrasound,” Appl. Phys. Lett. 100, 131102 (2012).
[Crossref]

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214111 (2004).
[Crossref]

Rochman, J.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392–1395 (2017).
[Crossref]

Rodenas, A.

Rodriguez, R. I.

Romero, C.

Sabooni, M.

H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kröll, L. V. Wang, and P. R. Hemmer, “Using quantum memory techniques for optical detection of ultrasound,” Appl. Phys. Lett. 100, 131102 (2012).
[Crossref]

Saglamyurek, E.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Salter, P.

L. Huang, P. Salter, M. Karpinski, B. Smith, F. Payne, and M. Booth, “Waveguide fabrication in KDP crystals with femtosecond laser pulses,” Appl. Phys. A 118, 831–836 (2015).
[Crossref]

Sangouard, N.

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519–1537 (2013).
[Crossref]

P. Sekatski, N. Sangouard, F. Bussières, C. Clausen, N. Gisin, and H. Zbinden, “Detector imperfections in photon-pair source characterization,” J. Phys. B 45, 124016 (2012).
[Crossref]

Santamato, A.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

Sauder, G.

P. Vergyris, F. Kaiser, E. Gouzien, G. Sauder, T. Lunghi, and S. Tanzilli, “Fully guided-wave photon pair source for quantum applications,” Quantum Sci. Technol. 2, 024007 (2017).
[Crossref]

Sciarrino, F.

S. Atzeni, A. S. Rab, G. Corrielli, E. Polino, M. Valeri, P. Mataloni, N. Spagnolo, A. Crespi, F. Sciarrino, and R. Osellame, “Integrated sources of entangled photons at the telecom wavelength in femtosecond-laser-written circuits,” Optica 5, 311–314 (2018).
[Crossref]

I. Pitsios, L. Banchi, A. S. Rab, M. Bentivegna, D. Caprara, A. Crespi, N. Spagnolo, S. Bose, P. Mataloni, R. Osellame, and F. Sciarrino, “Photonic simulation of entanglement growth and engineering after a spin chain quench,” Nat. Commun. 8, 1569 (2017).
[Crossref]

Sekatski, P.

P. Sekatski, N. Sangouard, F. Bussières, C. Clausen, N. Gisin, and H. Zbinden, “Detector imperfections in photon-pair source characterization,” J. Phys. B 45, 124016 (2012).
[Crossref]

Sellars, M. J.

S. Marzban, J. G. Bartholomew, S. Madden, K. Vu, and M. J. Sellars, “Observation of photon echoes from evanescently coupled rare-earth ions in a planar waveguide,” Phys. Rev. Lett. 115, 013601 (2015).
[Crossref]

S. Beavan, E. A. Goldschmidt, and M. J. Sellars, “Demonstration of a dynamic bandpass frequency filter in a rare-earth ion-doped crystal,” J. Opt. Soc. Am. B 30, 1173–1177 (2013).
[Crossref]

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref]

Seri, A.

A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. de Riedmatten, “Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory,” Phys. Rev. X 7, 021028 (2017).
[Crossref]

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5, 054013 (2016).
[Crossref]

Shaw, M. D.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392–1395 (2017).
[Crossref]

M. F. Askarani, M. Grimau Puigbert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and retrieval of heralded telecommunication-wavelength photons using a solid-state waveguide quantum memory,” arXiv: 1804.05699 (2018).

Sibson, P.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

Siebenmorgen, J.

Simon, C.

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519–1537 (2013).
[Crossref]

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

Sinclair, G.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

Sinclair, N.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

M. F. Askarani, M. Grimau Puigbert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and retrieval of heralded telecommunication-wavelength photons using a solid-state waveguide quantum memory,” arXiv: 1804.05699 (2018).

Slater, J. A.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Smith, B.

L. Huang, P. Salter, M. Karpinski, B. Smith, F. Payne, and M. Booth, “Waveguide fabrication in KDP crystals with femtosecond laser pulses,” Appl. Phys. A 118, 831–836 (2015).
[Crossref]

Sohler, W.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Spagnolo, N.

S. Atzeni, A. S. Rab, G. Corrielli, E. Polino, M. Valeri, P. Mataloni, N. Spagnolo, A. Crespi, F. Sciarrino, and R. Osellame, “Integrated sources of entangled photons at the telecom wavelength in femtosecond-laser-written circuits,” Optica 5, 311–314 (2018).
[Crossref]

I. Pitsios, L. Banchi, A. S. Rab, M. Bentivegna, D. Caprara, A. Crespi, N. Spagnolo, S. Bose, P. Mataloni, R. Osellame, and F. Sciarrino, “Photonic simulation of entanglement growth and engineering after a spin chain quench,” Nat. Commun. 8, 1569 (2017).
[Crossref]

Sun, Y.

Y. Sun, G. M. Wang, R. L. Cone, R. W. Equall, and M. J. M. Leask, “Symmetry considerations regarding light propagation and light polarization for coherent interactions with ions in crystals,” Phys. Rev. B 62, 15443–15451 (2000).
[Crossref]

Suter, D.

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214111 (2004).
[Crossref]

Tan, Y.

Tang, D.

Tanzilli, S.

P. Vergyris, F. Kaiser, E. Gouzien, G. Sauder, T. Lunghi, and S. Tanzilli, “Fully guided-wave photon pair source for quantum applications,” Quantum Sci. Technol. 2, 024007 (2017).
[Crossref]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Thompson, M. G.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

Thomson, R.

J. Macdonald, R. Thomson, S. Beecher, N. Psaila, H. Bookey, and A. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35, 4036–4038 (2010).
[Crossref]

R. Thomson, S. Campbell, I. Blewett, A. Kar, and D. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNnO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88, 111109 (2006).
[Crossref]

Thomson, R. R.

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18, 24994–24999 (2010).
[Crossref]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).
[Crossref]

Timoney, N.

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93, 032327 (2016).
[Crossref]

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

Tittel, W.

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519–1537 (2013).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

M. F. Askarani, M. Grimau Puigbert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and retrieval of heralded telecommunication-wavelength photons using a solid-state waveguide quantum memory,” arXiv: 1804.05699 (2018).

Tünnermann, A.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89, 127–132 (2007).
[Crossref]

Uesugi, N.

R. Yano, M. Mitsunaga, and N. Uesugi, “Stimulated-photon-echo spectroscopy. I. Spectral diffusion in Eu3+:YAlO3,” Phys. Rev. B 45, 12752–12759 (1992).
[Crossref]

Valeri, M.

Vergyris, P.

P. Vergyris, F. Kaiser, E. Gouzien, G. Sauder, T. Lunghi, and S. Tanzilli, “Fully guided-wave photon pair source for quantum applications,” Quantum Sci. Technol. 2, 024007 (2017).
[Crossref]

Verma, V.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392–1395 (2017).
[Crossref]

Verma, V. B.

M. F. Askarani, M. Grimau Puigbert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and retrieval of heralded telecommunication-wavelength photons using a solid-state waveguide quantum memory,” arXiv: 1804.05699 (2018).

Vu, K.

S. Marzban, J. G. Bartholomew, S. Madden, K. Vu, and M. J. Sellars, “Observation of photon echoes from evanescently coupled rare-earth ions in a planar waveguide,” Phys. Rev. Lett. 115, 013601 (2015).
[Crossref]

Wang, G. M.

Y. Sun, G. M. Wang, R. L. Cone, R. W. Equall, and M. J. M. Leask, “Symmetry considerations regarding light propagation and light polarization for coherent interactions with ions in crystals,” Phys. Rev. B 62, 15443–15451 (2000).
[Crossref]

Wang, L. V.

H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kröll, L. V. Wang, and P. R. Hemmer, “Using quantum memory techniques for optical detection of ultrasound,” Appl. Phys. Lett. 100, 131102 (2012).
[Crossref]

Withford, M. J.

Yano, R.

R. Yano, M. Mitsunaga, and N. Uesugi, “Stimulated-photon-echo spectroscopy. I. Spectral diffusion in Eu3+:YAlO3,” Phys. Rev. B 45, 12752–12759 (1992).
[Crossref]

Zbinden, H.

P. Sekatski, N. Sangouard, F. Bussières, C. Clausen, N. Gisin, and H. Zbinden, “Detector imperfections in photon-pair source characterization,” J. Phys. B 45, 124016 (2012).
[Crossref]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Zhang, H.

H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kröll, L. V. Wang, and P. R. Hemmer, “Using quantum memory techniques for optical detection of ultrasound,” Appl. Phys. Lett. 100, 131102 (2012).
[Crossref]

Zhang, J.

Zhong, T.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392–1395 (2017).
[Crossref]

Appl. Phys. A (2)

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89, 127–132 (2007).
[Crossref]

L. Huang, P. Salter, M. Karpinski, B. Smith, F. Payne, and M. Booth, “Waveguide fabrication in KDP crystals with femtosecond laser pulses,” Appl. Phys. A 118, 831–836 (2015).
[Crossref]

Appl. Phys. Lett. (3)

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90, 241107 (2007).
[Crossref]

R. Thomson, S. Campbell, I. Blewett, A. Kar, and D. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNnO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88, 111109 (2006).
[Crossref]

H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kröll, L. V. Wang, and P. R. Hemmer, “Using quantum memory techniques for optical detection of ultrasound,” Appl. Phys. Lett. 100, 131102 (2012).
[Crossref]

Eur. J. Phys. (2)

A. V. Durrant, J. Manners, and P. M. Clark, “Understanding optical echoes using Schrodinger’s equation: I. echoes excited by two optical pulses,” Eur. J. Phys. 10, 291–297 (1989).
[Crossref]

A. V. Durrant, J. Manners, and P. M. Clark, “Understanding optical echoes using Schrodinger’s equation: II. three pulse echoes and collision effects,” Eur. J. Phys. 12, 234–239 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21, 401–413 (2015).
[Crossref]

J. Lightwave Technol. (1)

I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Lightwave Technol. 14, 423–428 (1996).
[Crossref]

J. Mod. Opt. (1)

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519–1537 (2013).
[Crossref]

J. Opt. (1)

A. Orieux and E. Diamanti, “Recent advances on integrated quantum communications,” J. Opt. 18, 083002 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

P. Sekatski, N. Sangouard, F. Bussières, C. Clausen, N. Gisin, and H. Zbinden, “Detector imperfections in photon-pair source characterization,” J. Phys. B 45, 124016 (2012).
[Crossref]

Laser Photon. Rev. (1)

F. Chen and J. Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

Nat. Commun. (1)

I. Pitsios, L. Banchi, A. S. Rab, M. Bentivegna, D. Caprara, A. Crespi, N. Spagnolo, S. Bose, P. Mataloni, R. Osellame, and F. Sciarrino, “Photonic simulation of entanglement growth and engineering after a spin chain quench,” Nat. Commun. 8, 1569 (2017).
[Crossref]

Nature (2)

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref]

New J. Phys. (2)

D. Rieländer, A. Lenhard, M. Mazzera, and H. de Riedmatten, “Cavity enhanced telecom heralded single photons for spin-wave solid state quantum memories,” New J. Phys. 18, 123013 (2016).
[Crossref]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Optica (1)

Phys. Rev. A (2)

P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93, 032327 (2016).
[Crossref]

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

Phys. Rev. Appl. (1)

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5, 054013 (2016).
[Crossref]

Phys. Rev. B (3)

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214111 (2004).
[Crossref]

R. Yano, M. Mitsunaga, and N. Uesugi, “Stimulated-photon-echo spectroscopy. I. Spectral diffusion in Eu3+:YAlO3,” Phys. Rev. B 45, 12752–12759 (1992).
[Crossref]

Y. Sun, G. M. Wang, R. L. Cone, R. W. Equall, and M. J. M. Leask, “Symmetry considerations regarding light propagation and light polarization for coherent interactions with ions in crystals,” Phys. Rev. B 62, 15443–15451 (2000).
[Crossref]

Phys. Rev. Lett. (6)

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

S. Marzban, J. G. Bartholomew, S. Madden, K. Vu, and M. J. Sellars, “Observation of photon echoes from evanescently coupled rare-earth ions in a planar waveguide,” Phys. Rev. Lett. 115, 013601 (2015).
[Crossref]

M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
[Crossref]

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. de Riedmatten, “Quantum storage of heralded single photons in a praseodymium-doped crystal,” Phys. Rev. Lett. 112, 040504 (2014).
[Crossref]

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

Phys. Rev. X (1)

A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. de Riedmatten, “Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory,” Phys. Rev. X 7, 021028 (2017).
[Crossref]

Quantum Sci. Technol. (2)

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

P. Vergyris, F. Kaiser, E. Gouzien, G. Sauder, T. Lunghi, and S. Tanzilli, “Fully guided-wave photon pair source for quantum applications,” Quantum Sci. Technol. 2, 024007 (2017).
[Crossref]

Science (1)

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science 357, 1392–1395 (2017).
[Crossref]

Other (5)

M. F. Askarani, M. Grimau Puigbert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and retrieval of heralded telecommunication-wavelength photons using a solid-state waveguide quantum memory,” arXiv: 1804.05699 (2018).

H. Riedmatten and M. Afzelius, “Quantum light storage in solid state atomic ensembles,” in Engineering the Atom-Photon Interaction: Controlling Fundamental Processes with Photons, Atoms and Solids (Springer, 2015), pp. 241–273.

R. G. Hunsperger, Integrated Optics (Springer, 1995), vol. 4.

Supplement 1 contains details about the experimental setup and the characterization measurements of the heralded single photons from the SPDC source.

N. Maring, D. Lago-Rivera, A. Lenhard, G. Heinze, and H. de Riedmatten, “Quantum frequency conversion of storable single photons from 606  nm to the telecom c-band,” arXiv: 1801.03727 (2018).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplementary information

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Optical microscope image of the waveguide transverse cross section (top row) and guided mode intensity profile (bottom row) of all fabricated waveguides. The numbers above the figures specify the separation between the laser tracks in type II waveguides. Scale bar is 10 μm. (b) Insertion losses versus FWHM mode diameter in the horizontal direction for type I (blue circle) and type II (black squares) waveguides. (c) Microscope picture of the longitudinal profile of a type I (top) and a type II waveguide with d=10  μm (bottom). Scale bar is 20 μm. (d) Bending losses as a function of the radius of curvature for type I (blue circles) and type II (black squares) waveguides. Dashed lines are best exponential fits of experimental data [28]. Error bars in plots (b) and (d) are smaller than the data markers.
Fig. 2.
Fig. 2. Setup: a pump laser at 426 nm (blue beam) shines a periodically poled lithium niobate (PPLN) crystal in a bow-tie cavity. Photon pairs (gray beam) are generated by spontaneous parametric down-conversion and divided with a dichroic mirror (DM). The idler photon at 1436 nm (purple beam) is sent to a filter cavity (FC). The signal photon at 606 nm (orange beam) passes through an etalon and enters input 2 of a fiber beam-splitter (BS). Two chopper wheels are used to alternate between locking and the measurement period. The signal photon and the preparation light (from input 1 of the BS) emerging from one output of the BS are coupled into the Pr3+:Y2SiO5 waveguide. The hyperfine splitting of the first sublevels of the ground H43 and the excited D21 manifolds of Pr ions in Y2SiO5 is shown in the inset along with the optical absorption spectrum (the data points are experimental values and the solid curve the Gaussian fit). The orange arrows highlight the specific transition chosen for the storage protocol.
Fig. 3.
Fig. 3. (a) Decay in the echo intensity for a two-photon echo pulse measurement, from which we extract the optical transition coherence time T2 in the type I waveguide. The black solid line is the fit to an exponential decay, and the dotted lines indicate the error. The inset shows the temporal sequence used. The time interval between the first and second pulses is called τ2 (solid arrow). (b) Examples of heterodyne detected TPE at different times τ2. The solid orange line is the experimental signal, and the dotted black line the sinusoidal fit. The echo intensity is proportional to the square of the oscillation amplitude. (c) Area of the stimulated photon echo (SPE) in arbitrary units, varying the times τ1 and τ2; (d) temporal trace of the SPE process. The SPE signal is highlighted by the orange area. The time interval between the second and third pulses is called τ1 (dotted arrow); (e) values of the SPE areas at τ2=0 (extracted from the exponential decays of the SPE areas over τ2) plotted as a function of τ1. From the decay of the SPE versus τ1 (for τ2=0), we extract the excited-state lifetime of the ions, T1; (f) homogeneous broadening of the optical transition for increasing τ1. The values are extracted from the decays of the SPE versus τ2 for different τ1 values. The black solid line is the value extracted from the T2 measurement for τ1=0 with the dashed lines indicating the error.
Fig. 4.
Fig. 4. (a) Measured gs,i(2) for different pump powers with just the source (empty light dots) and after the pit (full dark points). The inset represents the time-resolved signal–idler coincidence histogram with just the source: the darker region is the window considered for the calculation of the gs,i(2) (400 ns), and the black dashed line is the temporal fit of the biphoton correlation; (b), (c) coincidences between signal photons split with a fiber BS, respectively, before and after passing through a pit in the waveguide, sorted by the number of heralding photons between pairs of contiguous signal counts.
Fig. 5.
Fig. 5. (a) Time-resolved histogram of the idler–signal coincidences for signal photons passing through the pit (gray histogram) or the AFC for τ=1.5  μs (orange histogram). The counts in the AFC are multiplied by three. The darker regions of the peaks show the windows considered for ηAFC and gs,i(2) calculations. The black and brown dashed lines are the temporal decays of the correlations [inset of Fig. 4(a)] renormalized for losses and efficiencies after the pit and the AFC, respectively. The shaded rectangle is the region in which the accidental counts for the AFC echo are measured. The absorption profiles of the pit (orange) and the comb (brown) are plotted in the inset with the spectrum of the single photons (black points and line, see Ref. [29]); (b) internal storage efficiency ηAFC at different storage times τ for single photons (full orange points, error bars account for Poissonian statistics) and classical light (empty black circles); (c) cross-correlation values between idler photons and stored signal photons gAFC,i(2) for different τ. The orange dashed line is the classical upper bound gs,s(2)·gi,i(2)=1.58±0.02 (assuming gs,s(2)=2).

Metrics