Abstract

Efficient coupling of III–V light sources to silicon photonic circuits is one of the key challenges of integrated optics. Important requirements are low coupling losses, as well as a small footprint and a high yield of the overall assembly, along with the ability to use automated processes for large-scale production. In this paper, we demonstrate that photonic wire bonding addresses these challenges by exploiting direct-write two-photon lithography for in situ fabrication of three-dimensional freeform waveguides between optical chips. In a series of proof-of-concept experiments, we connect indium phosphide (InP)-based horizontal-cavity surface-emitting lasers to passive silicon photonic circuits with insertion losses down to 0.4 dB. To the best of our knowledge, this is the most efficient interface between an InP light source and a silicon photonic chip that has so far been demonstrated. Our experiments represent a key step in advancing photonic wire bonding to a universal integration platform for hybrid photonic multi-chip assemblies that combine known-good dies of different materials to high-performance hybrid multi-chip modules.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photonic wire bonding: a novel concept for chip-scale interconnects

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos
Opt. Express 20(16) 17667-17677 (2012)

Optical transmission between III-V chips on Si using photonic wire bonding

Zhichen Gu, Tomohiro Amemiya, Atsushi Ishikawa, Takuo Hiratani, Junichi Suzuki, Nobuhiko Nishiyama, Takuo Tanaka, and Shigehisa Arai
Opt. Express 23(17) 22394-22403 (2015)

3D integrated hybrid silicon laser

Bowen Song, Cristian Stagarescu, Sasa Ristic, Alex Behfar, and Jonathan Klamkin
Opt. Express 24(10) 10435-10444 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 1–16 (2015).
    [Crossref]
  2. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
    [Crossref]
  3. A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
    [Crossref]
  4. M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014).
    [Crossref]
  5. K. Yamada, Silicon Photonics II (2011), Vol. 119, pp. 1–29.
  6. G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
    [Crossref]
  7. D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
    [Crossref]
  8. M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photon. Rev. 10, 895–921 (2016).
    [Crossref]
  9. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
    [Crossref]
  10. P. O. Brien, L. Carrol, C. Eason, and J. S. Lee, Silicon Photonics III, Topics in Applied Physics (Springer, 2016), Vol. 122.
  11. N. Higashitarumizu and Y. Ishikawa, “Enhanced direct-gap light emission from Si-capped n+-Ge epitaxial layers on Si after post-growth rapid cyclic annealing: impact of non-radiative interface recombination toward Ge/Si double heterostructure lasers,” Opt. Express 25, 21286–21300 (2017).
    [Crossref]
  12. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
    [Crossref]
  13. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
    [Crossref]
  14. J. Wang, X. Ren, C. Deng, H. Hu, Y. He, Z. Cheng, H. Ma, Q. Wang, and Y. Huang, “Extremely low-threshold current density InGaAs/AlGaAs quantum-well lasers on silicon,” J. Lightwave Technol. 33, 3163–3169 (2015).
    [Crossref]
  15. S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.
  16. G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
    [Crossref]
  17. A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
    [Crossref]
  18. M. Buffolo, M. Meneghini, C. De Santi, M. L. Davenport, J. E. Bowers, G. Meneghesso, and E. Zanoni, “Degradation mechanisms of heterogeneous III–V/silicon 1.55-µm DBR laser diodes,” IEEE J. Quantum Electron. 53, 1–8 (2017).
    [Crossref]
  19. J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
    [Crossref]
  20. X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
    [Crossref]
  21. A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III–V-on-silicon broadband light emitters,” Opt. Express 24, 13754–13762 (2016).
    [Crossref]
  22. B. Snyder, B. Corbett, and P. Obrien, “Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit,” J. Lightwave Technol. 31, 3934–3942 (2013).
    [Crossref]
  23. H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24, 16258–16266 (2016).
    [Crossref]
  24. S. Lin, X. Zheng, J. Yao, S. S. Djordjevic, J. E. Cunningham, J.-H. Lee, I. Shubin, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, K. Raj, and A. V. Krishnamoorthy, “Efficient, tunable flip-chip-integrated III–V/Si hybrid external-cavity laser array,” Opt. Express 24, 21454–21462 (2016).
    [Crossref]
  25. B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.
  26. G. de Valicourt, C.-M. Chang, M. S. Eggleston, A. Melikyan, C. Bolle, N. Kaneda, M. P. Earnshaw, Y.-K. Chen, A. Maho, R. Brenot, and P. Dong, “Hybrid-integrated wavelength and reflectivity tunable III–V/silicon transmitter,” J. Lightwave Technol. 35, 1376–1382 (2017).
    [Crossref]
  27. A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
    [Crossref]
  28. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
    [Crossref]
  29. Y. Urino, T. Nakamura, and Y. Arakawa, Silicon Photonics III, Topics in Applied Physics (Springer, 2016), Vol. 122.
  30. Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
    [Crossref]
  31. M. J. R. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014).
    [Crossref]
  32. I. Lucci, M. Bahri, Y. Leger, and C. Cornet, “Thermal management of monolithic and heterogeneous integrated lasers,” in Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)] (IEEE, 2016), Vol. 22, pp. 1.
  33. J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
    [Crossref]
  34. B. Pezeshki, J. Heanue, D. Ton, T. Schrans, S. Rangarajan, S. Zou, G. W. Yoffe, A. Liu, M. Sherback, J. Kubicky, and P. Ludwig, “High performance MEMS-based micro-optic assembly for multi-lane transceivers,” J. Lightwave Technol. 32, 2796–2799 (2014).
    [Crossref]
  35. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
    [Crossref]
  36. N. Hatori, T. Shimizu, M. Okano, M. Ishizaka, T. Yamamoto, Y. Urino, M. Mori, T. Nakamura, and Y. Arakawa, “A hybrid integrated light source on a silicon platform using a trident spot-size converter,” J. Lightwave Technol. 32, 1329–1336 (2014).
    [Crossref]
  37. N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds—a novel concept for chip-to-chip interconnects,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference (2011), paper PDPC1.
  38. A. Nesic, M. Blaicher, T. Hoose, M. Lauermann, Y. Kutuvantavida, W. Freude, and C. Koos, “Hybrid 2D/3D photonic integration for non-planar circuit topologies,” in 42nd European Conference on Optical Communication (2016), paper W.3.F.4.
  39. N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
    [Crossref]
  40. N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
    [Crossref]
  41. M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.
  42. T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.
  43. K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).
  44. M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.
  45. M. R. Billah, J. N. Kemal, M. Blaicher, Y. Kutuvantavida, and C. Kieninger, “Four-channel 784  Gbit/s transmitter module enabled by photonic wire bonding and silicon-organic hybrid modulators,” in 43rd European Conference on Optical Communication (ECOC), Gothenburg, Sweden, September17–21, 2017, paper Th.PDP.C.1.
  46. “IP-Photoresists,” http://www.nanoscribe.de/files/1814/0662/4393/IP-Resist_IP-Dip_web.pdf .
  47. M. Moehrle, J. Kreissl, W. D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, and N. Grote, “Ultra-low threshold 1490  nm surface-emitting BH-DFB laser diode with integrated monitor photodiode,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2010), pp. 1–4.
  48. K. Kikuchi, “Characterization of semiconductor-laser phase noise and estimation of bit-error rate performance with low-speed offline digital coherent receivers,” Opt. Express 20, 5291–5302 (2012).
    [Crossref]
  49. “CST—Computer simulation technology,” https://www.cst.com/ .

2017 (6)

N. Higashitarumizu and Y. Ishikawa, “Enhanced direct-gap light emission from Si-capped n+-Ge epitaxial layers on Si after post-growth rapid cyclic annealing: impact of non-radiative interface recombination toward Ge/Si double heterostructure lasers,” Opt. Express 25, 21286–21300 (2017).
[Crossref]

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

M. Buffolo, M. Meneghini, C. De Santi, M. L. Davenport, J. E. Bowers, G. Meneghesso, and E. Zanoni, “Degradation mechanisms of heterogeneous III–V/silicon 1.55-µm DBR laser diodes,” IEEE J. Quantum Electron. 53, 1–8 (2017).
[Crossref]

G. de Valicourt, C.-M. Chang, M. S. Eggleston, A. Melikyan, C. Bolle, N. Kaneda, M. P. Earnshaw, Y.-K. Chen, A. Maho, R. Brenot, and P. Dong, “Hybrid-integrated wavelength and reflectivity tunable III–V/silicon transmitter,” J. Lightwave Technol. 35, 1376–1382 (2017).
[Crossref]

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

2016 (8)

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24, 16258–16266 (2016).
[Crossref]

S. Lin, X. Zheng, J. Yao, S. S. Djordjevic, J. E. Cunningham, J.-H. Lee, I. Shubin, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, K. Raj, and A. V. Krishnamoorthy, “Efficient, tunable flip-chip-integrated III–V/Si hybrid external-cavity laser array,” Opt. Express 24, 21454–21462 (2016).
[Crossref]

A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III–V-on-silicon broadband light emitters,” Opt. Express 24, 13754–13762 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photon. Rev. 10, 895–921 (2016).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

2015 (7)

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 1–16 (2015).
[Crossref]

J. Wang, X. Ren, C. Deng, H. Hu, Y. He, Z. Cheng, H. Ma, Q. Wang, and Y. Huang, “Extremely low-threshold current density InGaAs/AlGaAs quantum-well lasers on silicon,” J. Lightwave Technol. 33, 3163–3169 (2015).
[Crossref]

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

2014 (6)

N. Hatori, T. Shimizu, M. Okano, M. Ishizaka, T. Yamamoto, Y. Urino, M. Mori, T. Nakamura, and Y. Arakawa, “A hybrid integrated light source on a silicon platform using a trident spot-size converter,” J. Lightwave Technol. 32, 1329–1336 (2014).
[Crossref]

B. Pezeshki, J. Heanue, D. Ton, T. Schrans, S. Rangarajan, S. Zou, G. W. Yoffe, A. Liu, M. Sherback, J. Kubicky, and P. Ludwig, “High performance MEMS-based micro-optic assembly for multi-lane transceivers,” J. Lightwave Technol. 32, 2796–2799 (2014).
[Crossref]

M. J. R. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014).
[Crossref]

A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014).
[Crossref]

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

2013 (2)

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

B. Snyder, B. Corbett, and P. Obrien, “Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit,” J. Lightwave Technol. 31, 3934–3942 (2013).
[Crossref]

2012 (3)

2010 (2)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Abbasi, A.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

Abolghasem, P.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

Arakawa, Y.

Badihi, A.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Baets, R.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III–V-on-silicon broadband light emitters,” Opt. Express 24, 13754–13762 (2016).
[Crossref]

Bahri, M.

I. Lucci, M. Bahri, Y. Leger, and C. Cornet, “Thermal management of monolithic and heterogeneous integrated lasers,” in Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)] (IEEE, 2016), Vol. 22, pp. 1.

Balthasar, G.

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds—a novel concept for chip-to-chip interconnects,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference (2011), paper PDPC1.

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014).
[Crossref]

Bauwelinck, J.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

Behfar, A.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

Benamara, M.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

Bernabe, S.

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

Bickel, N.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

Billah, M.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

Billah, M. R.

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

M. R. Billah, J. N. Kemal, M. Blaicher, Y. Kutuvantavida, and C. Kieninger, “Four-channel 784  Gbit/s transmitter module enabled by photonic wire bonding and silicon-organic hybrid modulators,” in 43rd European Conference on Optical Communication (ECOC), Gothenburg, Sweden, September17–21, 2017, paper Th.PDP.C.1.

Blaicher, M.

M. R. Billah, J. N. Kemal, M. Blaicher, Y. Kutuvantavida, and C. Kieninger, “Four-channel 784  Gbit/s transmitter module enabled by photonic wire bonding and silicon-organic hybrid modulators,” in 43rd European Conference on Optical Communication (ECOC), Gothenburg, Sweden, September17–21, 2017, paper Th.PDP.C.1.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

A. Nesic, M. Blaicher, T. Hoose, M. Lauermann, Y. Kutuvantavida, W. Freude, and C. Koos, “Hybrid 2D/3D photonic integration for non-planar circuit topologies,” in 42nd European Conference on Optical Communication (2016), paper W.3.F.4.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

Boeuf, F.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Bolle, C.

Bonk, R.

N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds—a novel concept for chip-to-chip interconnects,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference (2011), paper PDPC1.

Bovington, J.

Bower, C.

A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III–V-on-silicon broadband light emitters,” Opt. Express 24, 13754–13762 (2016).
[Crossref]

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
[Crossref]

Bowers, J. E.

M. Buffolo, M. Meneghini, C. De Santi, M. L. Davenport, J. E. Bowers, G. Meneghesso, and E. Zanoni, “Degradation mechanisms of heterogeneous III–V/silicon 1.55-µm DBR laser diodes,” IEEE J. Quantum Electron. 53, 1–8 (2017).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014).
[Crossref]

M. J. R. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

Bowker, J.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

Brenot, R.

G. de Valicourt, C.-M. Chang, M. S. Eggleston, A. Melikyan, C. Bolle, N. Kaneda, M. P. Earnshaw, Y.-K. Chen, A. Maho, R. Brenot, and P. Dong, “Hybrid-integrated wavelength and reflectivity tunable III–V/silicon transmitter,” J. Lightwave Technol. 35, 1376–1382 (2017).
[Crossref]

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Brien, P. O.

P. O. Brien, L. Carrol, C. Eason, and J. S. Lee, Silicon Photonics III, Topics in Applied Physics (Springer, 2016), Vol. 122.

Buca, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Buffolo, M.

M. Buffolo, M. Meneghini, C. De Santi, M. L. Davenport, J. E. Bowers, G. Meneghesso, and E. Zanoni, “Degradation mechanisms of heterogeneous III–V/silicon 1.55-µm DBR laser diodes,” IEEE J. Quantum Electron. 53, 1–8 (2017).
[Crossref]

Cao, Y.

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

Cardile, P.

Carrol, L.

P. O. Brien, L. Carrol, C. Eason, and J. S. Lee, Silicon Photonics III, Topics in Applied Physics (Springer, 2016), Vol. 122.

Carroll, L.

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24, 16258–16266 (2016).
[Crossref]

Casalino, M.

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photon. Rev. 10, 895–921 (2016).
[Crossref]

Cassan, E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Chang, C.-M.

Charbonnier, B.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Chen, K. K.

A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Chen, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

Chen, S. W.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Chen, Y.-K.

Cheng, Y.

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

Cheng, Z.

Chimot, N.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Chiussi, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Contu, P.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

Coppola, G.

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photon. Rev. 10, 895–921 (2016).
[Crossref]

Corbett, B.

B. Snyder, B. Corbett, and P. Obrien, “Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit,” J. Lightwave Technol. 31, 3934–3942 (2013).
[Crossref]

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
[Crossref]

Cornet, C.

I. Lucci, M. Bahri, Y. Leger, and C. Cornet, “Thermal management of monolithic and heterogeneous integrated lasers,” in Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)] (IEEE, 2016), Vol. 22, pp. 1.

Cunningham, J. E.

Daly, A.

Dave, U.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Davenport, M. L.

M. Buffolo, M. Meneghini, C. De Santi, M. L. Davenport, J. E. Bowers, G. Meneghesso, and E. Zanoni, “Degradation mechanisms of heterogeneous III–V/silicon 1.55-µm DBR laser diodes,” IEEE J. Quantum Electron. 53, 1–8 (2017).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014).
[Crossref]

De Groote, A.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III–V-on-silicon broadband light emitters,” Opt. Express 24, 13754–13762 (2016).
[Crossref]

De La Rue, R. M.

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photon. Rev. 10, 895–921 (2016).
[Crossref]

De Santi, C.

M. Buffolo, M. Meneghini, C. De Santi, M. L. Davenport, J. E. Bowers, G. Meneghesso, and E. Zanoni, “Degradation mechanisms of heterogeneous III–V/silicon 1.55-µm DBR laser diodes,” IEEE J. Quantum Electron. 53, 1–8 (2017).
[Crossref]

de Valicourt, G.

Decobert, J.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Delbeke, D.

Deng, C.

Dietrich, P.

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

Dietrich, P.-I.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

Djordjevic, S. S.

Doerr, C. R.

C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 1–16 (2015).
[Crossref]

Dong, P.

Dorogan, V. G.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

Dottermusch, S.

Duan, G.-H.

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Duan, N.

A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Earnshaw, M. P.

Eason, C.

P. O. Brien, L. Carrol, C. Eason, and J. S. Lee, Silicon Photonics III, Topics in Applied Physics (Springer, 2016), Vol. 122.

Eggleston, M. S.

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Faist, J.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Fang, Q.

A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Fecioru, A. M.

Fedeli, J. M.

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Fédéli, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Freude, W.

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds—a novel concept for chip-to-chip interconnects,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference (2011), paper PDPC1.

A. Nesic, M. Blaicher, T. Hoose, M. Lauermann, Y. Kutuvantavida, W. Freude, and C. Koos, “Hybrid 2D/3D photonic integration for non-planar circuit topologies,” in 42nd European Conference on Optical Communication (2016), paper W.3.F.4.

Gardes, F.

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Gardes, F. Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Garreau, A.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Geiger, R.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Girard, N.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Glastre, G.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Goedecke, M. L.

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

Grote, N.

M. Moehrle, J. Kreissl, W. D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, and N. Grote, “Ultra-low threshold 1490  nm surface-emitting BH-DFB laser diode with integrated monitor photodiode,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2010), pp. 1–4.

Grützmacher, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Gubbins, M. A.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
[Crossref]

Hartmann, J. M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Hartmann, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Hatori, N.

Hauck, J.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

He, Y.

Heanue, J.

Heck, M. J. R.

M. J. R. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014).
[Crossref]

Heideman, R. G.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

Hens, Z.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Higashitarumizu, N.

Hillerkuss, D.

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds—a novel concept for chip-to-chip interconnects,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference (2011), paper PDPC1.

Hoekman, M.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

Hoffmann, J.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

Hofmann, A.

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

Hoose, T.

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

A. Nesic, M. Blaicher, T. Hoose, M. Lauermann, Y. Kutuvantavida, W. Freude, and C. Koos, “Hybrid 2D/3D photonic integration for non-planar circuit topologies,” in 42nd European Conference on Optical Communication (2016), paper W.3.F.4.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

Hsu, S. S.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Hu, H.

Hu, X.

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

Hu, Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Huang, Y.

Ikonic, Z.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Ishikawa, Y.

Ishizaka, M.

Islamova, E.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Jany, C.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

Jordan, M.

Justice, J.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
[Crossref]

Kaiser, I.

N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds—a novel concept for chip-to-chip interconnects,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference (2011), paper PDPC1.

Kaneda, N.

Kemal, J. N.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

M. R. Billah, J. N. Kemal, M. Blaicher, Y. Kutuvantavida, and C. Kieninger, “Four-channel 784  Gbit/s transmitter module enabled by photonic wire bonding and silicon-organic hybrid modulators,” in 43rd European Conference on Optical Communication (ECOC), Gothenburg, Sweden, September17–21, 2017, paper Th.PDP.C.1.

Keyvaninia, S.

Kieninger, C.

M. R. Billah, J. N. Kemal, M. Blaicher, Y. Kutuvantavida, and C. Kieninger, “Four-channel 784  Gbit/s transmitter module enabled by photonic wire bonding and silicon-organic hybrid modulators,” in 43rd European Conference on Optical Communication (ECOC), Gothenburg, Sweden, September17–21, 2017, paper Th.PDP.C.1.

Kikuchi, K.

Kimerling, L. C.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Klamkin, J.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Koos, C.

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds—a novel concept for chip-to-chip interconnects,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference (2011), paper PDPC1.

A. Nesic, M. Blaicher, T. Hoose, M. Lauermann, Y. Kutuvantavida, W. Freude, and C. Koos, “Hybrid 2D/3D photonic integration for non-planar circuit topologies,” in 42nd European Conference on Optical Communication (2016), paper W.3.F.4.

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

Kreissl, J.

M. Moehrle, J. Kreissl, W. D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, and N. Grote, “Ultra-low threshold 1490  nm surface-emitting BH-DFB laser diode with integrated monitor photodiode,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2010), pp. 1–4.

Krishnamoorthy, A. V.

Kubicky, J.

Kumari, S.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Kunert, B.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Kutuvantavida, Y.

M. R. Billah, J. N. Kemal, M. Blaicher, Y. Kutuvantavida, and C. Kieninger, “Four-channel 784  Gbit/s transmitter module enabled by photonic wire bonding and silicon-organic hybrid modulators,” in 43rd European Conference on Optical Communication (ECOC), Gothenburg, Sweden, September17–21, 2017, paper Th.PDP.C.1.

A. Nesic, M. Blaicher, T. Hoose, M. Lauermann, Y. Kutuvantavida, W. Freude, and C. Koos, “Hybrid 2D/3D photonic integration for non-planar circuit topologies,” in 42nd European Conference on Optical Communication (2016), paper W.3.F.4.

Kuyken, B.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Lauermann, M.

A. Nesic, M. Blaicher, T. Hoose, M. Lauermann, Y. Kutuvantavida, W. Freude, and C. Koos, “Hybrid 2D/3D photonic integration for non-planar circuit topologies,” in 42nd European Conference on Optical Communication (2016), paper W.3.F.4.

Le Liepvre, A.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Lee, D. Y.

Lee, J. S.

H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24, 16258–16266 (2016).
[Crossref]

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

P. O. Brien, L. Carrol, C. Eason, and J. S. Lee, Silicon Photonics III, Topics in Applied Physics (Springer, 2016), Vol. 122.

Lee, J.-H.

Leger, Y.

I. Lucci, M. Bahri, Y. Leger, and C. Cornet, “Thermal management of monolithic and heterogeneous integrated lasers,” in Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)] (IEEE, 2016), Vol. 22, pp. 1.

Leinse, A.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

Lelarge, F.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Leuthold, J.

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds—a novel concept for chip-to-chip interconnects,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference (2011), paper PDPC1.

Levaufre, G.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Li, C.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Li, K.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

Lim, A. E. J.

A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Lin, S.

Lindenmann, N.

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds—a novel concept for chip-to-chip interconnects,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference (2011), paper PDPC1.

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

Liow, T. Y.

A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Liow, T.-Y.

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

Liu, A.

Liu, C.

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

Liu, H.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

Liu, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Liu, S.

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Lo, G. Q.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Lo, P. G.-Q.

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

Logan, D. F.

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photon. Rev. 10, 895–921 (2016).
[Crossref]

Lu, H.

Lucci, I.

I. Lucci, M. Bahri, Y. Leger, and C. Cornet, “Thermal management of monolithic and heterogeneous integrated lasers,” in Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)] (IEEE, 2016), Vol. 22, pp. 1.

Ludwig, P.

Luo, X.

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

Luo, Y.

Luysberg, M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Ma, H.

Maho, A.

Make, D.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Malhouitre, S.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Mantl, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Marin, P.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

Marris-Morini, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Mashanovich, G.

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Mashanovich, G. Z.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Mazur, Y. I.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

Meitl, M.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
[Crossref]

Melikyan, A.

Meneghesso, G.

M. Buffolo, M. Meneghini, C. De Santi, M. L. Davenport, J. E. Bowers, G. Meneghesso, and E. Zanoni, “Degradation mechanisms of heterogeneous III–V/silicon 1.55-µm DBR laser diodes,” IEEE J. Quantum Electron. 53, 1–8 (2017).
[Crossref]

Meneghini, M.

M. Buffolo, M. Meneghini, C. De Santi, M. L. Davenport, J. E. Bowers, G. Meneghesso, and E. Zanoni, “Degradation mechanisms of heterogeneous III–V/silicon 1.55-µm DBR laser diodes,” IEEE J. Quantum Electron. 53, 1–8 (2017).
[Crossref]

Menezo, S.

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

Mentovich, E.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Merckling, C.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Merget, F.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

Michel, J.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Moehrle, M.

M. Moehrle, J. Kreissl, W. D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, and N. Grote, “Ultra-low threshold 1490  nm surface-emitting BH-DFB laser diode with integrated monitor photodiode,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2010), pp. 1–4.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

Moerl, L.

M. Moehrle, J. Kreissl, W. D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, and N. Grote, “Ultra-low threshold 1490  nm surface-emitting BH-DFB laser diode with integrated monitor photodiode,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2010), pp. 1–4.

Möhrle, M.

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

Molzow, W. D.

M. Moehrle, J. Kreissl, W. D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, and N. Grote, “Ultra-low threshold 1490  nm surface-emitting BH-DFB laser diode with integrated monitor photodiode,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2010), pp. 1–4.

Mooney, M. B.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
[Crossref]

Mori, M.

Morthier, G.

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Moscoso-Mártir, A.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Müller, J.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Mussler, G.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Nakamura, T.

Nedeljkovic, M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Nesic, A.

A. Nesic, M. Blaicher, T. Hoose, M. Lauermann, Y. Kutuvantavida, W. Freude, and C. Koos, “Hybrid 2D/3D photonic integration for non-planar circuit topologies,” in 42nd European Conference on Optical Communication (2016), paper W.3.F.4.

Nielsen, M.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

O’Brien, P.

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24, 16258–16266 (2016).
[Crossref]

Obrien, P.

Okano, M.

Olivier, S.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Onanuga, T.

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

Onanuga, T. P.

Ortsiefer, M.

Pantouvaki, M.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Pavarelli, N.

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

Petropoulos, P.

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Pezeshki, B.

Pinna, S.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

Pommarede, X.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Porte, H.

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Przyrembel, G.

M. Moehrle, J. Kreissl, W. D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, and N. Grote, “Ultra-low threshold 1490  nm surface-emitting BH-DFB laser diode with integrated monitor photodiode,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2010), pp. 1–4.

Raj, K.

Randel, S.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

Rangarajan, S.

Rasmussen, D. E.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Ren, X.

Ristic, S.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

Rockman, S.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Roelkens, G.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III–V-on-silicon broadband light emitters,” Opt. Express 24, 13754–13762 (2016).
[Crossref]

Romero-García, S.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Salamo, G. J.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

Sandomirsky, A.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Scarcella, C.

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24, 16258–16266 (2016).
[Crossref]

Schmid, J. H.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Schmogrow, R.

Schrans, T.

Seeds, A.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Setter, R.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Sharif Azadeh, S.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Shen, A.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Shen, B.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Sherback, M.

Shi, Y.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Shimizu, T.

Shubin, I.

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sigg, H.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Sigmund, A.

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

M. Moehrle, J. Kreissl, W. D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, and N. Grote, “Ultra-low threshold 1490  nm surface-emitting BH-DFB laser diode with integrated monitor photodiode,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2010), pp. 1–4.

Simon, P.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Snyder, B.

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Song, B.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

Song, J.

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Spencer, D. T.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014).
[Crossref]

Stagarescu, C.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

Stoica, T.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Subramanian, A. Z.

Tang, M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

Temporiti, E.

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

Tern, R. P. C.

A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Thacker, H. D.

Thiel, M.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Thomson, D. J.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Tian, B.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Ton, D.

Troppenz, U.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

Tu, X.

A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Urino, Y.

Van Campenhout, J.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Van Gasse, K.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Van Thourhout, D.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Verbist, J.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

von den Driesch, N.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Wagner, C.

M. Moehrle, J. Kreissl, W. D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, and N. Grote, “Ultra-low threshold 1490  nm surface-emitting BH-DFB laser diode with integrated monitor photodiode,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2010), pp. 1–4.

Wang, H.

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

Wang, J.

Wang, Q.

Wang, Q. J.

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

Wang, R.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Wang, Z.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Wilson, P. R.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Wingert, T.

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

Wirths, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Witzens, J.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

Wörhoff, K.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

Xie, W.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Xu, D.-X.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Yamada, K.

K. Yamada, Silicon Photonics II (2011), Vol. 119, pp. 1–29.

Yamamoto, T.

Yang, X.

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Yao, J.

Yin, B.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Yin, X.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

Yoffe, G. W.

Yu, M.

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

Zanoni, E.

M. Buffolo, M. Meneghini, C. De Santi, M. L. Davenport, J. E. Bowers, G. Meneghesso, and E. Zanoni, “Degradation mechanisms of heterogeneous III–V/silicon 1.55-µm DBR laser diodes,” IEEE J. Quantum Electron. 53, 1–8 (2017).
[Crossref]

Zhang, J.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Zhao, Y.

Zheng, X.

Zhou, Z.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Zhu, Y.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Zimmermann, L.

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Zou, S.

Zwickel, H.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

Adv. Opt. Technol. (1)

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

Front. Mater. (1)

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

Front. Phys. (1)

C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 1–16 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Buffolo, M. Meneghini, C. De Santi, M. L. Davenport, J. E. Bowers, G. Meneghesso, and E. Zanoni, “Degradation mechanisms of heterogeneous III–V/silicon 1.55-µm DBR laser diodes,” IEEE J. Quantum Electron. 53, 1–8 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (5)

M. J. R. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014).
[Crossref]

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

J. Lightwave Technol. (7)

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

J. Wang, X. Ren, C. Deng, H. Hu, Y. He, Z. Cheng, H. Ma, Q. Wang, and Y. Huang, “Extremely low-threshold current density InGaAs/AlGaAs quantum-well lasers on silicon,” J. Lightwave Technol. 33, 3163–3169 (2015).
[Crossref]

B. Pezeshki, J. Heanue, D. Ton, T. Schrans, S. Rangarajan, S. Zou, G. W. Yoffe, A. Liu, M. Sherback, J. Kubicky, and P. Ludwig, “High performance MEMS-based micro-optic assembly for multi-lane transceivers,” J. Lightwave Technol. 32, 2796–2799 (2014).
[Crossref]

G. de Valicourt, C.-M. Chang, M. S. Eggleston, A. Melikyan, C. Bolle, N. Kaneda, M. P. Earnshaw, Y.-K. Chen, A. Maho, R. Brenot, and P. Dong, “Hybrid-integrated wavelength and reflectivity tunable III–V/silicon transmitter,” J. Lightwave Technol. 35, 1376–1382 (2017).
[Crossref]

B. Snyder, B. Corbett, and P. Obrien, “Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit,” J. Lightwave Technol. 31, 3934–3942 (2013).
[Crossref]

N. Hatori, T. Shimizu, M. Okano, M. Ishizaka, T. Yamamoto, Y. Urino, M. Mori, T. Nakamura, and Y. Arakawa, “A hybrid integrated light source on a silicon platform using a trident spot-size converter,” J. Lightwave Technol. 32, 1329–1336 (2014).
[Crossref]

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

J. Opt. (1)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Laser Photon. Rev. (3)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014).
[Crossref]

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photon. Rev. 10, 895–921 (2016).
[Crossref]

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Light Sci. Appl. (1)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Nanophotonics (1)

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Nat. Photonics (5)

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
[Crossref]

Opt. Express (6)

A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III–V-on-silicon broadband light emitters,” Opt. Express 24, 13754–13762 (2016).
[Crossref]

H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24, 16258–16266 (2016).
[Crossref]

S. Lin, X. Zheng, J. Yao, S. S. Djordjevic, J. E. Cunningham, J.-H. Lee, I. Shubin, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, K. Raj, and A. V. Krishnamoorthy, “Efficient, tunable flip-chip-integrated III–V/Si hybrid external-cavity laser array,” Opt. Express 24, 21454–21462 (2016).
[Crossref]

N. Higashitarumizu and Y. Ishikawa, “Enhanced direct-gap light emission from Si-capped n+-Ge epitaxial layers on Si after post-growth rapid cyclic annealing: impact of non-radiative interface recombination toward Ge/Si double heterostructure lasers,” Opt. Express 25, 21286–21300 (2017).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

K. Kikuchi, “Characterization of semiconductor-laser phase noise and estimation of bit-error rate performance with low-speed offline digital coherent receivers,” Opt. Express 20, 5291–5302 (2012).
[Crossref]

Sci. Rep. (1)

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Other (15)

Y. Urino, T. Nakamura, and Y. Arakawa, Silicon Photonics III, Topics in Applied Physics (Springer, 2016), Vol. 122.

I. Lucci, M. Bahri, Y. Leger, and C. Cornet, “Thermal management of monolithic and heterogeneous integrated lasers,” in Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)] (IEEE, 2016), Vol. 22, pp. 1.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

P. O. Brien, L. Carrol, C. Eason, and J. S. Lee, Silicon Photonics III, Topics in Applied Physics (Springer, 2016), Vol. 122.

K. Yamada, Silicon Photonics II (2011), Vol. 119, pp. 1–29.

“CST—Computer simulation technology,” https://www.cst.com/ .

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds—a novel concept for chip-to-chip interconnects,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference (2011), paper PDPC1.

A. Nesic, M. Blaicher, T. Hoose, M. Lauermann, Y. Kutuvantavida, W. Freude, and C. Koos, “Hybrid 2D/3D photonic integration for non-planar circuit topologies,” in 42nd European Conference on Optical Communication (2016), paper W.3.F.4.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

M. R. Billah, J. N. Kemal, M. Blaicher, Y. Kutuvantavida, and C. Kieninger, “Four-channel 784  Gbit/s transmitter module enabled by photonic wire bonding and silicon-organic hybrid modulators,” in 43rd European Conference on Optical Communication (ECOC), Gothenburg, Sweden, September17–21, 2017, paper Th.PDP.C.1.

“IP-Photoresists,” http://www.nanoscribe.de/files/1814/0662/4393/IP-Resist_IP-Dip_web.pdf .

M. Moehrle, J. Kreissl, W. D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, and N. Grote, “Ultra-low threshold 1490  nm surface-emitting BH-DFB laser diode with integrated monitor photodiode,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2010), pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Vision of a photonic multi-chip transmitter for WDM communications. (a) The system exploits PWBs to combine the distinct advantages of different photonic integration platforms: DFB lasers are realized based on direct-bandgap InP substrates, whereas SiP chips lend themselves to implement electro-optic modulators. For dense packing of optical channels, high-quality AWGs are needed, which are best realized on medium-index-contrast material systems such as TriPleX [43]. The functionality of the multi-chip system depends vitally on efficient chip-to-chip and chip-to-fiber interconnects, which are realized by PWBs. The focus of this work is on low-loss PWB links between InP lasers and SiP chips (red). (b) SEM image of a laser–chip interface. (c) Chip-to-chip-connection between two SiP dies [39]. (d) Fiber-to-chip interface using a PWB to connect the individual cores of a multi-core fiber (MCF) to an array of planar SOI WGs [40].
Fig. 2.
Fig. 2. Multi-chip assembly demonstrating a PWB between an InP laser and a SiP chip. (a) Assembly concept: the laser and the SiP die are mounted on a common carrier by adhesive bonding. The carrier compensates for differences in die thickness. Precise alignment between the laser emission window and the Si nanowire is not required. Tapers are utilized at the interfaces at both ends of the PWB for low-loss transitions between the PWB WG section and the attached components. A GC is used to interface the SiP WG to a standard SMF. The WG section is designed to have a rectangular cross section of 2.0    μm × 1.4    μm . (b) HCSEL interface: the HCSEL consists of an in-plane InGaAsP DFB laser cavity and an etched 45° mirror to deflect the light ( λ 1550    nm ) to the surface-normal direction. The light is then captured with a (rectangular) polymer PWB taper. At the HCSEL emission window, the taper cross section corresponds to a square with a side length of 4 µm, which is linearly converted to a rectangular cross section with a size of 2.0    μm × 1.4    μm at the transition to the PWB WG section. Panels (c) and (d) show, respectively, the side and top views of the transition to the SiP nanowire waveguide. The polymer PWB taper starts with a rectangular 2.0    μm × 1.4    μm cross section of the PWB WG section, which is linearly converted to a final width of 0.8 µm and a height of 0.5 µm along a length of 60 µm. Alignment markers are used to exactly locate the position of the coupling interface.
Fig. 3.
Fig. 3. Hybrid MCM combining passive SiP WGs with an InP DFB laser array. (a) A SEM micrograph of the MCM, comprising four LDs (LD1…LD4), each connected to a SiP on-chip WG via a PWB (PWB1…PWB4). The ILs of the PWBs are denoted in the figure. PWB2 shows an IL of ( 0.4 ± 0.3 )    dB , including the coupling losses of both the HCSEL–PWB interface and the transition to the SiP nanowire, as well as the propagation loss in the freeform WG. Slightly higher losses of ( 1.3 ± 0.4 )    dB , ( 0.6 ± 0.3 )    dB , and ( 0.6 ± 0.3 )    dB are observed for PWB 1, 3, and 4, respectively. The variations are attributed to uncertainties of the HCSEL emission spot size, the emission direction, and the PWB shape. Still, these losses are well below the 2.3 dB that were obtained for other concepts that rely on active alignment [36]. (b) Measurement of the emission direction of a HCSEL before photonic wire bonding. The measurement was taken using a goniometric radiometer for three HCSEL chips. The Gaussian fit (red) reveals an emission angle of θ air = ( 83 ± 1 ) ° , which deviates from the ideal 90° due to the fabrication tolerances of the HCSEL deflection mirror. (c) Side-view of PWB1. For efficient coupling into the PWB taper ( n PWB = 1.52 ), the taper axis has to be inclined by approximately θ PWB = 85 ° , according to Snell’s law.
Fig. 4.
Fig. 4. PWB performance characterization. (a) Experimental setup for measuring the ILs of the PWB as well as the laser linewidth. The electrical path (green) consists of a current source to drive the LD. The optical path comprises the PWB (orange) as well as a SiP nanowire, a grating coupler, and an SMF (all black). At the end of the SMF, the light is coupled into a calibrated IS to precisely measure the optical power. Alternatively, the emitted light can be coupled to a heterodyne coherent receiver, which is connected to a highly stable external-cavity laser (ECL, not depicted) as a LO for linewidth measurements. A polarization controller (Pol. Contr.) is used for optimizing the beat signal between the recorded light and the LO reference. (b) Power–current characteristic of LD2 and LD3, measured at the laser facet before photonic wire bonding ( P 0 , blue squares), and inside the respective SiP nanowire after photonic wire bonding ( P 1 , red squares). The power level P 1 was corrected by taking into account the losses caused by propagation through the SiP chip, the corresponding GC, and the SMF patch cord. The dashed lines represent linear fits. The PWB ILs amount to 0.4 and to 0.6 dB. The HCSEL threshold is not affected by the process of photonic wire bonding. (c) Optical linewidth of LD5 measured before and after photonic wire bonding. The FWHM of the power spectrum amounts to Δ f = 2.7    MHz without and Δ f = 3.4    MHz with a PWB. Within the measurement accuracy, we do not see a significant increase of laser linewidth. These findings were confirmed using a variety of other devices.
Fig. 5.
Fig. 5. Numerical verification and benchmarking of PWB. (a) Calculated normalized intensity of the PWB. Simulations were performed using a vectorial finite-integration technique (CST Microwave Studio [49]). Light is launched into Port 1, which is located at the bottom of the PWB input taper connected to the HCSEL, and Port 2 extracts the power guided by the fundamental mode of the SiP WG. Losses are mainly caused by the transition between the PWB and the Si nanowire, indicated by field portions that are radiated away from the WG structure (see inset). (b) Transmission spectrum obtained for the propagation from Port 1 to Port 2. The IL amounts to approximately 0.3 dB and is flat over the entire frequency range. This is in good agreement with the measured ILs that range from ( 0.4 ± 0.3 )    dB to ( 1.3 ± 0.4 )    dB .

Metrics