Abstract

Liquid-core fibers offer local external control over pulse dispersion due to their strong thermodynamic response, offering a new degree of freedom in accurate soliton steering for reconfigurable nonlinear light generation. Here, we show how to accurately control soliton dynamics and supercontinuum generation in carbon disulfide/silica fibers by temperature and pressure tuning, monitored via the spectral location and the onset energy of non-solitonic radiation. Simulations and phase-matching calculations based on an extended thermodynamic dispersion model of carbon disulfide confirm the experimental results, which allows us to demonstrate the potential of temperature detuning of liquid-core fibers for octave spanning recompressible supercontinuum generation in the near-infrared.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Carbon chloride-core fibers for soliton mediated supercontinuum generation

Mario Chemnitz, Christian Gaida, Martin Gebhardt, Fabian Stutzki, Jens Kobelke, Andreas Tünnermann, Jens Limpert, and Markus A. Schmidt
Opt. Express 26(3) 3221-3235 (2018)

Efficient supercontinuum generations in silica suspended core fibers

Libin Fu, Brian K. Thomas, and Liang Dong
Opt. Express 16(24) 19629-19642 (2008)

Mid-IR multipeak and stepwise blueshifted dispersive wave generation in liquid-filled chalcogenide capillary optical fibers

Satya P. Singh, V. Mishra, and Shailendra K. Varshney
J. Opt. Soc. Am. B 33(11) D65-D71 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photon. Rev. 9, 435–451 (2015).
    [Crossref]
  2. C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
    [Crossref]
  3. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16, 10178–10188 (2008).
    [Crossref]
  4. A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 7299 (2015).
    [Crossref]
  5. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref]
  6. R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
    [Crossref]
  7. J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
    [Crossref]
  8. E. Lucas, H. Guo, J. D. Jost, M. Karpov, and T. J. Kippenberg, “Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators,” Phys. Rev. A 95, 043822 (2017).
    [Crossref]
  9. Y. Tang, L. G. Wright, K. Charan, T. Wang, C. Xu, and F. W. Wise, “Generation of intense 100  fs solitons tunable from 2 to 4.3  μm in fluoride fiber,” Optica 3, 948–951 (2016).
    [Crossref]
  10. M. Chemnitz, M. Baumgartl, T. Meyer, C. Jauregui, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy,” Opt. Express 20, 26583–26595 (2012).
    [Crossref]
  11. T. Elsmann, A. Lorenz, N. S. Yazd, T. Habisreuther, J. Dellith, A. Schwuchow, J. Bierlich, K. Schuster, M. Rothhardt, L. Kido, and H. Bartelt, “High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers,” Opt. Express 22, 26825–26833 (2014).
    [Crossref]
  12. C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Thermally controlled comb generation and soliton modelocking in microresonators,” Opt. Lett. 41, 2565–2568 (2016).
    [Crossref]
  13. G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–196 (1995).
    [Crossref]
  14. P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
    [Crossref]
  15. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2, 1588–1611 (2012).
    [Crossref]
  16. R. W. Boyd and G. L. Fischer, Nonlinear Optical Materials (Elsevier, 2001).
  17. H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. St. J. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express 19, 8200–8207 (2011).
    [Crossref]
  18. Y. Xu, X. Chen, and Y. Zhu, “High sensitive temperature sensor using a liquid-core optical fiber with small refractive index difference between core and cladding materials,” Sensors 8, 1872–1878 (2008).
    [Crossref]
  19. Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2008).
    [Crossref]
  20. X. Fan and S.-H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11, 141–147 (2014).
    [Crossref]
  21. R. M. Gerosa, A. Sudirman, L. D. S. Menezes, W. Margulis, and C. J. S. de Matos, “All-fiber high repetition rate microfluidic dye laser,” Optica 2, 186–193 (2015).
    [Crossref]
  22. M. Vieweg, S. Pricking, T. Gissibl, Y. Kartashov, L. Torner, and H. Giessen, “Tunable ultrafast nonlinear optofluidic coupler,” Opt. Lett. 37, 1058–1060 (2012).
    [Crossref]
  23. B. Kuhlmey, B. Eggleton, and D. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol. 27, 1617–1630 (2009).
    [Crossref]
  24. P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
    [Crossref]
  25. Y. Liu, Y. Wang, B. Sun, C. Liao, J. Song, K. Yang, G. Wang, Q. Wang, G. Yin, and J. Zhou, “Compact tunable multibandpass filters based on liquid-filled photonic crystal fibers,” Opt. Lett. 39, 2148–2151 (2014).
  26. L. Velázquez-Ibarra, A. Díez, E. Silvestre, and M. V. Andrés, “Wideband tuning of four-wave mixing in solid-core liquid-filled photonic crystal fibers,” Opt. Lett. 41, 2600–2603 (2016).
    [Crossref]
  27. Y. Peng, J. Hou, Y. Zhang, Z. Huang, R. Xiao, and Q. Lu, “Temperature sensing using the bandgap-like effect in a selectively liquid-filled photonic crystal fiber,” Opt. Lett. 38, 263–265 (2013).
    [Crossref]
  28. T. Gissibl, M. Vieweg, M. M. Vogel, M. Aboud Ahmed, T. Graf, and H. Giessen, “Preparation and characterization of a large mode area liquid-filled photonic crystal fiber: transition from isolated to coupled spatial modes,” Appl. Phys. B 106, 521–527 (2012).
    [Crossref]
  29. D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
    [Crossref]
  30. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
    [Crossref]
  31. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  32. M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
    [Crossref]
  33. M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).
    [Crossref]
  34. E. Reisler, H. Eisenberg, and A. P. Minton, “Temperature and density dependence of the refractive index of pure liquids,” J. Chem. Soc. Faraday Trans. 2 68, 1001–1015 (1972).
    [Crossref]
  35. C. D. Keefe and S. Mac Innis, “Temperature dependence of the optical properties of liquid toluene between 4000 and 400  cm−1 from 30 to 105°C,” J. Mol. Struct. 737, 207–219 (2005).
    [Crossref]
  36. H. El-Kashef, “Study of the refractive properties of laser dye solvents: toluene, carbon disulphide, chloroform, and benzene,” Opt. Mater. 20, 81–86 (2002).
    [Crossref]
  37. K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116, 617–622 (2013).
    [Crossref]
  38. S. Pumpe, M. Chemnitz, J. Kobelke, and M. A. Schmidt, “Monolithic optofluidic mode coupler for broadband thermo- and piezo-optical characterization of liquids,” Opt. Express 25, 22932–22946 (2017).
    [Crossref]
  39. J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, and H. Tamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
    [Crossref]
  40. W. J. Tropf, “Temperature-dependent refractive index models for BaF2, CaF2, MgF2, SrF2, LiF, NaF, KCl, ZnS, and ZnSe,” Opt. Eng. 34, 1369–1373 (1995).
    [Crossref]
  41. D. J. Coumou, E. L. Mackor, and J. Hijmans, “Isotropic light-scattering in pure liquids,” Trans. Faraday Soc. 60, 1539–1547 (1964).
    [Crossref]
  42. J. W. Fleming, “Dispersion in GeO2–SiO2 glasses,” Appl. Opt. 23, 4486–4493 (1984).
    [Crossref]
  43. M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Opt. Express 26, 3221–3235 (2018).
    [Crossref]
  44. J. N. Elgin, T. Brabec, and S. M. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun. 114, 321–328 (1995).
    [Crossref]
  45. C. Conti, M. A. Schmidt, P. St. J. Russell, and F. Biancalana, “Highly noninstantaneous solitons in liquid-core photonic crystal fibers,” Phys. Rev. Lett. 105, 263902 (2010).
    [Crossref]
  46. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
    [Crossref]
  47. A. Bendahmane, F. Braud, and M. Conforti, “Dynamics of cascaded resonant radiations in a dispersion-varying optical fiber,” Optica 1, 243–249 (2014).
    [Crossref]
  48. A. Mussot, M. Conforti, S. Trillo, F. Copie, and A. Kudlinski, “Modulation instability in dispersion oscillating fibers,” Adv. Opt. Photon. 10, 1–42 (2018).
  49. S. C. Warren-Smith, J. Wie, M. Chemnitz, R. Kostecki, H. Ebendorff-Heidepriem, T. M. Monro, and M. A. Schmidt, “Third harmonic generation in exposed-core microstructured optical fibers,” Opt. Express 24, 17860–17867 (2016).
    [Crossref]
  50. N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. St. J. Russell, “Mid-infrared supercontinuum generation in As2S3-silica ‘nano-spike’ step-index waveguide,” Opt. Express 21, 10969–10977 (2013).
    [Crossref]
  51. R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014).
    [Crossref]
  52. V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
    [Crossref]
  53. I. Babushkin, A. Tajalli, H. Sayinc, U. Morgner, G. Steinmeyer, and A. Demircan, “Simple route toward efficient frequency conversion for generation of fully coherent supercontinua in the mid-IR and UV range,” Light Sci. Appl. 6, e16218 (2016).
    [Crossref]
  54. A. Idrissi, M. Ricci, P. Bartolini, and R. Righini, “Optical Kerr-effect investigation of the reorientational dynamics of CS2 in CCl4 solutions,” J. Chem. Phys. 111, 4148–4152 (1999).
    [Crossref]

2018 (2)

2017 (3)

E. Lucas, H. Guo, J. D. Jost, M. Karpov, and T. J. Kippenberg, “Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators,” Phys. Rev. A 95, 043822 (2017).
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref]

S. Pumpe, M. Chemnitz, J. Kobelke, and M. A. Schmidt, “Monolithic optofluidic mode coupler for broadband thermo- and piezo-optical characterization of liquids,” Opt. Express 25, 22932–22946 (2017).
[Crossref]

2016 (6)

2015 (3)

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photon. Rev. 9, 435–451 (2015).
[Crossref]

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 7299 (2015).
[Crossref]

R. M. Gerosa, A. Sudirman, L. D. S. Menezes, W. Margulis, and C. J. S. de Matos, “All-fiber high repetition rate microfluidic dye laser,” Optica 2, 186–193 (2015).
[Crossref]

2014 (8)

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).
[Crossref]

Y. Liu, Y. Wang, B. Sun, C. Liao, J. Song, K. Yang, G. Wang, Q. Wang, G. Yin, and J. Zhou, “Compact tunable multibandpass filters based on liquid-filled photonic crystal fibers,” Opt. Lett. 39, 2148–2151 (2014).

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

T. Elsmann, A. Lorenz, N. S. Yazd, T. Habisreuther, J. Dellith, A. Schwuchow, J. Bierlich, K. Schuster, M. Rothhardt, L. Kido, and H. Bartelt, “High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers,” Opt. Express 22, 26825–26833 (2014).
[Crossref]

X. Fan and S.-H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11, 141–147 (2014).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

A. Bendahmane, F. Braud, and M. Conforti, “Dynamics of cascaded resonant radiations in a dispersion-varying optical fiber,” Optica 1, 243–249 (2014).
[Crossref]

R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014).
[Crossref]

2013 (3)

2012 (4)

2011 (1)

2010 (3)

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

C. Conti, M. A. Schmidt, P. St. J. Russell, and F. Biancalana, “Highly noninstantaneous solitons in liquid-core photonic crystal fibers,” Phys. Rev. Lett. 105, 263902 (2010).
[Crossref]

2009 (1)

2008 (4)

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16, 10178–10188 (2008).
[Crossref]

Y. Xu, X. Chen, and Y. Zhu, “High sensitive temperature sensor using a liquid-core optical fiber with small refractive index difference between core and cladding materials,” Sensors 8, 1872–1878 (2008).
[Crossref]

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2008).
[Crossref]

2007 (1)

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[Crossref]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

2005 (1)

C. D. Keefe and S. Mac Innis, “Temperature dependence of the optical properties of liquid toluene between 4000 and 400  cm−1 from 30 to 105°C,” J. Mol. Struct. 737, 207–219 (2005).
[Crossref]

2002 (3)

H. El-Kashef, “Study of the refractive properties of laser dye solvents: toluene, carbon disulphide, chloroform, and benzene,” Opt. Mater. 20, 81–86 (2002).
[Crossref]

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

1999 (1)

A. Idrissi, M. Ricci, P. Bartolini, and R. Righini, “Optical Kerr-effect investigation of the reorientational dynamics of CS2 in CCl4 solutions,” J. Chem. Phys. 111, 4148–4152 (1999).
[Crossref]

1995 (4)

J. N. Elgin, T. Brabec, and S. M. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun. 114, 321–328 (1995).
[Crossref]

W. J. Tropf, “Temperature-dependent refractive index models for BaF2, CaF2, MgF2, SrF2, LiF, NaF, KCl, ZnS, and ZnSe,” Opt. Eng. 34, 1369–1373 (1995).
[Crossref]

G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–196 (1995).
[Crossref]

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]

1991 (1)

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, and H. Tamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[Crossref]

1984 (1)

1972 (1)

E. Reisler, H. Eisenberg, and A. P. Minton, “Temperature and density dependence of the refractive index of pure liquids,” J. Chem. Soc. Faraday Trans. 2 68, 1001–1015 (1972).
[Crossref]

1964 (1)

D. J. Coumou, E. L. Mackor, and J. Hijmans, “Isotropic light-scattering in pure liquids,” Trans. Faraday Soc. 60, 1539–1547 (1964).
[Crossref]

Abdolvand, A.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Aboud Ahmed, M.

T. Gissibl, M. Vieweg, M. M. Vogel, M. Aboud Ahmed, T. Graf, and H. Giessen, “Preparation and characterization of a large mode area liquid-filled photonic crystal fiber: transition from isolated to coupled spatial modes,” Appl. Phys. B 106, 521–527 (2012).
[Crossref]

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]

Andrekson, P. A.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Andrés, M. V.

Babushkin, I.

I. Babushkin, A. Tajalli, H. Sayinc, U. Morgner, G. Steinmeyer, and A. Demircan, “Simple route toward efficient frequency conversion for generation of fully coherent supercontinua in the mid-IR and UV range,” Light Sci. Appl. 6, e16218 (2016).
[Crossref]

Baldwin, K. W.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[Crossref]

Bartelt, H.

Bartolini, P.

A. Idrissi, M. Ricci, P. Bartolini, and R. Righini, “Optical Kerr-effect investigation of the reorientational dynamics of CS2 in CCl4 solutions,” J. Chem. Phys. 111, 4148–4152 (1999).
[Crossref]

Baumgartl, M.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photon. Rev. 9, 435–451 (2015).
[Crossref]

M. Chemnitz, M. Baumgartl, T. Meyer, C. Jauregui, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy,” Opt. Express 20, 26583–26595 (2012).
[Crossref]

Bendahmane, A.

Betsis, S. C.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116, 617–622 (2013).
[Crossref]

Biancalana, F.

C. Conti, M. A. Schmidt, P. St. J. Russell, and F. Biancalana, “Highly noninstantaneous solitons in liquid-core photonic crystal fibers,” Phys. Rev. Lett. 105, 263902 (2010).
[Crossref]

Bierlich, J.

Bogris, A.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Boyd, R. W.

R. W. Boyd and G. L. Fischer, Nonlinear Optical Materials (Elsevier, 2001).

Brabec, T.

J. N. Elgin, T. Brabec, and S. M. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun. 114, 321–328 (1995).
[Crossref]

Brasch, V.

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Braud, F.

Cardenas, J.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 7299 (2015).
[Crossref]

Chang, W.

Charan, K.

Chemnitz, M.

Chen, X.

Y. Xu, X. Chen, and Y. Zhu, “High sensitive temperature sensor using a liquid-core optical fiber with small refractive index difference between core and cladding materials,” Sensors 8, 1872–1878 (2008).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Conforti, M.

Conti, C.

C. Conti, M. A. Schmidt, P. St. J. Russell, and F. Biancalana, “Highly noninstantaneous solitons in liquid-core photonic crystal fibers,” Phys. Rev. Lett. 105, 263902 (2010).
[Crossref]

Copie, F.

Coulombier, Q.

Coumou, D. J.

D. J. Coumou, E. L. Mackor, and J. Hijmans, “Isotropic light-scattering in pure liquids,” Trans. Faraday Soc. 60, 1539–1547 (1964).
[Crossref]

Dasgupta, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

de Matos, C. J. S.

Dellith, J.

Demircan, A.

I. Babushkin, A. Tajalli, H. Sayinc, U. Morgner, G. Steinmeyer, and A. Demircan, “Simple route toward efficient frequency conversion for generation of fully coherent supercontinua in the mid-IR and UV range,” Light Sci. Appl. 6, e16218 (2016).
[Crossref]

Dietzek, B.

Díez, A.

Dolinski, M.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Ebendorff-Heidepriem, H.

Eggleton, B.

Eggleton, B. J.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[Crossref]

Eisenberg, H.

E. Reisler, H. Eisenberg, and A. P. Minton, “Temperature and density dependence of the refractive index of pure liquids,” J. Chem. Soc. Faraday Trans. 2 68, 1001–1015 (1972).
[Crossref]

Elder, A.

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

Elgin, J. N.

J. N. Elgin, T. Brabec, and S. M. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun. 114, 321–328 (1995).
[Crossref]

El-Kashef, H.

H. El-Kashef, “Study of the refractive properties of laser dye solvents: toluene, carbon disulphide, chloroform, and benzene,” Opt. Mater. 20, 81–86 (2002).
[Crossref]

Ellis, A. D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Elsmann, T.

Ensley, T. R.

Fain, R.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 7299 (2015).
[Crossref]

Fan, X.

X. Fan and S.-H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11, 141–147 (2014).
[Crossref]

Ferdinandus, M. R.

Fermann, M. E.

Fischer, G. L.

R. W. Boyd and G. L. Fischer, Nonlinear Optical Materials (Elsevier, 2001).

Fishman, D. A.

Fleming, J. W.

Frank, J.

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

Freude, W.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Fujinaga, S.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, and H. Tamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[Crossref]

Gaeta, A. L.

Gaida, C.

M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Opt. Express 26, 3221–3235 (2018).
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref]

Gebhardt, M.

M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Opt. Express 26, 3221–3235 (2018).
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref]

Geiselmann, M.

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Gerosa, R. M.

Ghosh, G.

G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–196 (1995).
[Crossref]

Giessen, H.

Gissibl, T.

Gorbach, A. V.

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[Crossref]

Gorodetsky, M. L.

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

Gottschall, T.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photon. Rev. 9, 435–451 (2015).
[Crossref]

Graf, T.

T. Gissibl, M. Vieweg, M. M. Vogel, M. Aboud Ahmed, T. Graf, and H. Giessen, “Preparation and characterization of a large mode area liquid-filled photonic crystal fiber: transition from isolated to coupled spatial modes,” Appl. Phys. B 106, 521–527 (2012).
[Crossref]

Granzow, N.

Griffith, A. G.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 7299 (2015).
[Crossref]

R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014).
[Crossref]

Grüner-Nielsen, L.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Guo, H.

E. Lucas, H. Guo, J. D. Jost, M. Karpov, and T. J. Kippenberg, “Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators,” Phys. Rev. A 95, 043822 (2017).
[Crossref]

Habisreuther, T.

Hagan, D. J.

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Hartinger, K.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Hartl, I.

Herr, T.

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Herstrøm, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Hijmans, J.

D. J. Coumou, E. L. Mackor, and J. Hijmans, “Isotropic light-scattering in pure liquids,” Trans. Faraday Soc. 60, 1539–1547 (1964).
[Crossref]

Hillerkuss, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Hloupis, G.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116, 617–622 (2013).
[Crossref]

Hölzer, P.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Holzwarth, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Hou, J.

Hu, H.

Huang, Z.

Hult, J.

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16, 10178–10188 (2008).
[Crossref]

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

Idrissi, A.

A. Idrissi, M. Ricci, P. Bartolini, and R. Righini, “Optical Kerr-effect investigation of the reorientational dynamics of CS2 in CCl4 solutions,” J. Chem. Phys. 111, 4148–4152 (1999).
[Crossref]

Jakobsen, D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Jang, J. K.

Jauregui, C.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photon. Rev. 9, 435–451 (2015).
[Crossref]

M. Chemnitz, M. Baumgartl, T. Meyer, C. Jauregui, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy,” Opt. Express 20, 26583–26595 (2012).
[Crossref]

Ji, X.

Joly, N. Y.

Jones, R. L.

Joshi, C.

Jost, J. D.

E. Lucas, H. Guo, J. D. Jost, M. Karpov, and T. J. Kippenberg, “Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators,” Phys. Rev. A 95, 043822 (2017).
[Crossref]

Kakande, J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Kaminski, C.

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

Kaminski, C. F.

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]

Karpov, M.

E. Lucas, H. Guo, J. D. Jost, M. Karpov, and T. J. Kippenberg, “Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators,” Phys. Rev. A 95, 043822 (2017).
[Crossref]

Kartashov, Y.

Kedenburg, S.

Keefe, C. D.

C. D. Keefe and S. Mac Innis, “Temperature dependence of the optical properties of liquid toluene between 4000 and 400  cm−1 from 30 to 105°C,” J. Mol. Struct. 737, 207–219 (2005).
[Crossref]

Kelly, S. M.

J. N. Elgin, T. Brabec, and S. M. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun. 114, 321–328 (1995).
[Crossref]

Kerbage, C.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[Crossref]

Kido, L.

Kippenberg, T. J.

E. Lucas, H. Guo, J. D. Jost, M. Karpov, and T. J. Kippenberg, “Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators,” Phys. Rev. A 95, 043822 (2017).
[Crossref]

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Kitamura, N.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, and H. Tamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[Crossref]

Kitaoka, T.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, and H. Tamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[Crossref]

Klenner, A.

Kobelke, J.

Koos, C.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Kostecki, R.

Kudlinski, A.

Kuhlmey, B.

Lamont, M. R. E.

Langridge, J. M.

Lau, R. K.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 7299 (2015).
[Crossref]

Lau, R. K. W.

Lauermann, M.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Laurila, T.

Lee, H. W.

Lee, K. F.

Lee, Y. H. D.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 7299 (2015).
[Crossref]

Leuthold, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Li, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Li, Z.

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2008).
[Crossref]

Liao, C.

Lihachev, G.

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

Limpert, J.

M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Opt. Express 26, 3221–3235 (2018).
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref]

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photon. Rev. 9, 435–451 (2015).
[Crossref]

M. Chemnitz, M. Baumgartl, T. Meyer, C. Jauregui, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy,” Opt. Express 20, 26583–26595 (2012).
[Crossref]

Lipson, M.

Liu, Y.

Lorenz, A.

Lu, Q.

Lucas, E.

E. Lucas, H. Guo, J. D. Jost, M. Karpov, and T. J. Kippenberg, “Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators,” Phys. Rev. A 95, 043822 (2017).
[Crossref]

Luke, K.

Lundström, C.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Mac Innis, S.

C. D. Keefe and S. Mac Innis, “Temperature dependence of the optical properties of liquid toluene between 4000 and 400  cm−1 from 30 to 105°C,” J. Mol. Struct. 737, 207–219 (2005).
[Crossref]

Mach, P.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[Crossref]

Mackor, E. L.

D. J. Coumou, E. L. Mackor, and J. Hijmans, “Isotropic light-scattering in pure liquids,” Trans. Faraday Soc. 60, 1539–1547 (1964).
[Crossref]

Margulis, W.

Matsuoka, J.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, and H. Tamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[Crossref]

Menezes, L. D. S.

Meyer, T.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photon. Rev. 9, 435–451 (2015).
[Crossref]

M. Chemnitz, M. Baumgartl, T. Meyer, C. Jauregui, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy,” Opt. Express 20, 26583–26595 (2012).
[Crossref]

Miller, S. A.

Minton, A. P.

E. Reisler, H. Eisenberg, and A. P. Minton, “Temperature and density dependence of the refractive index of pure liquids,” J. Chem. Soc. Faraday Trans. 2 68, 1001–1015 (1972).
[Crossref]

Mohanty, A.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 7299 (2015).
[Crossref]

Monro, T. M.

Morgner, U.

I. Babushkin, A. Tajalli, H. Sayinc, U. Morgner, G. Steinmeyer, and A. Demircan, “Simple route toward efficient frequency conversion for generation of fully coherent supercontinua in the mid-IR and UV range,” Light Sci. Appl. 6, e16218 (2016).
[Crossref]

Moutzouris, K.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116, 617–622 (2013).
[Crossref]

Mussot, A.

O’Gorman, J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Okawachi, Y.

Papamichael, M.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116, 617–622 (2013).
[Crossref]

Parmigiani, F.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Peceli, D.

Peng, Y.

Petropoulos, P.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Pfeiffer, M. H. P.

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

Pfeifle, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Phare, C. T.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 7299 (2015).
[Crossref]

Phelan, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Poitras, C. B.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 7299 (2015).
[Crossref]

Popp, J.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photon. Rev. 9, 435–451 (2015).
[Crossref]

M. Chemnitz, M. Baumgartl, T. Meyer, C. Jauregui, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy,” Opt. Express 20, 26583–26595 (2012).
[Crossref]

Pricking, S.

Psaltis, D.

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2008).
[Crossref]

Pumpe, S.

Reed, J. M.

Reichert, M.

Reisler, E.

E. Reisler, H. Eisenberg, and A. P. Minton, “Temperature and density dependence of the refractive index of pure liquids,” J. Chem. Soc. Faraday Trans. 2 68, 1001–1015 (1972).
[Crossref]

Ricci, M.

A. Idrissi, M. Ricci, P. Bartolini, and R. Righini, “Optical Kerr-effect investigation of the reorientational dynamics of CS2 in CCl4 solutions,” J. Chem. Phys. 111, 4148–4152 (1999).
[Crossref]

Richardson, D. J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Righini, R.

A. Idrissi, M. Ricci, P. Bartolini, and R. Righini, “Optical Kerr-effect investigation of the reorientational dynamics of CS2 in CCl4 solutions,” J. Chem. Phys. 111, 4148–4152 (1999).
[Crossref]

Rogers, J. A.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[Crossref]

Rothhardt, M.

Russell, P. St. J.

Sayinc, H.

I. Babushkin, A. Tajalli, H. Sayinc, U. Morgner, G. Steinmeyer, and A. Demircan, “Simple route toward efficient frequency conversion for generation of fully coherent supercontinua in the mid-IR and UV range,” Light Sci. Appl. 6, e16218 (2016).
[Crossref]

Scharrer, M.

Schindler, P.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Schmidt, M. A.

M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Opt. Express 26, 3221–3235 (2018).
[Crossref]

S. Pumpe, M. Chemnitz, J. Kobelke, and M. A. Schmidt, “Monolithic optofluidic mode coupler for broadband thermo- and piezo-optical characterization of liquids,” Opt. Express 25, 22932–22946 (2017).
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref]

S. C. Warren-Smith, J. Wie, M. Chemnitz, R. Kostecki, H. Ebendorff-Heidepriem, T. M. Monro, and M. A. Schmidt, “Third harmonic generation in exposed-core microstructured optical fibers,” Opt. Express 24, 17860–17867 (2016).
[Crossref]

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. St. J. Russell, “Mid-infrared supercontinuum generation in As2S3-silica ‘nano-spike’ step-index waveguide,” Opt. Express 21, 10969–10977 (2013).
[Crossref]

H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. St. J. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express 19, 8200–8207 (2011).
[Crossref]

C. Conti, M. A. Schmidt, P. St. J. Russell, and F. Biancalana, “Highly noninstantaneous solitons in liquid-core photonic crystal fibers,” Phys. Rev. Lett. 105, 263902 (2010).
[Crossref]

Schmitt, M.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photon. Rev. 9, 435–451 (2015).
[Crossref]

Schmogrow, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Schuster, K.

Schwuchow, A.

Seidel, M.

Silvestre, E.

Sjödin, M.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Skryabin, D. V.

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[Crossref]

Slavík, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Song, J.

Stavrakas, I.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116, 617–622 (2013).
[Crossref]

Steinmeyer, G.

I. Babushkin, A. Tajalli, H. Sayinc, U. Morgner, G. Steinmeyer, and A. Demircan, “Simple route toward efficient frequency conversion for generation of fully coherent supercontinua in the mid-IR and UV range,” Light Sci. Appl. 6, e16218 (2016).
[Crossref]

Stutzki, F.

M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Opt. Express 26, 3221–3235 (2018).
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref]

Sudirman, A.

Sun, B.

Sygletos, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Syvridis, D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Tajalli, A.

I. Babushkin, A. Tajalli, H. Sayinc, U. Morgner, G. Steinmeyer, and A. Demircan, “Simple route toward efficient frequency conversion for generation of fully coherent supercontinua in the mid-IR and UV range,” Light Sci. Appl. 6, e16218 (2016).
[Crossref]

Tamashita, H.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, and H. Tamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[Crossref]

Tang, Y.

Torner, L.

Toupin, P.

Travers, J. C.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Triantis, D.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116, 617–622 (2013).
[Crossref]

Trillo, S.

Troles, J.

Tropf, W. J.

W. J. Tropf, “Temperature-dependent refractive index models for BaF2, CaF2, MgF2, SrF2, LiF, NaF, KCl, ZnS, and ZnSe,” Opt. Eng. 34, 1369–1373 (1995).
[Crossref]

Tünnermann, A.

M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Opt. Express 26, 3221–3235 (2018).
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref]

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photon. Rev. 9, 435–451 (2015).
[Crossref]

M. Chemnitz, M. Baumgartl, T. Meyer, C. Jauregui, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy,” Opt. Express 20, 26583–26595 (2012).
[Crossref]

Tyagi, H.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Uebel, P.

Van Stryland, E. W.

Velázquez-Ibarra, L.

Vieweg, M.

Vogel, M. M.

T. Gissibl, M. Vieweg, M. M. Vogel, M. Aboud Ahmed, T. Graf, and H. Giessen, “Preparation and characterization of a large mode area liquid-filled photonic crystal fiber: transition from isolated to coupled spatial modes,” Appl. Phys. B 106, 521–527 (2012).
[Crossref]

Wang, G.

Wang, L.

Wang, Q.

Wang, T.

Wang, Y.

Warren-Smith, S. C.

Watt, R.

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

Watt, R. S.

Webster, S.

Weerasuriya, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Wegner, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Weimann, C.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Wie, J.

Windeler, R. S.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[Crossref]

Wise, F. W.

Wondraczek, L.

Wright, L. G.

Wu, D.

Xiao, R.

Xu, C.

Xu, Y.

Y. Xu, X. Chen, and Y. Zhu, “High sensitive temperature sensor using a liquid-core optical fiber with small refractive index difference between core and cladding materials,” Sensors 8, 1872–1878 (2008).
[Crossref]

Yang, K.

Yazd, N. S.

Yin, G.

Yu, M.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 7299 (2015).
[Crossref]

Yu, Y.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Yun, S.-H.

X. Fan and S.-H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11, 141–147 (2014).
[Crossref]

Zhang, Y.

Zhao, P.

Zhou, J.

Zhu, Y.

Y. Xu, X. Chen, and Y. Zhu, “High sensitive temperature sensor using a liquid-core optical fiber with small refractive index difference between core and cladding materials,” Sensors 8, 1872–1878 (2008).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Appl. Phys. B (3)

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116, 617–622 (2013).
[Crossref]

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

T. Gissibl, M. Vieweg, M. M. Vogel, M. Aboud Ahmed, T. Graf, and H. Giessen, “Preparation and characterization of a large mode area liquid-filled photonic crystal fiber: transition from isolated to coupled spatial modes,” Appl. Phys. B 106, 521–527 (2012).
[Crossref]

Appl. Phys. Lett. (1)

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[Crossref]

J. Chem. Phys. (1)

A. Idrissi, M. Ricci, P. Bartolini, and R. Righini, “Optical Kerr-effect investigation of the reorientational dynamics of CS2 in CCl4 solutions,” J. Chem. Phys. 111, 4148–4152 (1999).
[Crossref]

J. Chem. Soc. Faraday Trans. 2 (1)

E. Reisler, H. Eisenberg, and A. P. Minton, “Temperature and density dependence of the refractive index of pure liquids,” J. Chem. Soc. Faraday Trans. 2 68, 1001–1015 (1972).
[Crossref]

J. Lightwave Technol. (1)

J. Mol. Struct. (1)

C. D. Keefe and S. Mac Innis, “Temperature dependence of the optical properties of liquid toluene between 4000 and 400  cm−1 from 30 to 105°C,” J. Mol. Struct. 737, 207–219 (2005).
[Crossref]

J. Non-Cryst. Solids (2)

G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–196 (1995).
[Crossref]

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, and H. Tamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[Crossref]

Laser Photon. Rev. (1)

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photon. Rev. 9, 435–451 (2015).
[Crossref]

Light Sci. Appl. (1)

I. Babushkin, A. Tajalli, H. Sayinc, U. Morgner, G. Steinmeyer, and A. Demircan, “Simple route toward efficient frequency conversion for generation of fully coherent supercontinua in the mid-IR and UV range,” Light Sci. Appl. 6, e16218 (2016).
[Crossref]

Microfluid. Nanofluid. (1)

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2008).
[Crossref]

Nat. Commun. (2)

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref]

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 7299 (2015).
[Crossref]

Nat. Methods (1)

X. Fan and S.-H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11, 141–147 (2014).
[Crossref]

Nat. Photonics (4)

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[Crossref]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Opt. Commun. (1)

J. N. Elgin, T. Brabec, and S. M. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun. 114, 321–328 (1995).
[Crossref]

Opt. Eng. (1)

W. J. Tropf, “Temperature-dependent refractive index models for BaF2, CaF2, MgF2, SrF2, LiF, NaF, KCl, ZnS, and ZnSe,” Opt. Eng. 34, 1369–1373 (1995).
[Crossref]

Opt. Express (8)

S. Pumpe, M. Chemnitz, J. Kobelke, and M. A. Schmidt, “Monolithic optofluidic mode coupler for broadband thermo- and piezo-optical characterization of liquids,” Opt. Express 25, 22932–22946 (2017).
[Crossref]

M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Opt. Express 26, 3221–3235 (2018).
[Crossref]

S. C. Warren-Smith, J. Wie, M. Chemnitz, R. Kostecki, H. Ebendorff-Heidepriem, T. M. Monro, and M. A. Schmidt, “Third harmonic generation in exposed-core microstructured optical fibers,” Opt. Express 24, 17860–17867 (2016).
[Crossref]

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. St. J. Russell, “Mid-infrared supercontinuum generation in As2S3-silica ‘nano-spike’ step-index waveguide,” Opt. Express 21, 10969–10977 (2013).
[Crossref]

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16, 10178–10188 (2008).
[Crossref]

M. Chemnitz, M. Baumgartl, T. Meyer, C. Jauregui, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy,” Opt. Express 20, 26583–26595 (2012).
[Crossref]

T. Elsmann, A. Lorenz, N. S. Yazd, T. Habisreuther, J. Dellith, A. Schwuchow, J. Bierlich, K. Schuster, M. Rothhardt, L. Kido, and H. Bartelt, “High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers,” Opt. Express 22, 26825–26833 (2014).
[Crossref]

H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. St. J. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express 19, 8200–8207 (2011).
[Crossref]

Opt. Lett. (6)

Opt. Mater. (1)

H. El-Kashef, “Study of the refractive properties of laser dye solvents: toluene, carbon disulphide, chloroform, and benzene,” Opt. Mater. 20, 81–86 (2002).
[Crossref]

Opt. Mater. Express (1)

Optica (4)

Phys. Rev. A (2)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]

E. Lucas, H. Guo, J. D. Jost, M. Karpov, and T. J. Kippenberg, “Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators,” Phys. Rev. A 95, 043822 (2017).
[Crossref]

Phys. Rev. Lett. (1)

C. Conti, M. A. Schmidt, P. St. J. Russell, and F. Biancalana, “Highly noninstantaneous solitons in liquid-core photonic crystal fibers,” Phys. Rev. Lett. 105, 263902 (2010).
[Crossref]

Rev. Mod. Phys. (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

Science (1)

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

Sensors (1)

Y. Xu, X. Chen, and Y. Zhu, “High sensitive temperature sensor using a liquid-core optical fiber with small refractive index difference between core and cladding materials,” Sensors 8, 1872–1878 (2008).
[Crossref]

Trans. Faraday Soc. (1)

D. J. Coumou, E. L. Mackor, and J. Hijmans, “Isotropic light-scattering in pure liquids,” Trans. Faraday Soc. 60, 1539–1547 (1964).
[Crossref]

Other (1)

R. W. Boyd and G. L. Fischer, Nonlinear Optical Materials (Elsevier, 2001).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental Information

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Thermo-optic effect on DWG in liquid-core fiber. (a) Device principle: the thermodynamically modified mode dispersion influences the DW radiated off a solitary pump wave. (b) Group velocity dispersion (right axis) of a CS2/silica step-index fiber with core diameter of 3.3 μm for three temperatures and the corresponding phase mismatch (left axis) between a DW and a hypothetical pump soliton at 2.1 μm in the same fiber. The inset shows the temperature dependence of the wavelength of perfectly phase-matched DWs for three different pump solitons at 2.0, 2.1, and 2.2 μm.
Fig. 2.
Fig. 2. ZDW of the fundamental mode (HE11) and the phase-matching condition as function of the core diameter of a CS2/silica step-index fiber for three temperatures. For the phase-matching calculation, a solitary wave at 2.1 μm was assumed. The marks highlight the pump wavelengths of former work in the field and our contribution, which is within the temperature-sensitive domain (dotted). The anomalous and normal dispersion domains are denoted as AD and ND.
Fig. 3.
Fig. 3. Supercontinuum output and tuning configuration. (a) Measured output spectra of 18 cm CS2/silica fiber for increasing initial in-fiber pulse energy. (b) Simulated output spectra of the same fiber in the same pump energy domain using a reconstructed pulse shape. (c) One individual spectral evolution of a 350 fs pulse with 0.3 nJ pulse energy. The blue–red zone highlights the soliton fission area where a temperature element has highest impact. (d) Heat map of the liquid-core fiber placed on a 5 cm heating element. (e) Temperature profile along the fiber core in the cold state (calculated) compared to the temperature distribution assumed in our simulations (GNLSE).
Fig. 4.
Fig. 4. Impact of temperature on DWG. (a) and (b) Measured output spectra of the CS2/silica fiber for increasing input pulse energy in the (a) cold and (b) hot state of a 5 cm Peltier element placed close to the fiber end. (c) and (d) Measured and simulated output spectra compared for constant input pulse energy of 0.25 nJ and increasing temperature. The arrow is placed at the same position and with the same orientation in both figures for a better comparison.
Fig. 5.
Fig. 5. Temperature dependence on (a) the absolute wavelength and (b) relative wavelength shift of the first (most long-wave) soliton and the strongest DW as measured, simulated, and calculated from the phase-matching condition. The gray dashed lines show the DW wavelength in the case of perfect phase matching using a linear TOC model as a comparison to our model (green dashed lines) from Eq. (2).
Fig. 6.
Fig. 6. Measured output spectra as functions of input pulse energy for two different applied pressures: (a) atmospheric pressure (1 bar) and (b) 100 bar. The dashed horizontal lines indicate the onset pulse energy of the DWG (i.e., the fission energy). (c) Spectral intensity profile of the initial DW at the two pressure states. The spectra have been selected accordingly to the pulse energy at which the DW is clearly distinguishable from the solitary background for the first time. The dotted lines mark the positions of the non-solitonic radiation at the onset.
Fig. 7.
Fig. 7. Gradually shifted double zero-dispersion fiber for highly coherent SCG. (a) Dispersion parameter (left axis) and phase mismatch (right axis) relative to a soliton at 1.75 μm (assumed to be shifted from 1.55 μm), both for two temperatures, (b) first degree of coherence at 16 cm, and (c) the spectral evolution along propagation. A linear slope of the fiber temperature was assumed (see right axis). The lines indicate the shift of the ZDWs λZD (red dashed) and the perfectly phase-matched DWs λDW [white dotted; nonlinear term in Eq. (1) neglected] with temperature.
Fig. 8.
Fig. 8. Measured output spectra of a liquid-core fiber (core, CS2; cladding, silica; core diameter, 3.9 μm) pumped by a TM01-like mode (0.31 nJ pulse energy) at four different temperatures (colored curves). The triangles mark the calculated location of the phase-matched DWs considering a soliton at 1.75 μm, 21.2 kW peak power, and a fiber with 3.95 μm core diameter. The green spectrum in the background refers to a non-optimized temperature gradient mentioned in the main text. The black bars above the diagram indicate the spectral intervals of the filters used for obtaining the mode images on top of the plot.

Tables (1)

Tables Icon

Table 1. Sellmeier Coefficients of Carbon Disulfidea

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

β(ω)β(ωs)+(ωsω)β1,sγsPs/2=0,
n(λ,T)=(1+B1(T)λ2λ2C12(T)+B2λ2λ2C22)1/2+np|p0,T0(pp0),
LfissLD/N(Ep,fiss|β2|)12,

Metrics