Abstract

Semiconductor nano-lasers grown on silicon and emitting at the telecom bands are advantageous ultra-compact coherent light sources for potential Si-based photonic integrated circuit applications. However, realizing room-temperature lasing inside nano-cavities at telecom bands is challenging and has only been demonstrated up to the E band. Here, we report on InP/InGaAs nano-ridge lasers with emission wavelengths ranging from the O, E, and S bands to the C band operating at room temperature with ultra-low lasing thresholds. Using a cycled growth procedure, ridge InGaAs quantum wells inside InP nano-ridges grown on patterned (001) Si substrates are designed as active gain materials. Room-temperature lasing at the telecom bands is achieved by transferring the InP/InGaAs nano-ridges onto a SiO2/Si substrate for optical excitation. We also show that the operation wavelength of InP/InGaAs nano-lasers can be adjusted by altering the excitation power density and the length of the nano-ridges formed in a single growth run. These results indicate the excellent optical properties of the InP/InGaAs nano-ridges grown on (001) Si substrates and pave the way towards telecom InP/InGaAs nano-laser arrays on CMOS standard Si or silicon-on-insulator substrates.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer

Yuting Shi, Zhechao Wang, Joris Van Campenhout, Marianna Pantouvaki, Weiming Guo, Bernardette Kunert, and Dries Van Thourhout
Optica 4(12) 1468-1473 (2017)

Room-temperature electrically-pumped 1.5 μm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si

Si Zhu, Bei Shi, Qiang Li, and Kei May Lau
Opt. Express 26(11) 14514-14523 (2018)

High performance 2150 nm-emitting InAs/InGaAs/InP quantum well lasers grown by metalorganic vapor phase epitaxy

S. Luo, H. M. Ji, F. Gao, F. Xu, X. G. Yang, P. Liang, and T. Yang
Opt. Express 23(7) 8383-8388 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
    [Crossref]
  2. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
    [Crossref]
  3. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
    [Crossref]
  4. R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
    [Crossref]
  5. D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
    [Crossref]
  6. B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkotter, M. Kaniber, G. Abstreiter, and C. Gies, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2015).
    [Crossref]
  7. J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
    [Crossref]
  8. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
    [Crossref]
  9. B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
    [Crossref]
  10. F. Lu, I. Bhattacharya, H. Sun, T. T. Tran, K. W. Ng, G. N. Malheiros-Silveira, and C. Chang-Hasnain, “Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths,” Optica 4, 717–723 (2017).
    [Crossref]
  11. M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal,” APL Photon. 2, 046106 (2017).
    [Crossref]
  12. H. Kim, W. J. Lee, A. C. Farrell, A. Balgarkashi, and D. L. Huffaker, “Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator,” Nano Lett. 17, 5244–5250 (2017).
    [Crossref]
  13. Y. Ma, X. Guo, X. Wu, L. Dai, and L. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photon. 5, 216–273 (2013).
    [Crossref]
  14. A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
    [Crossref]
  15. J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
    [Crossref]
  16. W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
    [Crossref]
  17. C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
    [Crossref]
  18. T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. Papa Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300  mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
    [Crossref]
  19. Z. Wang, B. Tian, M. Paladugu, M. Pantouvaki, N. Le Thomas, C. Merckling, W. Guo, J. Dekoster, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Polytypic InP nanolaser monolithically integrated on (001) silicon,” Nano Lett. 13, 5063–5069 (2013).
    [Crossref]
  20. B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
    [Crossref]
  21. R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, and V. Loup, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si (100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
    [Crossref]
  22. Q. Li, Y. Han, X. Lu, and K. M. Lau, “GaAs-InGaAs-GaAs fin-array tunnel diodes on (001) Si substrates with room-temperature peak-to-valley current ratio of 5.4,” IEEE Electron Device Lett. 37, 24–27 (2016).
    [Crossref]
  23. Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
    [Crossref]
  24. Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
    [Crossref]
  25. L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
    [Crossref]
  26. S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
    [Crossref]
  27. Y. Han, Q. Li, S. P. Chang, W. D. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
    [Crossref]
  28. Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates,” J. Appl. Phys. 120, 245701 (2016).
    [Crossref]
  29. Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
    [Crossref]
  30. M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
    [Crossref]
  31. G. Biasiol, A. Gustafsson, K. Leifer, and E. Kapon, “Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures,” Phys. Rev. B 65, 205306 (2002).
    [Crossref]
  32. S. Jiang, C. Merckling, W. Guo, N. Waldron, M. Caymax, W. Vandervorst, M. Seefeldt, and M. Heyns, “Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches,” J. Appl. Phys. 115, 023517 (2014).
    [Crossref]
  33. Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
    [Crossref]
  34. D. Cui, S. M. Hubbard, D. Pavlidis, A. Eisenbach, and C. Chelli, “Impact of doping and MOCVD conditions on minority carrier lifetime of zinc-and carbon-doped InGaAs and its applications to zinc-and carbon-doped InP/InGaAs heterostructure bipolar transistors,” Semicond. Sci. Technol. 17, 503–509 (2002).
    [Crossref]
  35. H. Sun, F. Ren, K. W. Ng, T. T. D. Tran, K. Li, and C. J. Chang-Hasnain, “Nanopillar lasers directly grown on silicon with heterostructure surface passivation,” ACS Nano 8, 6833–6839 (2014).
    [Crossref]
  36. N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. Voon-Yew Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
    [Crossref]
  37. Y. Han, Q. Li, and K. M. Lau, “Tristate memory cells using double-peaked fin-array III-V tunnel diodes monolithically grown on (001) silicon substrates,” IEEE Trans. Electron Devices 64, 4078–4083 (2017).
    [Crossref]

2018 (1)

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
[Crossref]

2017 (7)

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

F. Lu, I. Bhattacharya, H. Sun, T. T. Tran, K. W. Ng, G. N. Malheiros-Silveira, and C. Chang-Hasnain, “Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths,” Optica 4, 717–723 (2017).
[Crossref]

M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal,” APL Photon. 2, 046106 (2017).
[Crossref]

H. Kim, W. J. Lee, A. C. Farrell, A. Balgarkashi, and D. L. Huffaker, “Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator,” Nano Lett. 17, 5244–5250 (2017).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Tristate memory cells using double-peaked fin-array III-V tunnel diodes monolithically grown on (001) silicon substrates,” IEEE Trans. Electron Devices 64, 4078–4083 (2017).
[Crossref]

2016 (8)

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. Papa Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300  mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Y. Han, Q. Li, S. P. Chang, W. D. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates,” J. Appl. Phys. 120, 245701 (2016).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Q. Li, Y. Han, X. Lu, and K. M. Lau, “GaAs-InGaAs-GaAs fin-array tunnel diodes on (001) Si substrates with room-temperature peak-to-valley current ratio of 5.4,” IEEE Electron Device Lett. 37, 24–27 (2016).
[Crossref]

2015 (4)

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkotter, M. Kaniber, G. Abstreiter, and C. Gies, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2015).
[Crossref]

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

2014 (6)

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, and V. Loup, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si (100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

S. Jiang, C. Merckling, W. Guo, N. Waldron, M. Caymax, W. Vandervorst, M. Seefeldt, and M. Heyns, “Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches,” J. Appl. Phys. 115, 023517 (2014).
[Crossref]

H. Sun, F. Ren, K. W. Ng, T. T. D. Tran, K. Li, and C. J. Chang-Hasnain, “Nanopillar lasers directly grown on silicon with heterostructure surface passivation,” ACS Nano 8, 6833–6839 (2014).
[Crossref]

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. Voon-Yew Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

2013 (3)

Z. Wang, B. Tian, M. Paladugu, M. Pantouvaki, N. Le Thomas, C. Merckling, W. Guo, J. Dekoster, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Polytypic InP nanolaser monolithically integrated on (001) silicon,” Nano Lett. 13, 5063–5069 (2013).
[Crossref]

Y. Ma, X. Guo, X. Wu, L. Dai, and L. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photon. 5, 216–273 (2013).
[Crossref]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

2012 (1)

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

2011 (1)

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

2010 (1)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

2009 (1)

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

2007 (1)

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

2006 (1)

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[Crossref]

2002 (2)

G. Biasiol, A. Gustafsson, K. Leifer, and E. Kapon, “Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures,” Phys. Rev. B 65, 205306 (2002).
[Crossref]

D. Cui, S. M. Hubbard, D. Pavlidis, A. Eisenbach, and C. Chelli, “Impact of doping and MOCVD conditions on minority carrier lifetime of zinc-and carbon-doped InGaAs and its applications to zinc-and carbon-doped InP/InGaAs heterostructure bipolar transistors,” Semicond. Sci. Technol. 17, 503–509 (2002).
[Crossref]

Absil, P.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Z. Wang, B. Tian, M. Paladugu, M. Pantouvaki, N. Le Thomas, C. Merckling, W. Guo, J. Dekoster, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Polytypic InP nanolaser monolithically integrated on (001) silicon,” Nano Lett. 13, 5063–5069 (2013).
[Crossref]

Abstreiter, G.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkotter, M. Kaniber, G. Abstreiter, and C. Gies, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2015).
[Crossref]

Adekore, B.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Ansar, S.

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. Voon-Yew Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

Arakawa, Y.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

Bai, J.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Balgarkashi, A.

H. Kim, W. J. Lee, A. C. Farrell, A. Balgarkashi, and D. L. Huffaker, “Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator,” Nano Lett. 17, 5244–5250 (2017).
[Crossref]

Bao, X.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

Barla, K.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. Voon-Yew Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

Barnes, J. P.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, and V. Loup, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si (100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Baron, T.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, and V. Loup, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si (100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Bassani, F.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, and V. Loup, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si (100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Bender, H.

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Bhattacharya, I.

Biasiol, G.

G. Biasiol, A. Gustafsson, K. Leifer, and E. Kapon, “Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures,” Phys. Rev. B 65, 205306 (2002).
[Crossref]

Birowosuto, M. D.

M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal,” APL Photon. 2, 046106 (2017).
[Crossref]

Boeuf, F.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Bogumilowicz, Y.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, and V. Loup, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si (100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Bonef, B.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Bowers, J. E.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

Cabinian, B. C.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Carroll, M.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Cassan, E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Caymax, M.

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

S. Jiang, C. Merckling, W. Guo, N. Waldron, M. Caymax, W. Vandervorst, M. Seefeldt, and M. Heyns, “Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches,” J. Appl. Phys. 115, 023517 (2014).
[Crossref]

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Chang, S. P.

Y. Han, Q. Li, S. P. Chang, W. D. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
[Crossref]

Chang-Hasnain, C.

Chang-Hasnain, C. J.

H. Sun, F. Ren, K. W. Ng, T. T. D. Tran, K. Li, and C. J. Chang-Hasnain, “Nanopillar lasers directly grown on silicon with heterostructure surface passivation,” ACS Nano 8, 6833–6839 (2014).
[Crossref]

Chelli, C.

D. Cui, S. M. Hubbard, D. Pavlidis, A. Eisenbach, and C. Chelli, “Impact of doping and MOCVD conditions on minority carrier lifetime of zinc-and carbon-doped InGaAs and its applications to zinc-and carbon-doped InP/InGaAs heterostructure bipolar transistors,” Semicond. Sci. Technol. 17, 503–509 (2002).
[Crossref]

Chen, R.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Chin, A. H.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[Crossref]

Chuang, L. C.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Cipro, R.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, and V. Loup, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si (100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Collaert, N.

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. Voon-Yew Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

Cui, D.

D. Cui, S. M. Hubbard, D. Pavlidis, A. Eisenbach, and C. Chelli, “Impact of doping and MOCVD conditions on minority carrier lifetime of zinc-and carbon-doped InGaAs and its applications to zinc-and carbon-doped InP/InGaAs heterostructure bipolar transistors,” Semicond. Sci. Technol. 17, 503–509 (2002).
[Crossref]

Dai, L.

Date, L.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

David, S.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, and V. Loup, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si (100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Dekoster, J.

Z. Wang, B. Tian, M. Paladugu, M. Pantouvaki, N. Le Thomas, C. Merckling, W. Guo, J. Dekoster, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Polytypic InP nanolaser monolithically integrated on (001) silicon,” Nano Lett. 13, 5063–5069 (2013).
[Crossref]

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Eisenbach, A.

D. Cui, S. M. Hubbard, D. Pavlidis, A. Eisenbach, and C. Chelli, “Impact of doping and MOCVD conditions on minority carrier lifetime of zinc-and carbon-doped InGaAs and its applications to zinc-and carbon-doped InP/InGaAs heterostructure bipolar transistors,” Semicond. Sci. Technol. 17, 503–509 (2002).
[Crossref]

Farrell, A. C.

H. Kim, W. J. Lee, A. C. Farrell, A. Balgarkashi, and D. L. Huffaker, “Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator,” Nano Lett. 17, 5244–5250 (2017).
[Crossref]

Fédéli, J. M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Fox, K.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Gao, Q.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Gargas, D.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

Gies, C.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkotter, M. Kaniber, G. Abstreiter, and C. Gies, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2015).
[Crossref]

Gorbenko, V.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, and V. Loup, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si (100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Guo, W.

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

S. Jiang, C. Merckling, W. Guo, N. Waldron, M. Caymax, W. Vandervorst, M. Seefeldt, and M. Heyns, “Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches,” J. Appl. Phys. 115, 023517 (2014).
[Crossref]

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

Z. Wang, B. Tian, M. Paladugu, M. Pantouvaki, N. Le Thomas, C. Merckling, W. Guo, J. Dekoster, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Polytypic InP nanolaser monolithically integrated on (001) silicon,” Nano Lett. 13, 5063–5069 (2013).
[Crossref]

Guo, X.

Gustafsson, A.

G. Biasiol, A. Gustafsson, K. Leifer, and E. Kapon, “Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures,” Phys. Rev. B 65, 205306 (2002).
[Crossref]

Han, Y.

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Tristate memory cells using double-peaked fin-array III-V tunnel diodes monolithically grown on (001) silicon substrates,” IEEE Trans. Electron Devices 64, 4078–4083 (2017).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates,” J. Appl. Phys. 120, 245701 (2016).
[Crossref]

Y. Han, Q. Li, S. P. Chang, W. D. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
[Crossref]

Q. Li, Y. Han, X. Lu, and K. M. Lau, “GaAs-InGaAs-GaAs fin-array tunnel diodes on (001) Si substrates with room-temperature peak-to-valley current ratio of 5.4,” IEEE Electron Device Lett. 37, 24–27 (2016).
[Crossref]

Hartmann, J. M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Herman, J. L.

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. Papa Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300  mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

Heyns, M.

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

S. Jiang, C. Merckling, W. Guo, N. Waldron, M. Caymax, W. Vandervorst, M. Seefeldt, and M. Heyns, “Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches,” J. Appl. Phys. 115, 023517 (2014).
[Crossref]

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Ho, J.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

Hsu, W. D.

Y. Han, Q. Li, S. P. Chang, W. D. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
[Crossref]

Hubbard, S. M.

D. Cui, S. M. Hubbard, D. Pavlidis, A. Eisenbach, and C. Chelli, “Impact of doping and MOCVD conditions on minority carrier lifetime of zinc-and carbon-doped InGaAs and its applications to zinc-and carbon-doped InP/InGaAs heterostructure bipolar transistors,” Semicond. Sci. Technol. 17, 503–509 (2002).
[Crossref]

Huffaker, D. L.

H. Kim, W. J. Lee, A. C. Farrell, A. Balgarkashi, and D. L. Huffaker, “Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator,” Nano Lett. 17, 5244–5250 (2017).
[Crossref]

Ibrahim, U.

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. Voon-Yew Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

Iwamoto, S.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

Jagadish, C.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Janker, L.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkotter, M. Kaniber, G. Abstreiter, and C. Gies, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2015).
[Crossref]

Jiang, N.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Jiang, S.

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

S. Jiang, C. Merckling, W. Guo, N. Waldron, M. Caymax, W. Vandervorst, M. Seefeldt, and M. Heyns, “Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches,” J. Appl. Phys. 115, 023517 (2014).
[Crossref]

Kako, S.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

Kaniber, M.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkotter, M. Kaniber, G. Abstreiter, and C. Gies, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2015).
[Crossref]

Kapon, E.

G. Biasiol, A. Gustafsson, K. Leifer, and E. Kapon, “Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures,” Phys. Rev. B 65, 205306 (2002).
[Crossref]

Kim, H.

H. Kim, W. J. Lee, A. C. Farrell, A. Balgarkashi, and D. L. Huffaker, “Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator,” Nano Lett. 17, 5244–5250 (2017).
[Crossref]

Klamkin, J.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Ko, W. S.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Kong, X.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Kostenbader, T.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkotter, M. Kaniber, G. Abstreiter, and C. Gies, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2015).
[Crossref]

Kunert, B.

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Kuramochi, E.

M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal,” APL Photon. 2, 046106 (2017).
[Crossref]

Langer, R.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Lau, K. M.

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Tristate memory cells using double-peaked fin-array III-V tunnel diodes monolithically grown on (001) silicon substrates,” IEEE Trans. Electron Devices 64, 4078–4083 (2017).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates,” J. Appl. Phys. 120, 245701 (2016).
[Crossref]

Q. Li, Y. Han, X. Lu, and K. M. Lau, “GaAs-InGaAs-GaAs fin-array tunnel diodes on (001) Si substrates with room-temperature peak-to-valley current ratio of 5.4,” IEEE Electron Device Lett. 37, 24–27 (2016).
[Crossref]

Y. Han, Q. Li, S. P. Chang, W. D. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
[Crossref]

Le Thomas, N.

Z. Wang, B. Tian, M. Paladugu, M. Pantouvaki, N. Le Thomas, C. Merckling, W. Guo, J. Dekoster, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Polytypic InP nanolaser monolithically integrated on (001) silicon,” Nano Lett. 13, 5063–5069 (2013).
[Crossref]

Lee, W. J.

H. Kim, W. J. Lee, A. C. Farrell, A. Balgarkashi, and D. L. Huffaker, “Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator,” Nano Lett. 17, 5244–5250 (2017).
[Crossref]

Leifer, K.

G. Biasiol, A. Gustafsson, K. Leifer, and E. Kapon, “Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures,” Phys. Rev. B 65, 205306 (2002).
[Crossref]

Li, J. Z.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Li, K.

H. Sun, F. Ren, K. W. Ng, T. T. D. Tran, K. Li, and C. J. Chang-Hasnain, “Nanopillar lasers directly grown on silicon with heterostructure surface passivation,” ACS Nano 8, 6833–6839 (2014).
[Crossref]

Li, M.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Li, Q.

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Tristate memory cells using double-peaked fin-array III-V tunnel diodes monolithically grown on (001) silicon substrates,” IEEE Trans. Electron Devices 64, 4078–4083 (2017).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates,” J. Appl. Phys. 120, 245701 (2016).
[Crossref]

Y. Han, Q. Li, S. P. Chang, W. D. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
[Crossref]

Q. Li, Y. Han, X. Lu, and K. M. Lau, “GaAs-InGaAs-GaAs fin-array tunnel diodes on (001) Si substrates with room-temperature peak-to-valley current ratio of 5.4,” IEEE Electron Device Lett. 37, 24–27 (2016).
[Crossref]

Li, S.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

Lichtmannecker, S.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkotter, M. Kaniber, G. Abstreiter, and C. Gies, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2015).
[Crossref]

Lochtefeld, A.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Loitsch, B.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkotter, M. Kaniber, G. Abstreiter, and C. Gies, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2015).
[Crossref]

Loo, R.

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Loup, V.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, and V. Loup, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si (100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Lu, F.

Lu, X.

Q. Li, Y. Han, X. Lu, and K. M. Lau, “GaAs-InGaAs-GaAs fin-array tunnel diodes on (001) Si substrates with room-temperature peak-to-valley current ratio of 5.4,” IEEE Electron Device Lett. 37, 24–27 (2016).
[Crossref]

Ma, Y.

Malheiros-Silveira, G. N.

Marris-Morini, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Martin, M.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, and V. Loup, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si (100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Mashanovich, G. Z.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Maslov, A. V.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[Crossref]

Mayer, B.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkotter, M. Kaniber, G. Abstreiter, and C. Gies, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2015).
[Crossref]

Megalini, L.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Merckling, C.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

S. Jiang, C. Merckling, W. Guo, N. Waldron, M. Caymax, W. Vandervorst, M. Seefeldt, and M. Heyns, “Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches,” J. Appl. Phys. 115, 023517 (2014).
[Crossref]

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. Voon-Yew Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

Z. Wang, B. Tian, M. Paladugu, M. Pantouvaki, N. Le Thomas, C. Merckling, W. Guo, J. Dekoster, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Polytypic InP nanolaser monolithically integrated on (001) silicon,” Nano Lett. 13, 5063–5069 (2013).
[Crossref]

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Meyyappan, M.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[Crossref]

Mi, J.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Michel, J.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Moeyaert, J.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, and V. Loup, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si (100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Mokkapati, S.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Mols, Y.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Morkotter, S.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkotter, M. Kaniber, G. Abstreiter, and C. Gies, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2015).
[Crossref]

Nedeljkovic, M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Ng, K. W.

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

F. Lu, I. Bhattacharya, H. Sun, T. T. Tran, K. W. Ng, G. N. Malheiros-Silveira, and C. Chang-Hasnain, “Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths,” Optica 4, 717–723 (2017).
[Crossref]

H. Sun, F. Ren, K. W. Ng, T. T. D. Tran, K. Li, and C. J. Chang-Hasnain, “Nanopillar lasers directly grown on silicon with heterostructure surface passivation,” ACS Nano 8, 6833–6839 (2014).
[Crossref]

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Ning, C. Z.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[Crossref]

Notomi, M.

M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal,” APL Photon. 2, 046106 (2017).
[Crossref]

Nozaki, K.

M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal,” APL Photon. 2, 046106 (2017).
[Crossref]

O’Brian, B.

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. Papa Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300  mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

O’Brien, P.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Oktyabrsky, S. R.

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. Papa Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300  mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

Ong, P.

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. Voon-Yew Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

Orzali, T.

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. Papa Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300  mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

Ota, Y.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

Paladugu, M.

Z. Wang, B. Tian, M. Paladugu, M. Pantouvaki, N. Le Thomas, C. Merckling, W. Guo, J. Dekoster, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Polytypic InP nanolaser monolithically integrated on (001) silicon,” Nano Lett. 13, 5063–5069 (2013).
[Crossref]

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Pan, J.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Pantouvaki, M.

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Z. Wang, B. Tian, M. Paladugu, M. Pantouvaki, N. Le Thomas, C. Merckling, W. Guo, J. Dekoster, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Polytypic InP nanolaser monolithically integrated on (001) silicon,” Nano Lett. 13, 5063–5069 (2013).
[Crossref]

Papa Rao, S. S.

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. Papa Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300  mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

Park, J. S.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Parkinson, P.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Pavlidis, D.

D. Cui, S. M. Hubbard, D. Pavlidis, A. Eisenbach, and C. Chelli, “Impact of doping and MOCVD conditions on minority carrier lifetime of zinc-and carbon-doped InGaAs and its applications to zinc-and carbon-doped InP/InGaAs heterostructure bipolar transistors,” Semicond. Sci. Technol. 17, 503–509 (2002).
[Crossref]

Pena, V.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

Pourghaderi, A.

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. Voon-Yew Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Reichert, T.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkotter, M. Kaniber, G. Abstreiter, and C. Gies, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2015).
[Crossref]

Ren, F.

H. Sun, F. Ren, K. W. Ng, T. T. D. Tran, K. Li, and C. J. Chang-Hasnain, “Nanopillar lasers directly grown on silicon with heterostructure surface passivation,” ACS Nano 8, 6833–6839 (2014).
[Crossref]

Richard, O.

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Rochat, N.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, and V. Loup, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si (100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Sanchez, E.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

Saxena, D.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Schmid, J. H.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Sebaai, F.

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. Voon-Yew Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

Sedgwick, F. G.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Seefeldt, M.

S. Jiang, C. Merckling, W. Guo, N. Waldron, M. Caymax, W. Vandervorst, M. Seefeldt, and M. Heyns, “Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches,” J. Appl. Phys. 115, 023517 (2014).
[Crossref]

Shellenbarger, Z.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

Shi, Y.

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Shinya, A.

M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal,” APL Photon. 2, 046106 (2017).
[Crossref]

Speck, J. S.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Sun, H.

F. Lu, I. Bhattacharya, H. Sun, T. T. Tran, K. W. Ng, G. N. Malheiros-Silveira, and C. Chang-Hasnain, “Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths,” Optica 4, 717–723 (2017).
[Crossref]

H. Sun, F. Ren, K. W. Ng, T. T. D. Tran, K. Li, and C. J. Chang-Hasnain, “Nanopillar lasers directly grown on silicon with heterostructure surface passivation,” ACS Nano 8, 6833–6839 (2014).
[Crossref]

Sunkara, M. K.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[Crossref]

Takiguchi, M.

M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal,” APL Photon. 2, 046106 (2017).
[Crossref]

Tan, H. H.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Tatebayashi, J.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

Tateno, K.

M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal,” APL Photon. 2, 046106 (2017).
[Crossref]

Taylor, A.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Teugels, L.

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. Voon-Yew Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

Thean, A.

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Tian, B.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Z. Wang, B. Tian, M. Paladugu, M. Pantouvaki, N. Le Thomas, C. Merckling, W. Guo, J. Dekoster, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Polytypic InP nanolaser monolithically integrated on (001) silicon,” Nano Lett. 13, 5063–5069 (2013).
[Crossref]

Tong, L.

Tran, T. T.

Tran, T. T. D.

H. Sun, F. Ren, K. W. Ng, T. T. D. Tran, K. Li, and C. J. Chang-Hasnain, “Nanopillar lasers directly grown on silicon with heterostructure surface passivation,” ACS Nano 8, 6833–6839 (2014).
[Crossref]

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Treu, J.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkotter, M. Kaniber, G. Abstreiter, and C. Gies, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2015).
[Crossref]

Vaddiraju, S.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[Crossref]

Van Campenhout, J.

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Z. Wang, B. Tian, M. Paladugu, M. Pantouvaki, N. Le Thomas, C. Merckling, W. Guo, J. Dekoster, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Polytypic InP nanolaser monolithically integrated on (001) silicon,” Nano Lett. 13, 5063–5069 (2013).
[Crossref]

Van Thourhout, D.

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Z. Wang, B. Tian, M. Paladugu, M. Pantouvaki, N. Le Thomas, C. Merckling, W. Guo, J. Dekoster, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Polytypic InP nanolaser monolithically integrated on (001) silicon,” Nano Lett. 13, 5063–5069 (2013).
[Crossref]

Vancoille, E.

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

Vandervorst, W.

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

S. Jiang, C. Merckling, W. Guo, N. Waldron, M. Caymax, W. Vandervorst, M. Seefeldt, and M. Heyns, “Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches,” J. Appl. Phys. 115, 023517 (2014).
[Crossref]

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

Vert, A.

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. Papa Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300  mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Vivekanand, S.

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. Papa Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300  mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Voon-Yew Thean, A.

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. Voon-Yew Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

Waldron, N.

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. Voon-Yew Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

S. Jiang, C. Merckling, W. Guo, N. Waldron, M. Caymax, W. Vandervorst, M. Seefeldt, and M. Heyns, “Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches,” J. Appl. Phys. 115, 023517 (2014).
[Crossref]

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

Wang, M.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Wang, W.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Wang, Z.

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Z. Wang, B. Tian, M. Paladugu, M. Pantouvaki, N. Le Thomas, C. Merckling, W. Guo, J. Dekoster, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Polytypic InP nanolaser monolithically integrated on (001) silicon,” Nano Lett. 13, 5063–5069 (2013).
[Crossref]

Wu, X.

Xu, D.-X.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Yan, R.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

Yang, P.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

Yin, B.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Yokoo, A.

M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal,” APL Photon. 2, 046106 (2017).
[Crossref]

Zhang, G.

M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal,” APL Photon. 2, 046106 (2017).
[Crossref]

Zhao, H.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

Zhou, X.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Zhou, Z.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Zhu, S.

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

ACS Nano (1)

H. Sun, F. Ren, K. W. Ng, T. T. D. Tran, K. Li, and C. J. Chang-Hasnain, “Nanopillar lasers directly grown on silicon with heterostructure surface passivation,” ACS Nano 8, 6833–6839 (2014).
[Crossref]

Adv. Opt. Photon. (1)

APL Photon. (1)

M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal,” APL Photon. 2, 046106 (2017).
[Crossref]

Appl. Phys. Lett. (9)

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
[Crossref]

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108, 021902 (2016).
[Crossref]

Y. Han, Q. Li, S. P. Chang, W. D. Hsu, and K. M. Lau, “Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon,” Appl. Phys. Lett. 108, 242105 (2016).
[Crossref]

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[Crossref]

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91, 021114 (2007).
[Crossref]

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, and K. Barla, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001),” Appl. Phys. Lett. 105, 062101 (2014).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, and V. Loup, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si (100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Cryst. Growth Des. (1)

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12, 4696–4702 (2012).
[Crossref]

IEEE Electron Device Lett. (2)

N. Waldron, C. Merckling, L. Teugels, P. Ong, S. Ansar, U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, and A. Voon-Yew Thean, “InGaAs gate-all-around nanowire devices on 300  mm Si substrates,” IEEE Electron Device Lett. 35, 1097–1099 (2014).
[Crossref]

Q. Li, Y. Han, X. Lu, and K. M. Lau, “GaAs-InGaAs-GaAs fin-array tunnel diodes on (001) Si substrates with room-temperature peak-to-valley current ratio of 5.4,” IEEE Electron Device Lett. 37, 24–27 (2016).
[Crossref]

IEEE Trans. Electron Devices (1)

Y. Han, Q. Li, and K. M. Lau, “Tristate memory cells using double-peaked fin-array III-V tunnel diodes monolithically grown on (001) silicon substrates,” IEEE Trans. Electron Devices 64, 4078–4083 (2017).
[Crossref]

J. Appl. Phys. (4)

S. Jiang, C. Merckling, W. Guo, N. Waldron, M. Caymax, W. Vandervorst, M. Seefeldt, and M. Heyns, “Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches,” J. Appl. Phys. 115, 023517 (2014).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates,” J. Appl. Phys. 120, 245701 (2016).
[Crossref]

C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns, and W. Vandervorst, “Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50  nm width trenches: the role of the nucleation layer and the recess engineering,” J. Appl. Phys. 115, 023710 (2014).
[Crossref]

T. Orzali, A. Vert, B. O’Brian, J. L. Herman, S. Vivekanand, S. S. Papa Rao, and S. R. Oktyabrsky, “Epitaxial growth of GaSb and InAs fins on 300  mm Si (001) by aspect ratio trapping,” J. Appl. Phys. 120, 085308 (2016).
[Crossref]

J. Opt. (1)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Light Sci. Appl. (1)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Nano Lett. (4)

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkotter, M. Kaniber, G. Abstreiter, and C. Gies, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2015).
[Crossref]

Z. Wang, B. Tian, M. Paladugu, M. Pantouvaki, N. Le Thomas, C. Merckling, W. Guo, J. Dekoster, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Polytypic InP nanolaser monolithically integrated on (001) silicon,” Nano Lett. 13, 5063–5069 (2013).
[Crossref]

H. Kim, W. J. Lee, A. C. Farrell, A. Balgarkashi, and D. L. Huffaker, “Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator,” Nano Lett. 17, 5244–5250 (2017).
[Crossref]

Nanotechnology (1)

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29, 225601 (2018).
[Crossref]

Nat. Photonics (6)

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Optica (2)

Phys. Rev. B (1)

G. Biasiol, A. Gustafsson, K. Leifer, and E. Kapon, “Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures,” Phys. Rev. B 65, 205306 (2002).
[Crossref]

Semicond. Sci. Technol. (1)

D. Cui, S. M. Hubbard, D. Pavlidis, A. Eisenbach, and C. Chelli, “Impact of doping and MOCVD conditions on minority carrier lifetime of zinc-and carbon-doped InGaAs and its applications to zinc-and carbon-doped InP/InGaAs heterostructure bipolar transistors,” Semicond. Sci. Technol. 17, 503–509 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) 70° tilted SEM image of the highly ordered, in-plane InP/InGaAs nano-ridge structures on (001) Si substrates. (b) Cross-sectional TEM image of the InP/InGaAs nano-ridge perpendicular to the wire direction, showing five {111} ridge InGaAs QWs embedded inside a InP nano-ridge; the dark area at the InP/Si interface contains a high density of stacking faults generated for strain relaxation. (c) Zoomed-in TEM image of the five InGaAs QWs separated by InP spacers at one side of the InP nano-ridge. (d) High-resolution TEM image of one InGaAs ridge QW with atomic sharp InP/InGaAs interfaces.
Fig. 2.
Fig. 2. (a) Room-temperature PL spectra of the five InGaAs QWs under different excitation levels at the telecom bands, revealing apparent band-filling effects and broadening of the PL spectra. (b) Widening of the FWHM of the PL spectra as pumping power increases; the inset shows the linear evolution of integrated PL intensity as a function of pumping power. (c) Time-resolved PL data of the as-grown InP/InGaAs nano-ridges, revealing a carrier lifetime of 420 ps.
Fig. 3.
Fig. 3. (a) Schematics showing the transfer of the as-grown InP/InGaAs nano-ridges onto a SiO2/Si substrate. (b) Top-view SEM image of the transferred InP/InGaAs nano-ridges with different orientations and lengths. The length of the nano-ridges ranges from 10 to 80 μm. (c) 70° tilted SEM image of one transferred InP/InGaAs nano-ridge; the inset shows a smooth and vertical end facet.
Fig. 4.
Fig. 4. (a) Room-temperature PL spectra of one InP/InGaAs nano-ridge with a length of 38 μm under different excitation levels plotted in a log scale, showing broad spontaneous emission spectra with equally spaced FP modes below the threshold and the clamp of spontaneous emission and sudden increase of the mode at 1492 nm when pumping level increases above the threshold. (b) PL spectra of the InP/InGaAs nano-laser above the threshold. The mode at 1427 nm gradually increases and finally dominates over the mode at 1492 nm. (c) L–L curves of the two modes at 1492 nm and 1427 nm plotted on a linear scale. The threshold of the modes at 1492 nm and 1427 nm are extracted as 16.0  μJ/cm2 and 19.0  μJ/cm2, respectively. The inset shows the L–L curves on a logarithmic scale, revealing a clear S shape for both the two modes. (d) Evolution of the linewidth of the modes as a function of the pumping pulse fluence. The linewidth narrowing around the threshold further confirms the lasing behavior.
Fig. 5.
Fig. 5. (a) Room-temperature lasing spectra of InP/InGaAs nano-lasers with different lengths ranging from 13 to 51 μm. The first lasing peaks of the nano-ridge lasers cover the spectrum from 1356 to 1533 nm. (b) Evolution of the lasing wavelengths as function of the nano-ridge lengths. The laser emission covers the majority of the telecom bands, ranging from the O band to the C band.
Fig. 6.
Fig. 6. (a) Simulated guided modes inside the InP/InGaAs nano-ridges at different wavelengths. (b) Calculated effective reflective index of TE01 at different mode wavelengths. (c) Confinement factors of both the InP waveguide and InGaAs QWs decrease monotonously as the mode wavelengths increases.

Metrics