Abstract

The resonant enhancement of both mechanical and optical response in microcavity optomechanical devices allows exquisitely sensitive measurements of stimuli, such as acceleration, mass, and magnetic fields. In this work, we show that quantum correlated light can improve the performance of such sensors, increasing both their sensitivity and their bandwidth. Specifically, we develop a silicon-chip-based cavity optomechanical magnetometer that incorporates phase squeezed light to suppress optical shot noise. At frequencies where shot noise is the dominant noise source, this allows a 20% improvement in magnetic field sensitivity. Furthermore, squeezed light broadens the range of frequencies at which thermal noise dominates, which has the effect of increasing the overall sensor bandwidth by 50%. These proof-of-principle results open the door to apply quantum correlated light more broadly in chip-scale sensors and devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Magnetometry via spin-mechanical coupling in levitated optomechanics

Pardeep Kumar and M. Bhattacharya
Opt. Express 25(16) 19568-19582 (2017)

Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction

Justin D. Cohen, Seán M. Meenehan, and Oskar Painter
Opt. Express 21(9) 11227-11236 (2013)

Quantum optomechanics—throwing a glance [Invited]

M. Aspelmeyer, S. Gröblacher, K. Hammerer, and N. Kiesel
J. Opt. Soc. Am. B 27(6) A189-A197 (2010)

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
    [Crossref]
  2. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
    [Crossref]
  3. W. P. Bowen and G. Milburn, Quantum Optomechanics (CRC Press, 2016).
  4. A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
    [Crossref]
  5. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
    [Crossref]
  6. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
    [Crossref]
  7. D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
    [Crossref]
  8. A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, “Mechanical squeezing via parametric amplification and weak measurement,” Phys. Rev. Lett. 107, 213603 (2011).
    [Crossref]
  9. E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).
    [Crossref]
  10. J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. Sillanpää, “Squeezing of quantum noise of motion in a micromechanical resonator,” Phys. Rev. Lett. 115, 243601 (2015).
    [Crossref]
  11. F. Lecocq, J. Clark, R. Simmonds, J. Aumentado, and J. Teufel, “Quantum nondemolition measurement of a nonclassical state of a massive object,” Phys. Rev. X 5, 041037 (2015).
    [Crossref]
  12. A. H. Safavi-Naeini, S. Grblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
    [Crossref]
  13. T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal, “Strong optomechanical squeezing of light,” Phys. Rev. X 3, 031012 (2013).
    [Crossref]
  14. A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
    [Crossref]
  15. M. Metcalfe, “Applications of cavity optomechanics,” Appl. Phys. Rev. 1, 031105 (2014).
    [Crossref]
  16. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
    [Crossref]
  17. LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).
    [Crossref]
  18. J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
    [Crossref]
  19. W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
    [Crossref]
  20. A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
    [Crossref]
  21. F. G. Cervantes, L. Kumanchik, J. Pratt, and J. Taylor, “High sensitivity optomechanical reference accelerometer over 10  kHz,” Appl. Phys. Lett. 104, 221111 (2014).
    [Crossref]
  22. S. Forstner, S. Prams, J. Knittel, E. D. vanOoijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
    [Crossref]
  23. S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
    [Crossref]
  24. C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5, 044007 (2016).
    [Crossref]
  25. J. Zhu, G. Zhao, I. Savukov, and L. Yang, “Polymer encapsulated microcavity optomechanical magnetometer,” Sci. Rep. 7, 8896 (2017).
    [Crossref]
  26. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
    [Crossref]
  27. L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
    [Crossref]
  28. U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scripta 91, 053001 (2016).
    [Crossref]
  29. C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23, 1693–1708 (1981).
    [Crossref]
  30. The LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. 7, 962–965 (2011).
    [Crossref]
  31. The LIGO Scientific Collaboration, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
    [Crossref]
  32. H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
    [Crossref]
  33. M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H. A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
    [Crossref]
  34. R. C. Pooser and B. Lawie, “Ultrasensitive measurement of microcantilever displacement below the shot-noise limit,” Optica 2, 393–399 (2015).
    [Crossref]
  35. N. Treps, N. Grosse, W. P. Bowen, C. Fabre, H.-A. Bachor, and P. K. Lam, “A quantum laser pointer,” Science 301, 940–943 (2003).
    [Crossref]
  36. F. Wolfgramm, A. Cere, F. A. Beduini, A. Predojevic, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
    [Crossref]
  37. T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86, 023803 (2012).
    [Crossref]
  38. U. B. Hoff, G. I. Harris, L. S. Madsen, H. Kerdoncuff, M. Lassen, B. M. Nielsen, W. P. Bowen, and U. L. Andersen, “Quantum-enhanced micromechanical displacement sensitivity,” Opt. Lett. 38, 1413–1415 (2013).
    [Crossref]
  39. C. Schäfermeier, H. Kerdoncuff, U. B. Hoff, H. Fu, A. Huck, J. Bilek, G. I. Harris, W. P. Bowen, T. Gehring, and U. L. Andersen, “Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light,” Nat. Commun. 7, 13628 (2016).
    [Crossref]
  40. J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191–195 (2017).
    [Crossref]
  41. J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Observation of strong radiation pressure forces from squeezed light on a mechanical oscillator,” Nat. Phys. 12, 683–687 (2016).
    [Crossref]
  42. M. Korobko, L. Kleybolte, S. Ast, H. Miao, Y. Chen, and R. Schnabel, “Beating the standard sensitivity-bandwidth limit of cavity-enhanced interferometers with internal squeezed-light generation,” Phys. Rev. Lett. 118, 143601 (2017).
    [Crossref]
  43. G. I. Harris, U. L. Andersen, J. Knittel, and W. P. Bowen, “Feedback-enhanced sensitivity in optomechanics: surpassing the parametric instability barrier,” Phys. Rev. A 85, 061802 (2012).
    [Crossref]
  44. E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
    [Crossref]
  45. L. Ding, C. Belacel, S. Ducci, G. Leo, and I. Favero, “Ultralow loss single-mode silica tapers manufactured by a microheater,” Appl. Opt. 49, 2441–2445 (2010).
    [Crossref]
  46. E. S. Polzik, J. Carri, and H. J. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit,” Appl. Phys. B 55, 279–290 (1992).
    [Crossref]
  47. Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, “Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Opt. Express 15, 4321–4327 (2007).
    [Crossref]
  48. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
    [Crossref]
  49. H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
    [Crossref]
  50. A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, “On-chip optical squeezing,” Phys. Rev. Appl. 3, 044005 (2015).
    [Crossref]
  51. U. B. Hoff, B. M. Nielsen, and U. L. Andersen, “Integrated source of broadband quadrature squeezed light,” Opt. Express 23, 12013–12036 (2015).
    [Crossref]
  52. I. Savukov and T. Karaulanov, “Magnetic-resonance imaging of the human brain with an atomic magnetometer,” Appl. Phys. Lett. 103, 043703 (2013).
    [Crossref]
  53. H. Xia, A. Ben-Amar Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89, 211104 (2006).
    [Crossref]
  54. J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J. Wind, “High-resolution scanning SQUID microscope,” Appl. Phys. Lett. 66, 1138–1140 (1995).
    [Crossref]
  55. F. Baudenbacher, L. E. Fong, J. R. Holzer, and M. Radparvar, “Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples,” Appl. Phys. Lett. 82, 3487–3489 (2003).
    [Crossref]

2017 (3)

J. Zhu, G. Zhao, I. Savukov, and L. Yang, “Polymer encapsulated microcavity optomechanical magnetometer,” Sci. Rep. 7, 8896 (2017).
[Crossref]

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191–195 (2017).
[Crossref]

M. Korobko, L. Kleybolte, S. Ast, H. Miao, Y. Chen, and R. Schnabel, “Beating the standard sensitivity-bandwidth limit of cavity-enhanced interferometers with internal squeezed-light generation,” Phys. Rev. Lett. 118, 143601 (2017).
[Crossref]

2016 (7)

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Observation of strong radiation pressure forces from squeezed light on a mechanical oscillator,” Nat. Phys. 12, 683–687 (2016).
[Crossref]

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

C. Schäfermeier, H. Kerdoncuff, U. B. Hoff, H. Fu, A. Huck, J. Bilek, G. I. Harris, W. P. Bowen, T. Gehring, and U. L. Andersen, “Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light,” Nat. Commun. 7, 13628 (2016).
[Crossref]

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5, 044007 (2016).
[Crossref]

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scripta 91, 053001 (2016).
[Crossref]

LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

2015 (7)

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).
[Crossref]

J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. Sillanpää, “Squeezing of quantum noise of motion in a micromechanical resonator,” Phys. Rev. Lett. 115, 243601 (2015).
[Crossref]

F. Lecocq, J. Clark, R. Simmonds, J. Aumentado, and J. Teufel, “Quantum nondemolition measurement of a nonclassical state of a massive object,” Phys. Rev. X 5, 041037 (2015).
[Crossref]

R. C. Pooser and B. Lawie, “Ultrasensitive measurement of microcantilever displacement below the shot-noise limit,” Optica 2, 393–399 (2015).
[Crossref]

A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, “On-chip optical squeezing,” Phys. Rev. Appl. 3, 044005 (2015).
[Crossref]

U. B. Hoff, B. M. Nielsen, and U. L. Andersen, “Integrated source of broadband quadrature squeezed light,” Opt. Express 23, 12013–12036 (2015).
[Crossref]

2014 (4)

F. G. Cervantes, L. Kumanchik, J. Pratt, and J. Taylor, “High sensitivity optomechanical reference accelerometer over 10  kHz,” Appl. Phys. Lett. 104, 221111 (2014).
[Crossref]

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

M. Metcalfe, “Applications of cavity optomechanics,” Appl. Phys. Rev. 1, 031105 (2014).
[Crossref]

2013 (7)

A. H. Safavi-Naeini, S. Grblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal, “Strong optomechanical squeezing of light,” Phys. Rev. X 3, 031012 (2013).
[Crossref]

The LIGO Scientific Collaboration, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
[Crossref]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref]

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H. A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

I. Savukov and T. Karaulanov, “Magnetic-resonance imaging of the human brain with an atomic magnetometer,” Appl. Phys. Lett. 103, 043703 (2013).
[Crossref]

U. B. Hoff, G. I. Harris, L. S. Madsen, H. Kerdoncuff, M. Lassen, B. M. Nielsen, W. P. Bowen, and U. L. Andersen, “Quantum-enhanced micromechanical displacement sensitivity,” Opt. Lett. 38, 1413–1415 (2013).
[Crossref]

2012 (4)

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86, 023803 (2012).
[Crossref]

G. I. Harris, U. L. Andersen, J. Knittel, and W. P. Bowen, “Feedback-enhanced sensitivity in optomechanics: surpassing the parametric instability barrier,” Phys. Rev. A 85, 061802 (2012).
[Crossref]

S. Forstner, S. Prams, J. Knittel, E. D. vanOoijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

2011 (4)

A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, “Mechanical squeezing via parametric amplification and weak measurement,” Phys. Rev. Lett. 107, 213603 (2011).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

The LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. 7, 962–965 (2011).
[Crossref]

2010 (4)

F. Wolfgramm, A. Cere, F. A. Beduini, A. Predojevic, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

L. Ding, C. Belacel, S. Ducci, G. Leo, and I. Favero, “Ultralow loss single-mode silica tapers manufactured by a microheater,” Appl. Opt. 49, 2441–2445 (2010).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref]

2009 (1)

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]

2008 (2)

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

2007 (1)

2006 (1)

H. Xia, A. Ben-Amar Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89, 211104 (2006).
[Crossref]

2003 (2)

F. Baudenbacher, L. E. Fong, J. R. Holzer, and M. Radparvar, “Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples,” Appl. Phys. Lett. 82, 3487–3489 (2003).
[Crossref]

N. Treps, N. Grosse, W. P. Bowen, C. Fabre, H.-A. Bachor, and P. K. Lam, “A quantum laser pointer,” Science 301, 940–943 (2003).
[Crossref]

2001 (1)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[Crossref]

1995 (1)

J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J. Wind, “High-resolution scanning SQUID microscope,” Appl. Phys. Lett. 66, 1138–1140 (1995).
[Crossref]

1992 (2)

E. S. Polzik, J. Carri, and H. J. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit,” Appl. Phys. B 55, 279–290 (1992).
[Crossref]

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

1986 (1)

L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref]

1985 (1)

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref]

1981 (1)

C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23, 1693–1708 (1981).
[Crossref]

Abramovici, A.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Alegre, T. P. M.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Allman, M. S.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Althouse, W. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Andersen, U. L.

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scripta 91, 053001 (2016).
[Crossref]

C. Schäfermeier, H. Kerdoncuff, U. B. Hoff, H. Fu, A. Huck, J. Bilek, G. I. Harris, W. P. Bowen, T. Gehring, and U. L. Andersen, “Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light,” Nat. Commun. 7, 13628 (2016).
[Crossref]

U. B. Hoff, B. M. Nielsen, and U. L. Andersen, “Integrated source of broadband quadrature squeezed light,” Opt. Express 23, 12013–12036 (2015).
[Crossref]

U. B. Hoff, G. I. Harris, L. S. Madsen, H. Kerdoncuff, M. Lassen, B. M. Nielsen, W. P. Bowen, and U. L. Andersen, “Quantum-enhanced micromechanical displacement sensitivity,” Opt. Lett. 38, 1413–1415 (2013).
[Crossref]

G. I. Harris, U. L. Andersen, J. Knittel, and W. P. Bowen, “Feedback-enhanced sensitivity in optomechanics: surpassing the parametric instability barrier,” Phys. Rev. A 85, 061802 (2012).
[Crossref]

Anetsberger, G.

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[Crossref]

Ansmann, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Arcizet, O.

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

A. H. Safavi-Naeini, S. Grblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Ast, S.

M. Korobko, L. Kleybolte, S. Ast, H. Miao, Y. Chen, and R. Schnabel, “Beating the standard sensitivity-bandwidth limit of cavity-enhanced interferometers with internal squeezed-light generation,” Phys. Rev. Lett. 118, 143601 (2017).
[Crossref]

Aumentado, J.

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191–195 (2017).
[Crossref]

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Observation of strong radiation pressure forces from squeezed light on a mechanical oscillator,” Nat. Phys. 12, 683–687 (2016).
[Crossref]

F. Lecocq, J. Clark, R. Simmonds, J. Aumentado, and J. Teufel, “Quantum nondemolition measurement of a nonclassical state of a massive object,” Phys. Rev. X 5, 041037 (2015).
[Crossref]

Bachor, H. A.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H. A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

Bachor, H.-A.

N. Treps, N. Grosse, W. P. Bowen, C. Fabre, H.-A. Bachor, and P. K. Lam, “A quantum laser pointer,” Science 301, 940–943 (2003).
[Crossref]

Bauchrowitz, J.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref]

Baudenbacher, F.

F. Baudenbacher, L. E. Fong, J. R. Holzer, and M. Radparvar, “Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples,” Appl. Phys. Lett. 82, 3487–3489 (2003).
[Crossref]

Beduini, F. A.

F. Wolfgramm, A. Cere, F. A. Beduini, A. Predojevic, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref]

Belacel, C.

Ben-Amar Baranga, A.

H. Xia, A. Ben-Amar Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89, 211104 (2006).
[Crossref]

Bialczak, R. C.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Bilek, J.

C. Schäfermeier, H. Kerdoncuff, U. B. Hoff, H. Fu, A. Huck, J. Bilek, G. I. Harris, W. P. Bowen, T. Gehring, and U. L. Andersen, “Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light,” Nat. Commun. 7, 13628 (2016).
[Crossref]

Black, E. D.

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[Crossref]

Blanton, S. H.

J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J. Wind, “High-resolution scanning SQUID microscope,” Appl. Phys. Lett. 66, 1138–1140 (1995).
[Crossref]

Blasius, T. D.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Bowen, W. P.

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5, 044007 (2016).
[Crossref]

C. Schäfermeier, H. Kerdoncuff, U. B. Hoff, H. Fu, A. Huck, J. Bilek, G. I. Harris, W. P. Bowen, T. Gehring, and U. L. Andersen, “Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light,” Nat. Commun. 7, 13628 (2016).
[Crossref]

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref]

U. B. Hoff, G. I. Harris, L. S. Madsen, H. Kerdoncuff, M. Lassen, B. M. Nielsen, W. P. Bowen, and U. L. Andersen, “Quantum-enhanced micromechanical displacement sensitivity,” Opt. Lett. 38, 1413–1415 (2013).
[Crossref]

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H. A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

G. I. Harris, U. L. Andersen, J. Knittel, and W. P. Bowen, “Feedback-enhanced sensitivity in optomechanics: surpassing the parametric instability barrier,” Phys. Rev. A 85, 061802 (2012).
[Crossref]

S. Forstner, S. Prams, J. Knittel, E. D. vanOoijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, “Mechanical squeezing via parametric amplification and weak measurement,” Phys. Rev. Lett. 107, 213603 (2011).
[Crossref]

N. Treps, N. Grosse, W. P. Bowen, C. Fabre, H.-A. Bachor, and P. K. Lam, “A quantum laser pointer,” Science 301, 940–943 (2003).
[Crossref]

W. P. Bowen and G. Milburn, Quantum Optomechanics (CRC Press, 2016).

Brandt, M.

J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. Sillanpää, “Squeezing of quantum noise of motion in a micromechanical resonator,” Phys. Rev. Lett. 115, 243601 (2015).
[Crossref]

Brawley, G. A.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref]

Carri, J.

E. S. Polzik, J. Carri, and H. J. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit,” Appl. Phys. B 55, 279–290 (1992).
[Crossref]

Castellanos-Beltran, M. A.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]

Caves, C. M.

C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23, 1693–1708 (1981).
[Crossref]

Cere, A.

F. Wolfgramm, A. Cere, F. A. Beduini, A. Predojevic, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref]

Cervantes, F. G.

F. G. Cervantes, L. Kumanchik, J. Pratt, and J. Taylor, “High sensitivity optomechanical reference accelerometer over 10  kHz,” Appl. Phys. Lett. 104, 221111 (2014).
[Crossref]

Chan, J.

A. H. Safavi-Naeini, S. Grblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Chen, Y.

M. Korobko, L. Kleybolte, S. Ast, H. Miao, Y. Chen, and R. Schnabel, “Beating the standard sensitivity-bandwidth limit of cavity-enhanced interferometers with internal squeezed-light generation,” Phys. Rev. Lett. 118, 143601 (2017).
[Crossref]

Cicak, K.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Clark, J.

F. Lecocq, J. Clark, R. Simmonds, J. Aumentado, and J. Teufel, “Quantum nondemolition measurement of a nonclassical state of a massive object,” Phys. Rev. X 5, 041037 (2015).
[Crossref]

Clark, J. B.

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191–195 (2017).
[Crossref]

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Observation of strong radiation pressure forces from squeezed light on a mechanical oscillator,” Nat. Phys. 12, 683–687 (2016).
[Crossref]

Cleland, A. N.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Clerk, A. A.

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).
[Crossref]

Damskägg, E.

J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. Sillanpää, “Squeezing of quantum noise of motion in a micromechanical resonator,” Phys. Rev. Lett. 115, 243601 (2015).
[Crossref]

Danzmann, K.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref]

Daria, V.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H. A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

Ding, L.

Doherty, A. C.

A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, “Mechanical squeezing via parametric amplification and weak measurement,” Phys. Rev. Lett. 107, 213603 (2011).
[Crossref]

Donner, T.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]

Dooley, K. L.

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref]

Dowling, J. P.

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86, 023803 (2012).
[Crossref]

Drever, R. W. P.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Ducci, S.

Dutt, A.

A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, “On-chip optical squeezing,” Phys. Rev. Appl. 3, 044005 (2015).
[Crossref]

Eberle, T.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref]

Fabre, C.

N. Treps, N. Grosse, W. P. Bowen, C. Fabre, H.-A. Bachor, and P. K. Lam, “A quantum laser pointer,” Science 301, 940–943 (2003).
[Crossref]

Favero, I.

Fong, L. E.

F. Baudenbacher, L. E. Fong, J. R. Holzer, and M. Radparvar, “Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples,” Appl. Phys. Lett. 82, 3487–3489 (2003).
[Crossref]

Forstner, S.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref]

S. Forstner, S. Prams, J. Knittel, E. D. vanOoijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Fu, H.

C. Schäfermeier, H. Kerdoncuff, U. B. Hoff, H. Fu, A. Huck, J. Bilek, G. I. Harris, W. P. Bowen, T. Gehring, and U. L. Andersen, “Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light,” Nat. Commun. 7, 13628 (2016).
[Crossref]

Furusawa, A.

Gaeta, A. L.

A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, “On-chip optical squeezing,” Phys. Rev. Appl. 3, 044005 (2015).
[Crossref]

Gallagher, W. J.

J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J. Wind, “High-resolution scanning SQUID microscope,” Appl. Phys. Lett. 66, 1138–1140 (1995).
[Crossref]

Gehring, T.

C. Schäfermeier, H. Kerdoncuff, U. B. Hoff, H. Fu, A. Huck, J. Bilek, G. I. Harris, W. P. Bowen, T. Gehring, and U. L. Andersen, “Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light,” Nat. Commun. 7, 13628 (2016).
[Crossref]

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scripta 91, 053001 (2016).
[Crossref]

Ghadimi, A.

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

Grblacher, S.

A. H. Safavi-Naeini, S. Grblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

Groblacher, S.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Grosse, N.

N. Treps, N. Grosse, W. P. Bowen, C. Fabre, H.-A. Bachor, and P. K. Lam, “A quantum laser pointer,” Science 301, 940–943 (2003).
[Crossref]

Grote, H.

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref]

Gürsel, Y.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Hage, B.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H. A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

Hall, J. L.

L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref]

Handchen, V.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref]

Harlow, J. W.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]

Harris, G. I.

C. Schäfermeier, H. Kerdoncuff, U. B. Hoff, H. Fu, A. Huck, J. Bilek, G. I. Harris, W. P. Bowen, T. Gehring, and U. L. Andersen, “Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light,” Nat. Commun. 7, 13628 (2016).
[Crossref]

U. B. Hoff, G. I. Harris, L. S. Madsen, H. Kerdoncuff, M. Lassen, B. M. Nielsen, W. P. Bowen, and U. L. Andersen, “Quantum-enhanced micromechanical displacement sensitivity,” Opt. Lett. 38, 1413–1415 (2013).
[Crossref]

G. I. Harris, U. L. Andersen, J. Knittel, and W. P. Bowen, “Feedback-enhanced sensitivity in optomechanics: surpassing the parametric instability barrier,” Phys. Rev. A 85, 061802 (2012).
[Crossref]

S. Forstner, S. Prams, J. Knittel, E. D. vanOoijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, “Mechanical squeezing via parametric amplification and weak measurement,” Phys. Rev. Lett. 107, 213603 (2011).
[Crossref]

Hill, J. T.

A. H. Safavi-Naeini, S. Grblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Hoff, U. B.

Hoffman, D.

H. Xia, A. Ben-Amar Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89, 211104 (2006).
[Crossref]

Hofheinz, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Hollberg, L. W.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref]

Holzer, J. R.

F. Baudenbacher, L. E. Fong, J. R. Holzer, and M. Radparvar, “Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples,” Appl. Phys. Lett. 82, 3487–3489 (2003).
[Crossref]

Horrom, T.

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86, 023803 (2012).
[Crossref]

Huck, A.

C. Schäfermeier, H. Kerdoncuff, U. B. Hoff, H. Fu, A. Huck, J. Bilek, G. I. Harris, W. P. Bowen, T. Gehring, and U. L. Andersen, “Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light,” Nat. Commun. 7, 13628 (2016).
[Crossref]

Humphreys, C. L.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref]

Janousek, J.

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5, 044007 (2016).
[Crossref]

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H. A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

Jiang, W. C.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

Kampel, N. S.

T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal, “Strong optomechanical squeezing of light,” Phys. Rev. X 3, 031012 (2013).
[Crossref]

Karaulanov, T.

I. Savukov and T. Karaulanov, “Magnetic-resonance imaging of the human brain with an atomic magnetometer,” Appl. Phys. Lett. 103, 043703 (2013).
[Crossref]

Kawamura, S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Kerdoncuff, H.

C. Schäfermeier, H. Kerdoncuff, U. B. Hoff, H. Fu, A. Huck, J. Bilek, G. I. Harris, W. P. Bowen, T. Gehring, and U. L. Andersen, “Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light,” Nat. Commun. 7, 13628 (2016).
[Crossref]

U. B. Hoff, G. I. Harris, L. S. Madsen, H. Kerdoncuff, M. Lassen, B. M. Nielsen, W. P. Bowen, and U. L. Andersen, “Quantum-enhanced micromechanical displacement sensitivity,” Opt. Lett. 38, 1413–1415 (2013).
[Crossref]

Ketchen, M. B.

J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J. Wind, “High-resolution scanning SQUID microscope,” Appl. Phys. Lett. 66, 1138–1140 (1995).
[Crossref]

Kimble, H. J.

E. S. Polzik, J. Carri, and H. J. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit,” Appl. Phys. B 55, 279–290 (1992).
[Crossref]

L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref]

Kippenberg, T. J.

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[Crossref]

Kirtley, J. R.

J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J. Wind, “High-resolution scanning SQUID microscope,” Appl. Phys. Lett. 66, 1138–1140 (1995).
[Crossref]

Kleybolte, L.

M. Korobko, L. Kleybolte, S. Ast, H. Miao, Y. Chen, and R. Schnabel, “Beating the standard sensitivity-bandwidth limit of cavity-enhanced interferometers with internal squeezed-light generation,” Phys. Rev. Lett. 118, 143601 (2017).
[Crossref]

Knittel, J.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref]

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H. A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

G. I. Harris, U. L. Andersen, J. Knittel, and W. P. Bowen, “Feedback-enhanced sensitivity in optomechanics: surpassing the parametric instability barrier,” Phys. Rev. A 85, 061802 (2012).
[Crossref]

S. Forstner, S. Prams, J. Knittel, E. D. vanOoijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Korobko, M.

M. Korobko, L. Kleybolte, S. Ast, H. Miao, Y. Chen, and R. Schnabel, “Beating the standard sensitivity-bandwidth limit of cavity-enhanced interferometers with internal squeezed-light generation,” Phys. Rev. Lett. 118, 143601 (2017).
[Crossref]

Koschorreck, M.

F. Wolfgramm, A. Cere, F. A. Beduini, A. Predojevic, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref]

Krause, A.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Krause, A. G.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Kronwald, A.

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).
[Crossref]

Kumanchik, L.

F. G. Cervantes, L. Kumanchik, J. Pratt, and J. Taylor, “High sensitivity optomechanical reference accelerometer over 10  kHz,” Appl. Phys. Lett. 104, 221111 (2014).
[Crossref]

Lam, P. K.

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5, 044007 (2016).
[Crossref]

N. Treps, N. Grosse, W. P. Bowen, C. Fabre, H.-A. Bachor, and P. K. Lam, “A quantum laser pointer,” Science 301, 940–943 (2003).
[Crossref]

Lassen, M.

Lawie, B.

Lecocq, F.

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191–195 (2017).
[Crossref]

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Observation of strong radiation pressure forces from squeezed light on a mechanical oscillator,” Nat. Phys. 12, 683–687 (2016).
[Crossref]

F. Lecocq, J. Clark, R. Simmonds, J. Aumentado, and J. Teufel, “Quantum nondemolition measurement of a nonclassical state of a massive object,” Phys. Rev. X 5, 041037 (2015).
[Crossref]

Lehnert, K. W.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]

Lei, C. U.

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).
[Crossref]

Lenander, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Leo, G.

Leuchs, G.

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scripta 91, 053001 (2016).
[Crossref]

Li, D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Lin, Q.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Lipson, M.

A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, “On-chip optical squeezing,” Phys. Rev. Appl. 3, 044005 (2015).
[Crossref]

Lu, T.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

Lucero, E.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Luke, K.

A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, “On-chip optical squeezing,” Phys. Rev. Appl. 3, 044005 (2015).
[Crossref]

Madsen, L. S.

Manipatruni, S.

A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, “On-chip optical squeezing,” Phys. Rev. Appl. 3, 044005 (2015).
[Crossref]

Marquardt, C.

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scripta 91, 053001 (2016).
[Crossref]

Marquardt, F.

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Martinis, J. M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Massel, F.

J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. Sillanpää, “Squeezing of quantum noise of motion in a micromechanical resonator,” Phys. Rev. Lett. 115, 243601 (2015).
[Crossref]

McAuslan, D. L.

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5, 044007 (2016).
[Crossref]

Mehmet, M.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref]

Mertz, J. C.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref]

Metcalfe, M.

M. Metcalfe, “Applications of cavity optomechanics,” Appl. Phys. Rev. 1, 031105 (2014).
[Crossref]

Miao, H.

M. Korobko, L. Kleybolte, S. Ast, H. Miao, Y. Chen, and R. Schnabel, “Beating the standard sensitivity-bandwidth limit of cavity-enhanced interferometers with internal squeezed-light generation,” Phys. Rev. Lett. 118, 143601 (2017).
[Crossref]

Mikhailov, E. E.

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86, 023803 (2012).
[Crossref]

Milburn, G.

W. P. Bowen and G. Milburn, Quantum Optomechanics (CRC Press, 2016).

Mitchell, M. W.

F. Wolfgramm, A. Cere, F. A. Beduini, A. Predojevic, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref]

Müller-Ebhardt, H.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref]

Neeley, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Nielsen, B. M.

Nussenzveig, P.

A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, “On-chip optical squeezing,” Phys. Rev. Appl. 3, 044005 (2015).
[Crossref]

O’Connell, A. D.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Painter, O.

A. H. Safavi-Naeini, S. Grblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Peterson, R. W.

T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal, “Strong optomechanical squeezing of light,” Phys. Rev. X 3, 031012 (2013).
[Crossref]

Pirkkalainen, J.-M.

J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. Sillanpää, “Squeezing of quantum noise of motion in a micromechanical resonator,” Phys. Rev. Lett. 115, 243601 (2015).
[Crossref]

Piro, N.

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

Polzik, E. S.

E. S. Polzik, J. Carri, and H. J. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit,” Appl. Phys. B 55, 279–290 (1992).
[Crossref]

Pooser, R. C.

Prams, S.

S. Forstner, S. Prams, J. Knittel, E. D. vanOoijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Pratt, J.

F. G. Cervantes, L. Kumanchik, J. Pratt, and J. Taylor, “High sensitivity optomechanical reference accelerometer over 10  kHz,” Appl. Phys. Lett. 104, 221111 (2014).
[Crossref]

Predojevic, A.

F. Wolfgramm, A. Cere, F. A. Beduini, A. Predojevic, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref]

Purdy, T. P.

T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal, “Strong optomechanical squeezing of light,” Phys. Rev. X 3, 031012 (2013).
[Crossref]

Raab, F. J.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Radparvar, M.

F. Baudenbacher, L. E. Fong, J. R. Holzer, and M. Radparvar, “Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples,” Appl. Phys. Lett. 82, 3487–3489 (2003).
[Crossref]

Regal, C. A.

T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal, “Strong optomechanical squeezing of light,” Phys. Rev. X 3, 031012 (2013).
[Crossref]

Rivière, R.

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[Crossref]

Romalis, M. V.

H. Xia, A. Ben-Amar Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89, 211104 (2006).
[Crossref]

Rubinsztein-Dunlop, H.

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5, 044007 (2016).
[Crossref]

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref]

S. Forstner, S. Prams, J. Knittel, E. D. vanOoijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, S. Grblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Sank, D.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Savukov, I.

J. Zhu, G. Zhao, I. Savukov, and L. Yang, “Polymer encapsulated microcavity optomechanical magnetometer,” Sci. Rep. 7, 8896 (2017).
[Crossref]

I. Savukov and T. Karaulanov, “Magnetic-resonance imaging of the human brain with an atomic magnetometer,” Appl. Phys. Lett. 103, 043703 (2013).
[Crossref]

Schäfermeier, C.

C. Schäfermeier, H. Kerdoncuff, U. B. Hoff, H. Fu, A. Huck, J. Bilek, G. I. Harris, W. P. Bowen, T. Gehring, and U. L. Andersen, “Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light,” Nat. Commun. 7, 13628 (2016).
[Crossref]

Schilling, R.

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

Schliesser, A.

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[Crossref]

Schnabel, R.

M. Korobko, L. Kleybolte, S. Ast, H. Miao, Y. Chen, and R. Schnabel, “Beating the standard sensitivity-bandwidth limit of cavity-enhanced interferometers with internal squeezed-light generation,” Phys. Rev. Lett. 118, 143601 (2017).
[Crossref]

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref]

Schwab, K. C.

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).
[Crossref]

Sheridan, E.

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5, 044007 (2016).
[Crossref]

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref]

Shoemaker, D.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Sievers, L.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Sillanpää, M.

J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. Sillanpää, “Squeezing of quantum noise of motion in a micromechanical resonator,” Phys. Rev. Lett. 115, 243601 (2015).
[Crossref]

Simmonds, R.

F. Lecocq, J. Clark, R. Simmonds, J. Aumentado, and J. Teufel, “Quantum nondemolition measurement of a nonclassical state of a massive object,” Phys. Rev. X 5, 041037 (2015).
[Crossref]

Simmonds, R. W.

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191–195 (2017).
[Crossref]

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Observation of strong radiation pressure forces from squeezed light on a mechanical oscillator,” Nat. Phys. 12, 683–687 (2016).
[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Singh, R.

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86, 023803 (2012).
[Crossref]

Sirois, A. J.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Slusher, R. E.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref]

Slutsky, J.

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref]

Spero, R. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Stawiasz, K. G.

J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J. Wind, “High-resolution scanning SQUID microscope,” Appl. Phys. Lett. 66, 1138–1140 (1995).
[Crossref]

Steinlechner, S.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref]

Sudhir, V.

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

Suh, J.

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).
[Crossref]

Sun, J. Z.

J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J. Wind, “High-resolution scanning SQUID microscope,” Appl. Phys. Lett. 66, 1138–1140 (1995).
[Crossref]

Swaim, J. D.

S. Forstner, S. Prams, J. Knittel, E. D. vanOoijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Szorkovszky, A.

S. Forstner, S. Prams, J. Knittel, E. D. vanOoijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, “Mechanical squeezing via parametric amplification and weak measurement,” Phys. Rev. Lett. 107, 213603 (2011).
[Crossref]

Takeno, Y.

Taylor, J.

F. G. Cervantes, L. Kumanchik, J. Pratt, and J. Taylor, “High sensitivity optomechanical reference accelerometer over 10  kHz,” Appl. Phys. Lett. 104, 221111 (2014).
[Crossref]

Taylor, M. A.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H. A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

Teufel, J.

F. Lecocq, J. Clark, R. Simmonds, J. Aumentado, and J. Teufel, “Quantum nondemolition measurement of a nonclassical state of a massive object,” Phys. Rev. X 5, 041037 (2015).
[Crossref]

Teufel, J. D.

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191–195 (2017).
[Crossref]

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Observation of strong radiation pressure forces from squeezed light on a mechanical oscillator,” Nat. Phys. 12, 683–687 (2016).
[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]

Thorne, K. S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Treps, N.

N. Treps, N. Grosse, W. P. Bowen, C. Fabre, H.-A. Bachor, and P. K. Lam, “A quantum laser pointer,” Science 301, 940–943 (2003).
[Crossref]

Vahala, K. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

Vahlbruch, H.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref]

Valley, J. F.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref]

vanOoijen, E. D.

S. Forstner, S. Prams, J. Knittel, E. D. vanOoijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Vogt, R. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Wang, H.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Weides, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Weinstein, A. J.

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).
[Crossref]

Weiss, R.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Wenner, J.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Whitcomb, S. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Whittaker, J. D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Wilson, D. J.

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

Wind, S. J.

J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J. Wind, “High-resolution scanning SQUID microscope,” Appl. Phys. Lett. 66, 1138–1140 (1995).
[Crossref]

Winger, M.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Wolfgramm, F.

F. Wolfgramm, A. Cere, F. A. Beduini, A. Predojevic, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref]

Wollman, E. E.

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).
[Crossref]

Wu, H.

L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref]

Wu, L.-A.

L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref]

Xia, H.

H. Xia, A. Ben-Amar Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89, 211104 (2006).
[Crossref]

Yang, L.

J. Zhu, G. Zhao, I. Savukov, and L. Yang, “Polymer encapsulated microcavity optomechanical magnetometer,” Sci. Rep. 7, 8896 (2017).
[Crossref]

Yonezawa, H.

Yu, C.

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5, 044007 (2016).
[Crossref]

Yu, P.-L.

T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal, “Strong optomechanical squeezing of light,” Phys. Rev. X 3, 031012 (2013).
[Crossref]

Yu, W.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

Yukawa, M.

Yurke, B.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref]

Zhang, Y.

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5, 044007 (2016).
[Crossref]

Zhao, G.

J. Zhu, G. Zhao, I. Savukov, and L. Yang, “Polymer encapsulated microcavity optomechanical magnetometer,” Sci. Rep. 7, 8896 (2017).
[Crossref]

Zhu, J.

J. Zhu, G. Zhao, I. Savukov, and L. Yang, “Polymer encapsulated microcavity optomechanical magnetometer,” Sci. Rep. 7, 8896 (2017).
[Crossref]

Zucker, M. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Adv. Mater. (1)

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref]

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

E. S. Polzik, J. Carri, and H. J. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit,” Appl. Phys. B 55, 279–290 (1992).
[Crossref]

Appl. Phys. Lett. (5)

I. Savukov and T. Karaulanov, “Magnetic-resonance imaging of the human brain with an atomic magnetometer,” Appl. Phys. Lett. 103, 043703 (2013).
[Crossref]

H. Xia, A. Ben-Amar Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89, 211104 (2006).
[Crossref]

J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J. Wind, “High-resolution scanning SQUID microscope,” Appl. Phys. Lett. 66, 1138–1140 (1995).
[Crossref]

F. Baudenbacher, L. E. Fong, J. R. Holzer, and M. Radparvar, “Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples,” Appl. Phys. Lett. 82, 3487–3489 (2003).
[Crossref]

F. G. Cervantes, L. Kumanchik, J. Pratt, and J. Taylor, “High sensitivity optomechanical reference accelerometer over 10  kHz,” Appl. Phys. Lett. 104, 221111 (2014).
[Crossref]

Appl. Phys. Rev. (1)

M. Metcalfe, “Applications of cavity optomechanics,” Appl. Phys. Rev. 1, 031105 (2014).
[Crossref]

Nat. Commun. (2)

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

C. Schäfermeier, H. Kerdoncuff, U. B. Hoff, H. Fu, A. Huck, J. Bilek, G. I. Harris, W. P. Bowen, T. Gehring, and U. L. Andersen, “Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light,” Nat. Commun. 7, 13628 (2016).
[Crossref]

Nat. Nanotechnol. (1)

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]

Nat. Photonics (3)

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

The LIGO Scientific Collaboration, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
[Crossref]

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H. A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

Nat. Phys. (2)

The LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. 7, 962–965 (2011).
[Crossref]

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Observation of strong radiation pressure forces from squeezed light on a mechanical oscillator,” Nat. Phys. 12, 683–687 (2016).
[Crossref]

Nature (6)

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191–195 (2017).
[Crossref]

A. H. Safavi-Naeini, S. Grblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

New J. Phys. (1)

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optica (1)

Phys. Rev. A (2)

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86, 023803 (2012).
[Crossref]

G. I. Harris, U. L. Andersen, J. Knittel, and W. P. Bowen, “Feedback-enhanced sensitivity in optomechanics: surpassing the parametric instability barrier,” Phys. Rev. A 85, 061802 (2012).
[Crossref]

Phys. Rev. Appl. (2)

A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, “On-chip optical squeezing,” Phys. Rev. Appl. 3, 044005 (2015).
[Crossref]

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5, 044007 (2016).
[Crossref]

Phys. Rev. D (1)

C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23, 1693–1708 (1981).
[Crossref]

Phys. Rev. Lett. (11)

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref]

F. Wolfgramm, A. Cere, F. A. Beduini, A. Predojevic, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105, 053601 (2010).
[Crossref]

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref]

L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref]

S. Forstner, S. Prams, J. Knittel, E. D. vanOoijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]

A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, “Mechanical squeezing via parametric amplification and weak measurement,” Phys. Rev. Lett. 107, 213603 (2011).
[Crossref]

J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. Sillanpää, “Squeezing of quantum noise of motion in a micromechanical resonator,” Phys. Rev. Lett. 115, 243601 (2015).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref]

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

M. Korobko, L. Kleybolte, S. Ast, H. Miao, Y. Chen, and R. Schnabel, “Beating the standard sensitivity-bandwidth limit of cavity-enhanced interferometers with internal squeezed-light generation,” Phys. Rev. Lett. 118, 143601 (2017).
[Crossref]

Phys. Rev. X (2)

F. Lecocq, J. Clark, R. Simmonds, J. Aumentado, and J. Teufel, “Quantum nondemolition measurement of a nonclassical state of a massive object,” Phys. Rev. X 5, 041037 (2015).
[Crossref]

T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal, “Strong optomechanical squeezing of light,” Phys. Rev. X 3, 031012 (2013).
[Crossref]

Phys. Scripta (1)

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scripta 91, 053001 (2016).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Sci. Rep. (1)

J. Zhu, G. Zhao, I. Savukov, and L. Yang, “Polymer encapsulated microcavity optomechanical magnetometer,” Sci. Rep. 7, 8896 (2017).
[Crossref]

Science (4)

N. Treps, N. Grosse, W. P. Bowen, C. Fabre, H.-A. Bachor, and P. K. Lam, “A quantum laser pointer,” Science 301, 940–943 (2003).
[Crossref]

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Other (1)

W. P. Bowen and G. Milburn, Quantum Optomechanics (CRC Press, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Conceptual schematic of a cavity optomechanical system probed with squeezed light. Here, FB and Fth denote the magnetic field induced force and the thermal force on the mechanical oscillator. (b) Left: a schematic of a microtoroid magnetometer coupled with a nanofiber. Right: the cross section of a microtoroid, of which the optical field is distributed along the inner surface. The mechanical motion changes the circumference of the cavity and, thus, shifts the optical resonance. (c) and (d) Theoretical result for squeezing enhanced performance of the magnetometer. Here, we use a squeezing factor of 10 dB. In (c), top-left and bottom-left plots correspond to the strong probe power case, where P=10P0, with P0 defined as the power when the thermal noise on mechanical resonance equals the shot noise level (SNL), i.e., n¯=1/(16ηC), while top-right and bottom-right plots correspond to the weak probe power case, where P=0.1P0. (c) Top left and top right, the noise power spectrum normalized to the SNL. Black short-dotted curve, thermal noise; purple short-dashed line, vacuum shot noise for coherent probe; magenta dashed line, squeezed vacuum noise for squeezed probe; red solid curve, total noise for coherent probe; blue dash-dotted curve, total noise for squeezed probe. Bottom left and bottom right, the sensitivity as a function of frequency for coherent (red solid curves) and squeezed (blue dash-dotted curves) probe, respectively, normalized to δB0peak, which is the peak sensitivity for the squeezed probe in the strong probe power case. (d) The peak sensitivity δBpeak (normalized to δB0peak) as a function of the probe power P for coherent (red solid curve) and squeezed (blue dash-dotted curve) probes, respectively.
Fig. 2.
Fig. 2. Measurement setup for squeezed light enhanced cavity optomechanical magnetometry. Squeezed light at a wavelength of 1064 nm is used to probe the magnetometer. The magnetometer is a microtoroid with terfenol-D embedded inside, as shown in the scanning electron microscope picture. The optical Q factor of the toroid mode is about 1×106, corresponding to an optical damping rate of κ/2π300  MHz. The mechanical motion of the toroid is measured by performing homodyne detection. LO, local oscillator; BBS, balanced beam splitter, comprised of two polarization beam splitters and a half wave plate; ESA, electronic spectrum analyzer; ENA, electronic network analyzer.
Fig. 3.
Fig. 3. (a) Characterization of the squeezed state before coupling to the microtoroid. The dark gray curve shows the noise power when sweeping the LO phase continuously with its theoretically fitted result shown in the black solid curve. The red and blue solid curves are the noise power with coherent and squeezed probes when the LO phase is locked at the phase quadrature. (b) The measured noise power from the microtoroid with both coherent (light gray curve) and squeezed (dark gray curve) probes, respectively. The red solid and the blue dashed curves are the fitted results for the measured ones. The three peaks correspond to three mechanical resonance modes (from left to right: tilting mode, flapping mode, and crown mode) with the profiles shown in the inset, obtained using COMSOL Multiphysics.
Fig. 4.
Fig. 4. Characterization of the noise power spectra around the crown mode, under different probe powers: (a) 80 μW, (b) 20 μW, and (c) 5 μW. The light gray and dark gray curves are the measured noise power for coherent and squeezed probes, respectively. The other curves are the theoretically fitted ones: black short-dotted curves, thermal noise; purple short-dashed lines, vacuum shot noise with coherent probe; magenta dashed lines, squeezed vacuum noise with squeezed probe; red solid curves, total noise for the coherent probe; and the blue dash-dotted curves, total noise for the squeezed probe. On the right axes of the figures, it shows the corresponding displacement amplitude spectral density Sxx1/2. The mechanical damping rate is extracted from the linewidth of the mode in the thermal noise spectrum to be Γ/2π=42  kHz. The effective mass of the crown mode is determined to be meff=6.06  ng obtained from COMSOL modeling. The displacement amplitude spectral density Sxx1/2 is plotted on the right axes of the figures.
Fig. 5.
Fig. 5. Sensitivity and bandwidth improvement. (a) Sensitivity at the frequency of 8.615 MHz, as a function of the probe power. The red triangles and blue circles represent the measured results for coherent and squeezed probes, respectively. The error bars are obtained by taking into account the fluctuation in the noise power measurement. The red solid (coherent) and blue dash-dotted (squeezed) curves are the corresponding theoretical fitted result. The inset shows the power spectrum when the magnetometer is driven at this frequency with the peak denoting the signal induced by the magnetic field. (b) The accumulated bandwidth as a function of the threshold sensitivity for the coherent (red solid curve) and squeezed (blue dashed curve) probes, respectively. Top-left inset: the zoom-in of the accumulated bandwidth in the frequency range of 0–0.07 MHz, showing the 3 dB bandwidth of 30 kHz for the coherent probe and 45 kHz for the squeezed probe. Bottom-right inset: the sensitivity spectrum in the frequency range of 8.537–8.563 MHz, showing the definition of the accumulated bandwidth. For a threshold sensitivity of 15  nT/Hz, the accumulated bandwidth is defined as the sum of the frequency ranges within the two red arrows.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δF=2meffΓkBT[1+Vsqz16n¯ηC|χ(Ω)χ(ω)|2]1/2.