Abstract

In recent years, a variety of interesting concepts have been proposed to enable the concealment of objects from detection or observation, including invisibility cloaking. For an object to remain truly transparent to an illumination wave, a cloak must restore the exact spatio-temporal profile of the wave, including both amplitude and phase variations across the entire illumination frequency spectrum, i.e., the full field. However, on the basis of their fundamental operating principles, present invisibility solutions force different frequency components of a broadband illumination wave to experience different phase variations, necessarily distorting the wave’s temporal profile and making the cloaking device inherently visible. In this work, we propose a new conceptual approach to the problem, enabling the realization of full-field broadband invisibility, experimentally demonstrated here for the first time to the best of our knowledge. This involves a customized and reversible redistribution of the illumination frequency content, allowing the wave to propagate through the object of interest while preventing any interaction between the wave and the object. We report the experimental concealment of a broadband optical filter from detection with a phase-coherent light pulse of 500 GHz bandwidth, showing full restoration of the complex temporal and spectral profiles of the pulse.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Invisibility exposed: physical bounds on passive cloaking

Francesco Monticone and Andrea Alù
Optica 3(7) 718-724 (2016)

Time-of-flight imaging of invisibility cloaks

Jad C. Halimeh and Martin Wegener
Opt. Express 20(1) 63-74 (2012)

Isotropic nonmagnetic flat cloaks degenerated from homogeneous anisotropic trapeziform cloaks

Tiancheng Han and Cheng-Wei Qiu
Opt. Express 18(12) 13038-13043 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. Fleury and A. Alù, “Cloaking and invisibility: a review,” Prog. Electromagn. Res. 147, 171–202 (2014).
    [Crossref]
  2. G. Gbur, “Invisibility physics: past, present, and future,” Prog. Opt. 58, 65–114 (2013).
    [Crossref]
  3. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
    [Crossref]
  4. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
    [Crossref]
  5. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [Crossref]
  6. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [Crossref]
  7. L. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
    [Crossref]
  8. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
    [Crossref]
  9. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
    [Crossref]
  10. A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008).
    [Crossref]
  11. J. S. Choi and J. C. Howell, “Paraxial ray optics cloaking,” Opt. Express 22, 29465–29478 (2014).
    [Crossref]
  12. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323, 110–112 (2009).
    [Crossref]
  13. D. A. B. Miller, “On perfect cloaking,” Opt. Express 14, 12457–12466 (2006).
    [Crossref]
  14. J. S. Choi and J. C. Howell, “Paraxial full-field cloaking,” Opt. Express 23, 15857–15862 (2015).
    [Crossref]
  15. C. Qian, R. Li, Y. Jiang, B. Zheng, H. Wang, Z. Xu, and H. Chen, “Transient response of a signal through a dispersive invisibility cloak,” Opt. Lett. 41, 4911–4914 (2016).
    [Crossref]
  16. F. Monticone and A. Alù, “Invisibility exposed: physical bounds on passive cloaking,” Optica 3, 718–724 (2016).
    [Crossref]
  17. J. S. Choi and J. C. Howell, “Digital integral cloaking,” Optica 3, 536–540 (2016).
    [Crossref]
  18. S. Zang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106, 024301 (2011).
    [Crossref]
  19. Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, “Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes,” Phys. Rev. Lett. 115, 195503 (2015).
    [Crossref]
  20. W. M. McCall, A. Favaro, P. Kinsler, and A. Boardman, “A spacetime cloak, or a history editor,” J. Opt. 13, 024003 (2011).
    [Crossref]
  21. M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481, 62–65 (2012).
    [Crossref]
  22. J. M. Lukens, D. E. Leaird, and A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
    [Crossref]
  23. J. M. Lukens, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Temporal cloaking for data suppression and retrieval,” Optica 1, 372–375 (2014).
    [Crossref]
  24. B. Li, X. Wang, J. Kang, Y. Wei, T. Yung, and K. K. Y. Wong, “Extended temporal cloak based on the inverse temporal Talbot effect,” Opt. Lett. 42, 767–770 (2017).
    [Crossref]
  25. P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, and J. Fatome, “Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass,” Nat. Commun. 5, 4678 (2014).
    [Crossref]
  26. M. Selvanayagam and G. V. Eleftheriades, “Experimental demonstration of active electromagnetic cloaking,” Phys. Rev. X 3, 041011 (2013).
    [Crossref]
  27. J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” J. Lightwave Technol. 24, 2649–2662 (2006).
    [Crossref]
  28. J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7, 728–744 (2001).
    [Crossref]
  29. L. Romero Cortés, H. Guillet de Chatellus, and J. Azaña, “On the generality of the Talbot condition for inducing self-imaging effects on periodic objects,” Opt. Lett. 41, 340–343 (2016).
    [Crossref]
  30. C. Rodríguez Fernández-Pousa, “On the structure of quadratic Gauss sums in the Talbot effect,” J. Opt. Soc. Am. A 34, 732–742 (2017).
    [Crossref]
  31. L. Romero Cortés, R. Maram, H. Guillet de Chatellus, and J. Azaña, “Noiseless spectral amplification of optical frequency combs,” in Conference on Lasers and Electro-Optics (CLEO), San Jose, California (2017), paper STu4I.
  32. C. Rodríguez Fernández-Pousa, R. Maram, and J. Azaña, “CW-to-pulse conversion using temporal Talbot array illuminators,” Opt. Lett. 42, 2427–2430 (2017).
    [Crossref]
  33. A. M. Weiner, Ultrafast Optics (Wiley, 2009).
  34. J. Azaña, Y. Park, T.-J. Ahn, and F. Li, “Simple and highly sensitive optical pulse-characterization method based on electro-optic spectral signal differentiation,” Opt. Lett. 33, 437–439 (2008).
    [Crossref]
  35. R. Maram and J. Azaña, “Spectral self-imaging of time-periodic coherent frequency combs by parabolic cross-phase modulation,” Opt. Express 21, 28824–28835 (2013).
    [Crossref]
  36. R. Kashyap, Fiber Bragg Gratings (Academic, 2009).
  37. K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
    [Crossref]
  38. S. Yang, Y. Zhang, L. He, and S. Xie, “Broadband dispersion-compensating photonic crystal fiber,” Opt. Lett. 31, 2830–2832 (2006).
    [Crossref]
  39. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994).
    [Crossref]
  40. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  41. W. M. Robertson, C. Baker, and C. B. Bennett, “Slow group velocity propagation of sound via defect coupling in a one-dimensional acoustic band gap array,” Am. J. Phys. 72, 255–257 (2004).
    [Crossref]
  42. A. Fornieri and F. Giazotto, “Towards phase-coherent caloritronics in superconducting circuits,” Nat. Nanotechnol. 12, 944–952 (2017).
    [Crossref]
  43. A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
    [Crossref]
  44. L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
    [Crossref]
  45. P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
    [Crossref]

2017 (4)

2016 (4)

2015 (2)

J. S. Choi and J. C. Howell, “Paraxial full-field cloaking,” Opt. Express 23, 15857–15862 (2015).
[Crossref]

Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, “Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes,” Phys. Rev. Lett. 115, 195503 (2015).
[Crossref]

2014 (4)

R. Fleury and A. Alù, “Cloaking and invisibility: a review,” Prog. Electromagn. Res. 147, 171–202 (2014).
[Crossref]

J. S. Choi and J. C. Howell, “Paraxial ray optics cloaking,” Opt. Express 22, 29465–29478 (2014).
[Crossref]

J. M. Lukens, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Temporal cloaking for data suppression and retrieval,” Optica 1, 372–375 (2014).
[Crossref]

P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, and J. Fatome, “Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass,” Nat. Commun. 5, 4678 (2014).
[Crossref]

2013 (4)

M. Selvanayagam and G. V. Eleftheriades, “Experimental demonstration of active electromagnetic cloaking,” Phys. Rev. X 3, 041011 (2013).
[Crossref]

J. M. Lukens, D. E. Leaird, and A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
[Crossref]

R. Maram and J. Azaña, “Spectral self-imaging of time-periodic coherent frequency combs by parabolic cross-phase modulation,” Opt. Express 21, 28824–28835 (2013).
[Crossref]

G. Gbur, “Invisibility physics: past, present, and future,” Prog. Opt. 58, 65–114 (2013).
[Crossref]

2012 (1)

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481, 62–65 (2012).
[Crossref]

2011 (2)

W. M. McCall, A. Favaro, P. Kinsler, and A. Boardman, “A spacetime cloak, or a history editor,” J. Opt. 13, 024003 (2011).
[Crossref]

S. Zang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106, 024301 (2011).
[Crossref]

2009 (4)

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323, 110–112 (2009).
[Crossref]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref]

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

2008 (4)

J. Azaña, Y. Park, T.-J. Ahn, and F. Li, “Simple and highly sensitive optical pulse-characterization method based on electro-optic spectral signal differentiation,” Opt. Lett. 33, 437–439 (2008).
[Crossref]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008).
[Crossref]

L. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[Crossref]

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
[Crossref]

2006 (6)

D. A. B. Miller, “On perfect cloaking,” Opt. Express 14, 12457–12466 (2006).
[Crossref]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

S. Yang, Y. Zhang, L. He, and S. Xie, “Broadband dispersion-compensating photonic crystal fiber,” Opt. Lett. 31, 2830–2832 (2006).
[Crossref]

J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” J. Lightwave Technol. 24, 2649–2662 (2006).
[Crossref]

2005 (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

2004 (1)

W. M. Robertson, C. Baker, and C. B. Bennett, “Slow group velocity propagation of sound via defect coupling in a one-dimensional acoustic band gap array,” Am. J. Phys. 72, 255–257 (2004).
[Crossref]

2001 (1)

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7, 728–744 (2001).
[Crossref]

1999 (1)

L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

1996 (1)

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
[Crossref]

1994 (1)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994).
[Crossref]

Ahn, T.-J.

Alù, A.

F. Monticone and A. Alù, “Invisibility exposed: physical bounds on passive cloaking,” Optica 3, 718–724 (2016).
[Crossref]

R. Fleury and A. Alù, “Cloaking and invisibility: a review,” Prog. Electromagn. Res. 147, 171–202 (2014).
[Crossref]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008).
[Crossref]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

Azaña, J.

Baker, C.

W. M. Robertson, C. Baker, and C. B. Bennett, “Slow group velocity propagation of sound via defect coupling in a one-dimensional acoustic band gap array,” Am. J. Phys. 72, 255–257 (2004).
[Crossref]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

Belthangady, C.

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
[Crossref]

Bennett, C. B.

W. M. Robertson, C. Baker, and C. B. Bennett, “Slow group velocity propagation of sound via defect coupling in a one-dimensional acoustic band gap array,” Am. J. Phys. 72, 255–257 (2004).
[Crossref]

Boardman, A.

W. M. McCall, A. Favaro, P. Kinsler, and A. Boardman, “A spacetime cloak, or a history editor,” J. Opt. 13, 024003 (2011).
[Crossref]

Bony, P. Y.

P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, and J. Fatome, “Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass,” Nat. Commun. 5, 4678 (2014).
[Crossref]

Chen, H.

Chen, Y.

Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, “Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes,” Phys. Rev. Lett. 115, 195503 (2015).
[Crossref]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref]

Choi, J. S.

Clark, C. W.

L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Cronin, A. D.

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

Cui, T. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Deng, L.

L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Denschlag, J.

L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Du, S.

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
[Crossref]

Edwards, M.

L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Eleftheriades, G. V.

M. Selvanayagam and G. V. Eleftheriades, “Experimental demonstration of active electromagnetic cloaking,” Phys. Rev. X 3, 041011 (2013).
[Crossref]

Engheta, N.

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008).
[Crossref]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

Fang, N.

S. Zang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106, 024301 (2011).
[Crossref]

Farsi, A.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481, 62–65 (2012).
[Crossref]

Fatome, J.

P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, and J. Fatome, “Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass,” Nat. Commun. 5, 4678 (2014).
[Crossref]

Favaro, A.

W. M. McCall, A. Favaro, P. Kinsler, and A. Boardman, “A spacetime cloak, or a history editor,” J. Opt. 13, 024003 (2011).
[Crossref]

Fleury, R.

R. Fleury and A. Alù, “Cloaking and invisibility: a review,” Prog. Electromagn. Res. 147, 171–202 (2014).
[Crossref]

Fornieri, A.

A. Fornieri and F. Giazotto, “Towards phase-coherent caloritronics in superconducting circuits,” Nat. Nanotechnol. 12, 944–952 (2017).
[Crossref]

Fridman, M.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481, 62–65 (2012).
[Crossref]

Gaeta, A. L.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481, 62–65 (2012).
[Crossref]

Gbur, G.

G. Gbur, “Invisibility physics: past, present, and future,” Prog. Opt. 58, 65–114 (2013).
[Crossref]

Ghatak, A. K.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
[Crossref]

Giazotto, F.

A. Fornieri and F. Giazotto, “Towards phase-coherent caloritronics in superconducting circuits,” Nat. Nanotechnol. 12, 944–952 (2017).
[Crossref]

Goyal, I. C.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
[Crossref]

Guasoni, M.

P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, and J. Fatome, “Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass,” Nat. Commun. 5, 4678 (2014).
[Crossref]

Guillet de Chatellus, H.

L. Romero Cortés, H. Guillet de Chatellus, and J. Azaña, “On the generality of the Talbot condition for inducing self-imaging effects on periodic objects,” Opt. Lett. 41, 340–343 (2016).
[Crossref]

L. Romero Cortés, R. Maram, H. Guillet de Chatellus, and J. Azaña, “Noiseless spectral amplification of optical frequency combs,” in Conference on Lasers and Electro-Optics (CLEO), San Jose, California (2017), paper STu4I.

Hagley, E. W.

L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Harris, S. E.

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
[Crossref]

He, L.

Helmerson, K.

L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Howell, J. C.

Huang, J.

Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, “Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes,” Phys. Rev. Lett. 115, 195503 (2015).
[Crossref]

Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, “Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes,” Phys. Rev. Lett. 115, 195503 (2015).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

Jauslin, H. R.

P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, and J. Fatome, “Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass,” Nat. Commun. 5, 4678 (2014).
[Crossref]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref]

Jiang, Y.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Kang, J.

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 2009).

Kinsler, P.

W. M. McCall, A. Favaro, P. Kinsler, and A. Boardman, “A spacetime cloak, or a history editor,” J. Opt. 13, 024003 (2011).
[Crossref]

Kolchin, P.

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
[Crossref]

Kolner, B. H.

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994).
[Crossref]

Leaird, D. E.

J. M. Lukens, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Temporal cloaking for data suppression and retrieval,” Optica 1, 372–375 (2014).
[Crossref]

J. M. Lukens, D. E. Leaird, and A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
[Crossref]

Leonhardt, U.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323, 110–112 (2009).
[Crossref]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref]

Li, B.

Li, F.

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

Li, L.

L. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[Crossref]

Li, R.

Li, Y.

Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, “Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes,” Phys. Rev. Lett. 115, 195503 (2015).
[Crossref]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref]

Lukens, J. M.

J. M. Lukens, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Temporal cloaking for data suppression and retrieval,” Optica 1, 372–375 (2014).
[Crossref]

J. M. Lukens, D. E. Leaird, and A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
[Crossref]

Maram, R.

McCall, W. M.

W. M. McCall, A. Favaro, P. Kinsler, and A. Boardman, “A spacetime cloak, or a history editor,” J. Opt. 13, 024003 (2011).
[Crossref]

Metcalf, A. J.

Miller, D. A. B.

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Monticone, F.

Morin, P.

P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, and J. Fatome, “Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass,” Nat. Commun. 5, 4678 (2014).
[Crossref]

Muriel, M. A.

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7, 728–744 (2001).
[Crossref]

Ni, Y.

Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, “Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes,” Phys. Rev. Lett. 115, 195503 (2015).
[Crossref]

Okawachi, Y.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481, 62–65 (2012).
[Crossref]

Palai, P.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
[Crossref]

Park, Y.

Pendry, J. B.

L. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

Phillips, W. D.

L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Picozzi, A.

P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, and J. Fatome, “Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass,” Nat. Commun. 5, 4678 (2014).
[Crossref]

Pitois, S.

P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, and J. Fatome, “Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass,” Nat. Commun. 5, 4678 (2014).
[Crossref]

Pritchard, D. E.

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

Qian, C.

Robertson, W. M.

W. M. Robertson, C. Baker, and C. B. Bennett, “Slow group velocity propagation of sound via defect coupling in a one-dimensional acoustic band gap array,” Am. J. Phys. 72, 255–257 (2004).
[Crossref]

Rodríguez Fernández-Pousa, C.

Rolston, S. L.

L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Romero Cortés, L.

L. Romero Cortés, H. Guillet de Chatellus, and J. Azaña, “On the generality of the Talbot condition for inducing self-imaging effects on periodic objects,” Opt. Lett. 41, 340–343 (2016).
[Crossref]

L. Romero Cortés, R. Maram, H. Guillet de Chatellus, and J. Azaña, “Noiseless spectral amplification of optical frequency combs,” in Conference on Lasers and Electro-Optics (CLEO), San Jose, California (2017), paper STu4I.

Schmiedmayer, J.

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Selvanayagam, M.

M. Selvanayagam and G. V. Eleftheriades, “Experimental demonstration of active electromagnetic cloaking,” Phys. Rev. X 3, 041011 (2013).
[Crossref]

Shen, X.

Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, “Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes,” Phys. Rev. Lett. 115, 195503 (2015).
[Crossref]

Simsarian, J. E.

L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Sugny, D.

P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, and J. Fatome, “Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass,” Nat. Commun. 5, 4678 (2014).
[Crossref]

Thyagarajan, K.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
[Crossref]

Tyc, T.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323, 110–112 (2009).
[Crossref]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

van Howe, J.

Varshney, R. K.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
[Crossref]

Wang, H.

Wang, X.

Wei, Y.

Weiner, A. M.

J. M. Lukens, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Temporal cloaking for data suppression and retrieval,” Optica 1, 372–375 (2014).
[Crossref]

J. M. Lukens, D. E. Leaird, and A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
[Crossref]

A. M. Weiner, Ultrafast Optics (Wiley, 2009).

Wong, K. K. Y.

Wu, Z.

Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, “Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes,” Phys. Rev. Lett. 115, 195503 (2015).
[Crossref]

Xia, C.

S. Zang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106, 024301 (2011).
[Crossref]

Xie, S.

Xu, C.

Xu, Z.

Yang, S.

Yin, G. Y.

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
[Crossref]

Yung, T.

Zang, S.

S. Zang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106, 024301 (2011).
[Crossref]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

Zhang, Y.

Zheng, B.

Am. J. Phys. (1)

W. M. Robertson, C. Baker, and C. B. Bennett, “Slow group velocity propagation of sound via defect coupling in a one-dimensional acoustic band gap array,” Am. J. Phys. 72, 255–257 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7, 728–744 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (1)

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

W. M. McCall, A. Favaro, P. Kinsler, and A. Boardman, “A spacetime cloak, or a history editor,” J. Opt. 13, 024003 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Commun. (1)

P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, and J. Fatome, “Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass,” Nat. Commun. 5, 4678 (2014).
[Crossref]

Nat. Mater. (1)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

Nat. Nanotechnol. (1)

A. Fornieri and F. Giazotto, “Towards phase-coherent caloritronics in superconducting circuits,” Nat. Nanotechnol. 12, 944–952 (2017).
[Crossref]

Nature (2)

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481, 62–65 (2012).
[Crossref]

J. M. Lukens, D. E. Leaird, and A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Optica (3)

Phys. Rev. E (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

Phys. Rev. Lett. (6)

S. Zang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106, 024301 (2011).
[Crossref]

Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, “Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes,” Phys. Rev. Lett. 115, 195503 (2015).
[Crossref]

L. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[Crossref]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008).
[Crossref]

L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
[Crossref]

Phys. Rev. X (1)

M. Selvanayagam and G. V. Eleftheriades, “Experimental demonstration of active electromagnetic cloaking,” Phys. Rev. X 3, 041011 (2013).
[Crossref]

Prog. Electromagn. Res. (1)

R. Fleury and A. Alù, “Cloaking and invisibility: a review,” Prog. Electromagn. Res. 147, 171–202 (2014).
[Crossref]

Prog. Opt. (1)

G. Gbur, “Invisibility physics: past, present, and future,” Prog. Opt. 58, 65–114 (2013).
[Crossref]

Rev. Mod. Phys. (1)

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

Science (5)

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323, 110–112 (2009).
[Crossref]

Other (4)

L. Romero Cortés, R. Maram, H. Guillet de Chatellus, and J. Azaña, “Noiseless spectral amplification of optical frequency combs,” in Conference on Lasers and Electro-Optics (CLEO), San Jose, California (2017), paper STu4I.

A. M. Weiner, Ultrafast Optics (Wiley, 2009).

R. Kashyap, Fiber Bragg Gratings (Academic, 2009).

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Broadband invisibility cloaking through reversible wave-spectrum control. (a) Detection of a target (object) through the signature imprinted on the spectrum of a broadband wave ( ν represents frequency). For simplicity of illustration, only backscattering (reflection) of the wave by the target is considered. (b) Concealing of the target by reversible transformations of the wave spectrum. (c) Numerical simulation of the proposed spectral cloak, operating on an illumination wave with a broadband continuous spectrum (solid blue curves, 2D representation) and a frequency comb (dashed red curves). Although the effect of PM occurs instantly, here it is depicted as a progressive process (2D representation) in order to reveal the intricate mechanism leading to the formation, and subsequent reversal, of the frequency gaps.
Fig. 2.
Fig. 2. Circuit layout of the reported experimental implementation of the spectral cloaking concept. Listed components: mode-locked laser (MLL), single-mode fiber (SMF), electro-optic phase modulator (EOPM), radio-frequency synthesizer (RFS), programmable optical filter (POF), dispersion-compensating fiber (DCF), optical spectrum analyzer (OSA), autocorrelator (AC). The labels (I)–(IV) mark key points in the setup to easily locate the measured signals that are reported in Figs. 3 and 4.
Fig. 3.
Fig. 3. Measured optical power spectra of the involved waves (normalized to the illumination spectral peak power). The transmission spectrum of the object to be concealed (linear optical filter) is shown for reference. Measurement points, as marked in Fig. 2, are indicated. (a) Illumination spectrum [Fig. 2(I)]. (b) Spectral amplitude signature of the object [Fig. 2(IV)]. (c) Frequency gaps induced in the illumination wave [Fig. 2(II)]. (d) Object’s spectral response inserted in the frequency gaps [Fig. 2(III)]. (e) Output spectrum in the absence of the object when the cloak is on [Fig. 2(IV)]. (f) Output spectrum when the object is present and the cloak is on [Fig. 2(IV)].
Fig. 4.
Fig. 4. Time-domain measurements of the involved waves. Measurement points, as marked in Fig. 2, are indicated. [(a)–(d)] Measured temporal autocorrelation traces. (a) Autocorrelation trace of the illumination wave [Fig. 2(I)]. (b) Temporal signature of the object when the cloak is off [Fig. 2(IV)]. (c) Autocorrelation trace when the object is not present and the cloak is on [Fig. 2(IV)]. (d) Autocorrelation trace when the object is present and the cloak is on [Fig. 2(IV)]. [(e)–(f)] Reconstruction of the complex temporal envelope of the involved waves. (e) Illumination pulse [Fig. 2(I)] and (f) output pulse with the object present and the cloak on [Fig. 2(IV)]. The estimated full width at half-maximum temporal duration of the pulse is 1.4    ps .
Fig. 5.
Fig. 5. Spectral cloaking with non-uniform broadband illumination. (a) Conceptual illustration of spectral cloaking of a target illuminated by a broadband wave with a non-uniform spectrum ( ν represents frequency). (b) Numerical simulations of the spectral cloaking operation ( m = 2 ) with a non-uniform illumination spectrum (see text for definitions of parameters). From left to right: non-uniform broadband illumination spectrum, frequency gaps resulting from the application of the cloak transformations, and reconstruction of the original illumination wave after reversal of the applied transformations. (c) Conceptual illustration of the detection of a target located in the background of a cloaked object.
Fig. 6.
Fig. 6. Selective cloaking through spectrally tailored wave–object interaction. (a) Spectrum of the illumination wave. (b) Transmission spectrum of the object and the signature on the illumination wave when the cloak transformations are not applied. (c) Wave spectrum at the output of the first phase modulator [Fig. 2(b)], showing generation of spectral gaps. (d) Wave spectrum at the output of the cloaking device.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ν c = m ν r .
ν g = ( m 1 ) ν r .

Metrics