Abstract

The combination of efficient single-photon generation, manipulation, and detection on a single chip poses a major challenge for quantum photonics and all-optical quantum computing. Among a multitude of detection technologies, waveguide-integrated superconducting nanowire single-photon detectors stand out as they promise near-unity detection efficiencies at outstanding timing accuracy and speed. Here, by exploiting the concept of critical coupling, we present the integration of a short nanowire into a two-dimensional double heterostructure photonic crystal cavity to realize an integrated single-photon detector with excellent performance metric. The complete detector characterization reveals on-chip detection efficiencies of almost 70% at telecom wavelengths, recovery times of 480 ps, and vanishingly low dark count rates. Our design paves the way for the implementation of compact on-chip detector arrays and time-multiplexed single-detector schemes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modelling superconducting nanowire single photon detectors in a waveguide cavity

Nicola A. Tyler, Jorge Barreto, Gerardo E. Villarreal-Garcia, Damien Bonneau, Döndü Sahin, Jeremy L. O’Brien, and Mark G. Thompson
Opt. Express 24(8) 8797-8808 (2016)

High-speed and high-efficiency superconducting nanowire single photon detector array

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler
Opt. Express 21(2) 1440-1447 (2013)

Self-aligned multi-channel superconducting nanowire single-photon detectors

Risheng Cheng, Xiang Guo, Xiaosong Ma, Linran Fan, King Y. Fong, Menno Poot, and Hong X. Tang
Opt. Express 24(24) 27070-27076 (2016)

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
    [Crossref]
  2. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
    [Crossref]
  3. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
    [Crossref]
  4. J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
    [Crossref]
  5. A. Politi, J. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
    [Crossref]
  6. A. Politi, J. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325, 1221 (2009).
    [Crossref]
  7. G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Rep. 3, 1901 (2013).
    [Crossref]
  8. C. Schuck, X. Guo, L. Fan, X.-S. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nat. Commun. 7, 10352 (2016).
    [Crossref]
  9. S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
    [Crossref]
  10. R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express 13, 10846–10853 (2005).
    [Crossref]
  11. J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
    [Crossref]
  12. X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
    [Crossref]
  13. C. Lee, S. Ferrari, W. H. P. Pernice, and C. Rockstuhl, “Sub-Poisson-binomial light,” Phys. Rev. A 94, 053844 (2016).
    [Crossref]
  14. H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).
    [Crossref]
  15. X. Hu, C. Holzwarth, D. Masciarelli, E. Dauler, and K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009).
    [Crossref]
  16. W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
    [Crossref]
  17. J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
    [Crossref]
  18. C. Schuck, W. H. P. Pernice, and H. X. Tang, “NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits,” Appl. Phys. Lett. 102, 051101 (2013).
    [Crossref]
  19. M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
    [Crossref]
  20. O. Kahl, S. Ferrari, P. Rath, A. Vetter, C. Nebel, and W. H. P. Pernice, “High efficiency on-chip single-photon detection for diamond nanophotonic circuits,” J. Lightwave Technol. 34, 249–255 (2016).
    [Crossref]
  21. G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
    [Crossref]
  22. S. Ferrari, O. Kahl, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires,” Appl. Phys. Lett. 106, 151101 (2015).
    [Crossref]
  23. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref]
  24. J. L. O’Brien, “Optical quantum computing,” Science 318, 1567–1570 (2007).
    [Crossref]
  25. M. Varnava, D. E. Browne, and T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100, 1–4 (2008).
    [Crossref]
  26. A. Migdall, Single-Photon Generation and Detection (Elsevier, 2009).
  27. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: Physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
    [Crossref]
  28. Y.-X. Gong, X.-B. Zou, T. C. Ralph, S.-N. Zhu, and G.-C. Guo, “Linear optical quantum computation with imperfect entangled photon-pair sources and inefficient non-photon-number-resolving detectors,” Phys. Rev. A 81, 052303 (2010).
    [Crossref]
  29. V. Kovalyuk, W. Hartmann, O. Kahl, N. Kaurova, A. Korneev, G. Goltsman, and W. H. P. Pernice, “Absorption engineering of NbN nanowires deposited on silicon nitride nanophotonic circuits,” Opt. Express 21, 22683–22692 (2013).
    [Crossref]
  30. A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys. 108, 084507 (2010).
    [Crossref]
  31. A. J. Annunziata, D. F. Santavicca, L. Frunzio, G. Catelani, M. J. Rooks, A. Frydman, and D. E. Prober, “Tunable superconducting nanoinductors,” Nanotechnology 21, 445202 (2010).
    [Crossref]
  32. I. Charaev, A. Semenov, S. Doerner, G. Gomard, K. Ilin, and M. Siegel, “Current dependence of the hot-spot response spectrum of superconducting single-photon detectors with different layouts,” Supercond. Sci. Technol. 30, 025016 (2017).
    [Crossref]
  33. A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16, 7085–7092 (2016).
    [Crossref]
  34. D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Levy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett. 10, 2977–2981 (2010).
    [Crossref]
  35. J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84, 174510 (2011).
    [Crossref]
  36. D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86, 144504 (2012).
    [Crossref]
  37. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref]
  38. B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
    [Crossref]
  39. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
    [Crossref]
  40. B.-S. Song, T. Asano, and S. Noda, “Heterostructures in two-dimensional photonic-crystal slabs and their application to nanocavities,” J. Phys. D 40, 2629–2634 (2007).
    [Crossref]
  41. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002).
    [Crossref]
  42. S. Fan, W. Suh, and J. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003).
    [Crossref]
  43. J. Joannopoulos, S. Johnson, J. N. J. Winn, and R. R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).
  44. J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Express 18, 25702–25711 (2010).
    [Crossref]
  45. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [Crossref]
  46. R. H. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
    [Crossref]
  47. P. Rath, A. Vetter, V. Kovalyuk, S. Ferrari, O. Kahl, C. Nebel, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Travelling-wave single-photon detectors integrated with diamond photonic circuits—operation at visible and telecom wavelengths with a timing jitter down to 23  ps,” Proc. SPIE 9750, 97500T (2016).
    [Crossref]
  48. M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
    [Crossref]
  49. C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3, 1893 (2013).
    [Crossref]
  50. C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: A review,” Opt. Eng. 53, 081910 (2014).
    [Crossref]
  51. J. Stern and W. Farr, “Fabrication and characterization of superconducting NbN nanowire single photon detectors,” IEEE Trans. Appl. Supercond. 17, 306–309 (2007).
    [Crossref]
  52. F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
    [Crossref]
  53. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
    [Crossref]
  54. M. Fujiwara, A. Tanaka, S. Takahashi, K. Yoshino, Y. Nambu, A. Tajima, S. Miki, T. Yamashita, Z. Wang, A. Tomita, and M. Sasaki, “Afterpulse-like phenomenon of superconducting single photon detector in high speed quantum key distribution system,” Opt. Express 19, 19562–19571 (2011).
    [Crossref]
  55. V. Burenkov, H. Xu, B. Qi, R. H. Hadfield, and H. K. Lo, “Investigations of afterpulsing and detection efficiency recovery in superconducting nanowire single-photon detectors,” J. Appl. Phys. 113, 213102 (2013).
    [Crossref]
  56. F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100, 112601 (2012).
    [Crossref]
  57. N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109, 152601 (2016).
    [Crossref]
  58. I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
    [Crossref]
  59. J. Zhang, W. Liu, Y. Shi, and S. He, “High-Q side-coupled semi-2D-photonic crystal cavity,” Sci. Rep. 6, 26038 (2016).
    [Crossref]
  60. O. Kahl, S. Ferrari, V. Kovalyuk, A. Vetter, G. Lewes-Malandrakis, C. Nebel, A. Korneev, G. Goltsman, and W. Pernice, “Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits,” Optica 4, 557–562 (2017).
    [Crossref]
  61. M. Gehl, C. Long, D. Trotter, A. Starbuck, A. Pomerene, J. B. Wright, S. Melgaard, J. Siirola, A. L. Lentine, and C. DeRose, “Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures,” Optica 4, 374–382 (2017).
    [Crossref]
  62. F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97, 111101 (2010).
    [Crossref]

2017 (5)

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).
[Crossref]

I. Charaev, A. Semenov, S. Doerner, G. Gomard, K. Ilin, and M. Siegel, “Current dependence of the hot-spot response spectrum of superconducting single-photon detectors with different layouts,” Supercond. Sci. Technol. 30, 025016 (2017).
[Crossref]

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

M. Gehl, C. Long, D. Trotter, A. Starbuck, A. Pomerene, J. B. Wright, S. Melgaard, J. Siirola, A. L. Lentine, and C. DeRose, “Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures,” Optica 4, 374–382 (2017).
[Crossref]

O. Kahl, S. Ferrari, V. Kovalyuk, A. Vetter, G. Lewes-Malandrakis, C. Nebel, A. Korneev, G. Goltsman, and W. Pernice, “Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits,” Optica 4, 557–562 (2017).
[Crossref]

2016 (9)

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109, 152601 (2016).
[Crossref]

O. Kahl, S. Ferrari, P. Rath, A. Vetter, C. Nebel, and W. H. P. Pernice, “High efficiency on-chip single-photon detection for diamond nanophotonic circuits,” J. Lightwave Technol. 34, 249–255 (2016).
[Crossref]

J. Zhang, W. Liu, Y. Shi, and S. He, “High-Q side-coupled semi-2D-photonic crystal cavity,” Sci. Rep. 6, 26038 (2016).
[Crossref]

P. Rath, A. Vetter, V. Kovalyuk, S. Ferrari, O. Kahl, C. Nebel, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Travelling-wave single-photon detectors integrated with diamond photonic circuits—operation at visible and telecom wavelengths with a timing jitter down to 23  ps,” Proc. SPIE 9750, 97500T (2016).
[Crossref]

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16, 7085–7092 (2016).
[Crossref]

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref]

C. Lee, S. Ferrari, W. H. P. Pernice, and C. Rockstuhl, “Sub-Poisson-binomial light,” Phys. Rev. A 94, 053844 (2016).
[Crossref]

C. Schuck, X. Guo, L. Fan, X.-S. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nat. Commun. 7, 10352 (2016).
[Crossref]

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

2015 (3)

J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[Crossref]

S. Ferrari, O. Kahl, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires,” Appl. Phys. Lett. 106, 151101 (2015).
[Crossref]

2014 (1)

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: A review,” Opt. Eng. 53, 081910 (2014).
[Crossref]

2013 (6)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

V. Burenkov, H. Xu, B. Qi, R. H. Hadfield, and H. K. Lo, “Investigations of afterpulsing and detection efficiency recovery in superconducting nanowire single-photon detectors,” J. Appl. Phys. 113, 213102 (2013).
[Crossref]

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3, 1893 (2013).
[Crossref]

V. Kovalyuk, W. Hartmann, O. Kahl, N. Kaurova, A. Korneev, G. Goltsman, and W. H. P. Pernice, “Absorption engineering of NbN nanowires deposited on silicon nitride nanophotonic circuits,” Opt. Express 21, 22683–22692 (2013).
[Crossref]

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Rep. 3, 1901 (2013).
[Crossref]

C. Schuck, W. H. P. Pernice, and H. X. Tang, “NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits,” Appl. Phys. Lett. 102, 051101 (2013).
[Crossref]

2012 (4)

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref]

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: Physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86, 144504 (2012).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100, 112601 (2012).
[Crossref]

2011 (4)

M. Fujiwara, A. Tanaka, S. Takahashi, K. Yoshino, Y. Nambu, A. Tajima, S. Miki, T. Yamashita, Z. Wang, A. Tomita, and M. Sasaki, “Afterpulse-like phenomenon of superconducting single photon detector in high speed quantum key distribution system,” Opt. Express 19, 19562–19571 (2011).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84, 174510 (2011).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

2010 (8)

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Levy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett. 10, 2977–2981 (2010).
[Crossref]

Y.-X. Gong, X.-B. Zou, T. C. Ralph, S.-N. Zhu, and G.-C. Guo, “Linear optical quantum computation with imperfect entangled photon-pair sources and inefficient non-photon-number-resolving detectors,” Phys. Rev. A 81, 052303 (2010).
[Crossref]

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys. 108, 084507 (2010).
[Crossref]

A. J. Annunziata, D. F. Santavicca, L. Frunzio, G. Catelani, M. J. Rooks, A. Frydman, and D. E. Prober, “Tunable superconducting nanoinductors,” Nanotechnology 21, 445202 (2010).
[Crossref]

J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Express 18, 25702–25711 (2010).
[Crossref]

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97, 111101 (2010).
[Crossref]

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

2009 (5)

R. H. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

A. Politi, J. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

A. Politi, J. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325, 1221 (2009).
[Crossref]

X. Hu, C. Holzwarth, D. Masciarelli, E. Dauler, and K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009).
[Crossref]

2008 (1)

M. Varnava, D. E. Browne, and T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100, 1–4 (2008).
[Crossref]

2007 (5)

J. L. O’Brien, “Optical quantum computing,” Science 318, 1567–1570 (2007).
[Crossref]

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

B.-S. Song, T. Asano, and S. Noda, “Heterostructures in two-dimensional photonic-crystal slabs and their application to nanocavities,” J. Phys. D 40, 2629–2634 (2007).
[Crossref]

J. Stern and W. Farr, “Fabrication and characterization of superconducting NbN nanowire single photon detectors,” IEEE Trans. Appl. Supercond. 17, 306–309 (2007).
[Crossref]

2005 (2)

2004 (1)

B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[Crossref]

2003 (3)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

S. Fan, W. Suh, and J. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003).
[Crossref]

2002 (1)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002).
[Crossref]

2001 (2)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

Akhlaghi, M. K.

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[Crossref]

Alaee, R.

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16, 7085–7092 (2016).
[Crossref]

Annunziata, A. J.

A. J. Annunziata, D. F. Santavicca, L. Frunzio, G. Catelani, M. J. Rooks, A. Frydman, and D. E. Prober, “Tunable superconducting nanoinductors,” Nanotechnology 21, 445202 (2010).
[Crossref]

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys. 108, 084507 (2010).
[Crossref]

Asano, T.

B.-S. Song, T. Asano, and S. Noda, “Heterostructures in two-dimensional photonic-crystal slabs and their application to nanocavities,” J. Phys. D 40, 2629–2634 (2007).
[Crossref]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Beetz, J.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Bellei, F.

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

Berggren, K.

X. Hu, C. Holzwarth, D. Masciarelli, E. Dauler, and K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009).
[Crossref]

Berggren, K. K.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109, 152601 (2016).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100, 112601 (2012).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84, 174510 (2011).
[Crossref]

Bichler, M.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Rep. 3, 1901 (2013).
[Crossref]

Bitauld, D.

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Levy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett. 10, 2977–2981 (2010).
[Crossref]

Brossard, F. S. F.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97, 111101 (2010).
[Crossref]

Browne, D. E.

M. Varnava, D. E. Browne, and T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100, 1–4 (2008).
[Crossref]

Bulgarini, G.

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Burenkov, V.

V. Burenkov, H. Xu, B. Qi, R. H. Hadfield, and H. K. Lo, “Investigations of afterpulsing and detection efficiency recovery in superconducting nanowire single-photon detectors,” J. Appl. Phys. 113, 213102 (2013).
[Crossref]

Calandri, N.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109, 152601 (2016).
[Crossref]

Carolan, J.

J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Casaburi, A.

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys. 108, 084507 (2010).
[Crossref]

Catelani, G.

A. J. Annunziata, D. F. Santavicca, L. Frunzio, G. Catelani, M. J. Rooks, A. Frydman, and D. E. Prober, “Tunable superconducting nanoinductors,” Nanotechnology 21, 445202 (2010).
[Crossref]

Charaev, I.

I. Charaev, A. Semenov, S. Doerner, G. Gomard, K. Ilin, and M. Siegel, “Current dependence of the hot-spot response spectrum of superconducting single-photon detectors with different layouts,” Supercond. Sci. Technol. 30, 025016 (2017).
[Crossref]

Chen, C.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref]

Chen, L.-K.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref]

Chen, M.-C.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).
[Crossref]

Chen, Y.-A.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref]

Chulkova, G.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Chunnilall, C. J.

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: A review,” Opt. Eng. 53, 081910 (2014).
[Crossref]

Clem, J. R.

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84, 174510 (2011).
[Crossref]

Cristiano, R.

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys. 108, 084507 (2010).
[Crossref]

Csete, M.

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

Dane, A.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109, 152601 (2016).
[Crossref]

Dauler, E.

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100, 112601 (2012).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

X. Hu, C. Holzwarth, D. Masciarelli, E. Dauler, and K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009).
[Crossref]

Degiovanni, I. P.

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: A review,” Opt. Eng. 53, 081910 (2014).
[Crossref]

DeRose, C.

Diewald, S.

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16, 7085–7092 (2016).
[Crossref]

Ding, X.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).
[Crossref]

Dobrovolskiy, S. M.

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Doerner, S.

I. Charaev, A. Semenov, S. Doerner, G. Gomard, K. Ilin, and M. Siegel, “Current dependence of the hot-spot response spectrum of superconducting single-photon detectors with different layouts,” Supercond. Sci. Technol. 30, 025016 (2017).
[Crossref]

Dorenbos, S. N.

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Dzardanov, A.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Ejrnaes, M.

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys. 108, 084507 (2010).
[Crossref]

Esmaeil Zadeh, I.

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Fan, L.

C. Schuck, X. Guo, L. Fan, X.-S. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nat. Commun. 7, 10352 (2016).
[Crossref]

Fan, S.

Farr, W.

J. Stern and W. Farr, “Fabrication and characterization of superconducting NbN nanowire single photon detectors,” IEEE Trans. Appl. Supercond. 17, 306–309 (2007).
[Crossref]

Ferrari, S.

O. Kahl, S. Ferrari, V. Kovalyuk, A. Vetter, G. Lewes-Malandrakis, C. Nebel, A. Korneev, G. Goltsman, and W. Pernice, “Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits,” Optica 4, 557–562 (2017).
[Crossref]

O. Kahl, S. Ferrari, P. Rath, A. Vetter, C. Nebel, and W. H. P. Pernice, “High efficiency on-chip single-photon detection for diamond nanophotonic circuits,” J. Lightwave Technol. 34, 249–255 (2016).
[Crossref]

P. Rath, A. Vetter, V. Kovalyuk, S. Ferrari, O. Kahl, C. Nebel, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Travelling-wave single-photon detectors integrated with diamond photonic circuits—operation at visible and telecom wavelengths with a timing jitter down to 23  ps,” Proc. SPIE 9750, 97500T (2016).
[Crossref]

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16, 7085–7092 (2016).
[Crossref]

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

C. Lee, S. Ferrari, W. H. P. Pernice, and C. Rockstuhl, “Sub-Poisson-binomial light,” Phys. Rev. A 94, 053844 (2016).
[Crossref]

S. Ferrari, O. Kahl, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires,” Appl. Phys. Lett. 106, 151101 (2015).
[Crossref]

Finley, J. J.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Rep. 3, 1901 (2013).
[Crossref]

Fiore, A.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Levy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett. 10, 2977–2981 (2010).
[Crossref]

Frucci, G.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Frunzio, L.

A. J. Annunziata, D. F. Santavicca, L. Frunzio, G. Catelani, M. J. Rooks, A. Frydman, and D. E. Prober, “Tunable superconducting nanoinductors,” Nanotechnology 21, 445202 (2010).
[Crossref]

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys. 108, 084507 (2010).
[Crossref]

Frydman, A.

A. J. Annunziata, D. F. Santavicca, L. Frunzio, G. Catelani, M. J. Rooks, A. Frydman, and D. E. Prober, “Tunable superconducting nanoinductors,” Nanotechnology 21, 445202 (2010).
[Crossref]

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys. 108, 084507 (2010).
[Crossref]

Fujiwara, M.

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Gaggero, A.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Levy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett. 10, 2977–2981 (2010).
[Crossref]

Gehl, M.

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Gisin, N.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

Gol’tsman, G.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Goltsman, G.

Goltsman, G. N.

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16, 7085–7092 (2016).
[Crossref]

P. Rath, A. Vetter, V. Kovalyuk, S. Ferrari, O. Kahl, C. Nebel, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Travelling-wave single-photon detectors integrated with diamond photonic circuits—operation at visible and telecom wavelengths with a timing jitter down to 23  ps,” Proc. SPIE 9750, 97500T (2016).
[Crossref]

S. Ferrari, O. Kahl, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires,” Appl. Phys. Lett. 106, 151101 (2015).
[Crossref]

Gomard, G.

I. Charaev, A. Semenov, S. Doerner, G. Gomard, K. Ilin, and M. Siegel, “Current dependence of the hot-spot response spectrum of superconducting single-photon detectors with different layouts,” Supercond. Sci. Technol. 30, 025016 (2017).
[Crossref]

Gong, Y.-X.

Y.-X. Gong, X.-B. Zou, T. C. Ralph, S.-N. Zhu, and G.-C. Guo, “Linear optical quantum computation with imperfect entangled photon-pair sources and inefficient non-photon-number-resolving detectors,” Phys. Rev. A 81, 052303 (2010).
[Crossref]

Gourgues, R. B. M.

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Gross, R.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Rep. 3, 1901 (2013).
[Crossref]

Gruber, S. S.

Guo, G.-C.

Y.-X. Gong, X.-B. Zou, T. C. Ralph, S.-N. Zhu, and G.-C. Guo, “Linear optical quantum computation with imperfect entangled photon-pair sources and inefficient non-photon-number-resolving detectors,” Phys. Rev. A 81, 052303 (2010).
[Crossref]

Guo, X.

C. Schuck, X. Guo, L. Fan, X.-S. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nat. Commun. 7, 10352 (2016).
[Crossref]

Hadfield, R. H.

V. Burenkov, H. Xu, B. Qi, R. H. Hadfield, and H. K. Lo, “Investigations of afterpulsing and detection efficiency recovery in superconducting nanowire single-photon detectors,” J. Appl. Phys. 113, 213102 (2013).
[Crossref]

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: Physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express 13, 10846–10853 (2005).
[Crossref]

Hadfield, R. H. H.

R. H. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

Hadjipanayi, M.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97, 111101 (2010).
[Crossref]

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Harrold, C.

J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Hartmann, W.

Hasch, P.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Rep. 3, 1901 (2013).
[Crossref]

Hashimoto, T.

J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

He, S.

J. Zhang, W. Liu, Y. Shi, and S. He, “High-Q side-coupled semi-2D-photonic crystal cavity,” Sci. Rep. 6, 26038 (2016).
[Crossref]

He, Y.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).
[Crossref]

He, Y.-M.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).
[Crossref]

Hennrich, F.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

Henrich, D.

D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86, 144504 (2012).
[Crossref]

Hofherr, M.

D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86, 144504 (2012).
[Crossref]

Höfling, S.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Holzwarth, C.

X. Hu, C. Holzwarth, D. Masciarelli, E. Dauler, and K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009).
[Crossref]

Honjo, T.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Hopkinson, M.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97, 111101 (2010).
[Crossref]

Hu, X.

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

X. Hu, C. Holzwarth, D. Masciarelli, E. Dauler, and K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009).
[Crossref]

Hu, Y.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref]

Huang, H.-L.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).
[Crossref]

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref]

Hugues, M.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97, 111101 (2010).
[Crossref]

Hvam, J. M.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Il’in, K.

D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86, 144504 (2012).
[Crossref]

Ilin, K.

I. Charaev, A. Semenov, S. Doerner, G. Gomard, K. Ilin, and M. Siegel, “Current dependence of the hot-spot response spectrum of superconducting single-photon detectors with different layouts,” Supercond. Sci. Technol. 30, 025016 (2017).
[Crossref]

Itoh, M.

J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Jahanmirinejad, S.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Jelezko, F.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Jiang, X.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref]

Joannopoulos, J.

S. Fan, W. Suh, and J. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003).
[Crossref]

J. Joannopoulos, S. Johnson, J. N. J. Winn, and R. R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Johnson, S.

J. Joannopoulos, S. Johnson, J. N. J. Winn, and R. R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Kahl, O.

O. Kahl, S. Ferrari, V. Kovalyuk, A. Vetter, G. Lewes-Malandrakis, C. Nebel, A. Korneev, G. Goltsman, and W. Pernice, “Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits,” Optica 4, 557–562 (2017).
[Crossref]

O. Kahl, S. Ferrari, P. Rath, A. Vetter, C. Nebel, and W. H. P. Pernice, “High efficiency on-chip single-photon detection for diamond nanophotonic circuits,” J. Lightwave Technol. 34, 249–255 (2016).
[Crossref]

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16, 7085–7092 (2016).
[Crossref]

P. Rath, A. Vetter, V. Kovalyuk, S. Ferrari, O. Kahl, C. Nebel, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Travelling-wave single-photon detectors integrated with diamond photonic circuits—operation at visible and telecom wavelengths with a timing jitter down to 23  ps,” Proc. SPIE 9750, 97500T (2016).
[Crossref]

S. Ferrari, O. Kahl, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires,” Appl. Phys. Lett. 106, 151101 (2015).
[Crossref]

V. Kovalyuk, W. Hartmann, O. Kahl, N. Kaurova, A. Korneev, G. Goltsman, and W. H. P. Pernice, “Absorption engineering of NbN nanowires deposited on silicon nitride nanophotonic circuits,” Opt. Express 21, 22683–22692 (2013).
[Crossref]

Kamp, M.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Kappes, M. M.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

Kaurova, N.

Khasminskaya, S.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Korneev, A.

O. Kahl, S. Ferrari, V. Kovalyuk, A. Vetter, G. Lewes-Malandrakis, C. Nebel, A. Korneev, G. Goltsman, and W. Pernice, “Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits,” Optica 4, 557–562 (2017).
[Crossref]

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16, 7085–7092 (2016).
[Crossref]

P. Rath, A. Vetter, V. Kovalyuk, S. Ferrari, O. Kahl, C. Nebel, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Travelling-wave single-photon detectors integrated with diamond photonic circuits—operation at visible and telecom wavelengths with a timing jitter down to 23  ps,” Proc. SPIE 9750, 97500T (2016).
[Crossref]

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

S. Ferrari, O. Kahl, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires,” Appl. Phys. Lett. 106, 151101 (2015).
[Crossref]

V. Kovalyuk, W. Hartmann, O. Kahl, N. Kaurova, A. Korneev, G. Goltsman, and W. H. P. Pernice, “Absorption engineering of NbN nanowires deposited on silicon nitride nanophotonic circuits,” Opt. Express 21, 22683–22692 (2013).
[Crossref]

Kovalyuk, V.

O. Kahl, S. Ferrari, V. Kovalyuk, A. Vetter, G. Lewes-Malandrakis, C. Nebel, A. Korneev, G. Goltsman, and W. Pernice, “Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits,” Optica 4, 557–562 (2017).
[Crossref]

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16, 7085–7092 (2016).
[Crossref]

P. Rath, A. Vetter, V. Kovalyuk, S. Ferrari, O. Kahl, C. Nebel, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Travelling-wave single-photon detectors integrated with diamond photonic circuits—operation at visible and telecom wavelengths with a timing jitter down to 23  ps,” Proc. SPIE 9750, 97500T (2016).
[Crossref]

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

S. Ferrari, O. Kahl, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires,” Appl. Phys. Lett. 106, 151101 (2015).
[Crossref]

V. Kovalyuk, W. Hartmann, O. Kahl, N. Kaurova, A. Korneev, G. Goltsman, and W. H. P. Pernice, “Absorption engineering of NbN nanowires deposited on silicon nitride nanophotonic circuits,” Opt. Express 21, 22683–22692 (2013).
[Crossref]

Krupke, R.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

Kück, S.

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: A review,” Opt. Eng. 53, 081910 (2014).
[Crossref]

Ladd, T. D.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Laflamme, R.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Laing, A.

J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Lee, C.

C. Lee, S. Ferrari, W. H. P. Pernice, and C. Rockstuhl, “Sub-Poisson-binomial light,” Phys. Rev. A 94, 053844 (2016).
[Crossref]

Lentine, A. L.

Leoni, R.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Levy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett. 10, 2977–2981 (2010).
[Crossref]

Lermer, M.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Levy, F.

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Levy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett. 10, 2977–2981 (2010).
[Crossref]

Lewes-Malandrakis, G.

Li, B.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).
[Crossref]

Li, J.-P.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).
[Crossref]

Li, L.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref]

Li, M.

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref]

Li, W.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref]

Li, Y.-H.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).
[Crossref]

Li, Z.-D.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref]

Lichtmannecker, S.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Rep. 3, 1901 (2013).
[Crossref]

Lipatov, A.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Lita, A. E.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Liu, C.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).
[Crossref]

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref]

Liu, L.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Liu, N.-L.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref]

Liu, W.

J. Zhang, W. Liu, Y. Shi, and S. He, “High-Q side-coupled semi-2D-photonic crystal cavity,” Sci. Rep. 6, 26038 (2016).
[Crossref]

Lo, H. K.

V. Burenkov, H. Xu, B. Qi, R. H. Hadfield, and H. K. Lo, “Investigations of afterpulsing and detection efficiency recovery in superconducting nanowire single-photon detectors,” J. Appl. Phys. 113, 213102 (2013).
[Crossref]

Long, C.

Los, J. W. N.

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Lu, C.-Y.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).
[Crossref]

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref]

Lu, H.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref]

Luo, Y.-H.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref]

Ma, X.-S.

C. Schuck, X. Guo, L. Fan, X.-S. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nat. Commun. 7, 10352 (2016).
[Crossref]

Magnusson, R.

Marshall, G. D.

J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Marsili, F.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100, 112601 (2012).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Levy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett. 10, 2977–2981 (2010).
[Crossref]

Martin-Lopez, E.

J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Masciarelli, D.

X. Hu, C. Holzwarth, D. Masciarelli, E. Dauler, and K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009).
[Crossref]

Matsuda, N.

J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Matthews, J.

A. Politi, J. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325, 1221 (2009).
[Crossref]

A. Politi, J. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

Matthews, J. C. F.

J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Mattioli, F.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Levy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett. 10, 2977–2981 (2010).
[Crossref]

Meade, R. R. D.

J. Joannopoulos, S. Johnson, J. N. J. Winn, and R. R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Meckbach, J. M.

D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86, 144504 (2012).
[Crossref]

Melgaard, S.

Migdall, A.

A. Migdall, Single-Photon Generation and Detection (Elsevier, 2009).

Miki, S.

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Miller, A. J.

Minaeva, O.

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref]

Mirin, R. P.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express 13, 10846–10853 (2005).
[Crossref]

Molnar, R. J.

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100, 112601 (2012).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

Monroe, C.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Müller, I.

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: A review,” Opt. Eng. 53, 081910 (2014).
[Crossref]

Müller, K.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Rep. 3, 1901 (2013).
[Crossref]

Najafi, F.

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100, 112601 (2012).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

Nakamura, Y.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Nam, S. W.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express 13, 10846–10853 (2005).
[Crossref]

Nambu, Y.

Natarajan, C. M.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: Physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

Nebel, C.

O. Kahl, S. Ferrari, V. Kovalyuk, A. Vetter, G. Lewes-Malandrakis, C. Nebel, A. Korneev, G. Goltsman, and W. Pernice, “Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits,” Optica 4, 557–562 (2017).
[Crossref]

O. Kahl, S. Ferrari, P. Rath, A. Vetter, C. Nebel, and W. H. P. Pernice, “High efficiency on-chip single-photon detection for diamond nanophotonic circuits,” J. Lightwave Technol. 34, 249–255 (2016).
[Crossref]

P. Rath, A. Vetter, V. Kovalyuk, S. Ferrari, O. Kahl, C. Nebel, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Travelling-wave single-photon detectors integrated with diamond photonic circuits—operation at visible and telecom wavelengths with a timing jitter down to 23  ps,” Proc. SPIE 9750, 97500T (2016).
[Crossref]

Nejad, S. J.

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Levy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett. 10, 2977–2981 (2010).
[Crossref]

Noda, S.

B.-S. Song, T. Asano, and S. Noda, “Heterostructures in two-dimensional photonic-crystal slabs and their application to nanocavities,” J. Phys. D 40, 2629–2634 (2007).
[Crossref]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

O’Brien, J. L.

J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

A. Politi, J. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325, 1221 (2009).
[Crossref]

A. Politi, J. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

J. L. O’Brien, “Optical quantum computing,” Science 318, 1567–1570 (2007).
[Crossref]

Oguma, M.

J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Okunev, O.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Ou, H.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Pagano, S.

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys. 108, 084507 (2010).
[Crossref]

Pan, J.-W.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).
[Crossref]

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref]

Peng, C.-Z.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).
[Crossref]

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref]

Pernice, W.

O. Kahl, S. Ferrari, V. Kovalyuk, A. Vetter, G. Lewes-Malandrakis, C. Nebel, A. Korneev, G. Goltsman, and W. Pernice, “Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits,” Optica 4, 557–562 (2017).
[Crossref]

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref]

Pernice, W. H. P.

C. Lee, S. Ferrari, W. H. P. Pernice, and C. Rockstuhl, “Sub-Poisson-binomial light,” Phys. Rev. A 94, 053844 (2016).
[Crossref]

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16, 7085–7092 (2016).
[Crossref]

P. Rath, A. Vetter, V. Kovalyuk, S. Ferrari, O. Kahl, C. Nebel, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Travelling-wave single-photon detectors integrated with diamond photonic circuits—operation at visible and telecom wavelengths with a timing jitter down to 23  ps,” Proc. SPIE 9750, 97500T (2016).
[Crossref]

O. Kahl, S. Ferrari, P. Rath, A. Vetter, C. Nebel, and W. H. P. Pernice, “High efficiency on-chip single-photon detection for diamond nanophotonic circuits,” J. Lightwave Technol. 34, 249–255 (2016).
[Crossref]

S. Ferrari, O. Kahl, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires,” Appl. Phys. Lett. 106, 151101 (2015).
[Crossref]

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3, 1893 (2013).
[Crossref]

C. Schuck, W. H. P. Pernice, and H. X. Tang, “NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits,” Appl. Phys. Lett. 102, 051101 (2013).
[Crossref]

V. Kovalyuk, W. Hartmann, O. Kahl, N. Kaurova, A. Korneev, G. Goltsman, and W. H. P. Pernice, “Absorption engineering of NbN nanowires deposited on silicon nitride nanophotonic circuits,” Opt. Express 21, 22683–22692 (2013).
[Crossref]

Politi, A.

A. Politi, J. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

A. Politi, J. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325, 1221 (2009).
[Crossref]

Pomerene, A.

Poot, M.

C. Schuck, X. Guo, L. Fan, X.-S. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nat. Commun. 7, 10352 (2016).
[Crossref]

Prober, D. E.

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys. 108, 084507 (2010).
[Crossref]

A. J. Annunziata, D. F. Santavicca, L. Frunzio, G. Catelani, M. J. Rooks, A. Frydman, and D. E. Prober, “Tunable superconducting nanoinductors,” Nanotechnology 21, 445202 (2010).
[Crossref]

Pu, M.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Pyatkov, F.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

Qi, B.

V. Burenkov, H. Xu, B. Qi, R. H. Hadfield, and H. K. Lo, “Investigations of afterpulsing and detection efficiency recovery in superconducting nanowire single-photon detectors,” J. Appl. Phys. 113, 213102 (2013).
[Crossref]

Qin, J.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).
[Crossref]

Quaranta, O.

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys. 108, 084507 (2010).
[Crossref]

Ralph, T. C.

Y.-X. Gong, X.-B. Zou, T. C. Ralph, S.-N. Zhu, and G.-C. Guo, “Linear optical quantum computation with imperfect entangled photon-pair sources and inefficient non-photon-number-resolving detectors,” Phys. Rev. A 81, 052303 (2010).
[Crossref]

Rath, P.

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16, 7085–7092 (2016).
[Crossref]

P. Rath, A. Vetter, V. Kovalyuk, S. Ferrari, O. Kahl, C. Nebel, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Travelling-wave single-photon detectors integrated with diamond photonic circuits—operation at visible and telecom wavelengths with a timing jitter down to 23  ps,” Proc. SPIE 9750, 97500T (2016).
[Crossref]

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

O. Kahl, S. Ferrari, P. Rath, A. Vetter, C. Nebel, and W. H. P. Pernice, “High efficiency on-chip single-photon detection for diamond nanophotonic circuits,” J. Lightwave Technol. 34, 249–255 (2016).
[Crossref]

Reichensperger, P.

D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86, 144504 (2012).
[Crossref]

Reichert, T.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Rep. 3, 1901 (2013).
[Crossref]

Reithmaier, G.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Rep. 3, 1901 (2013).
[Crossref]

Rockstuhl, C.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

C. Lee, S. Ferrari, W. H. P. Pernice, and C. Rockstuhl, “Sub-Poisson-binomial light,” Phys. Rev. A 94, 053844 (2016).
[Crossref]

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16, 7085–7092 (2016).
[Crossref]

Rooks, M. J.

A. J. Annunziata, D. F. Santavicca, L. Frunzio, G. Catelani, M. J. Rooks, A. Frydman, and D. E. Prober, “Tunable superconducting nanoinductors,” Nanotechnology 21, 445202 (2010).
[Crossref]

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys. 108, 084507 (2010).
[Crossref]

Rudolph, T.

M. Varnava, D. E. Browne, and T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100, 1–4 (2008).
[Crossref]

Russell, N. J.

J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Sahin, D.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Sanjines, R.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Santavicca, D. F.

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys. 108, 084507 (2010).
[Crossref]

A. J. Annunziata, D. F. Santavicca, L. Frunzio, G. Catelani, M. J. Rooks, A. Frydman, and D. E. Prober, “Tunable superconducting nanoinductors,” Nanotechnology 21, 445202 (2010).
[Crossref]

Sasaki, M.

Schelew, E.

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[Crossref]

Schneider, C.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).
[Crossref]

Schuck, C.

C. Schuck, X. Guo, L. Fan, X.-S. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nat. Commun. 7, 10352 (2016).
[Crossref]

C. Schuck, W. H. P. Pernice, and H. X. Tang, “NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits,” Appl. Phys. Lett. 102, 051101 (2013).
[Crossref]

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3, 1893 (2013).
[Crossref]

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref]

Schwall, R. E.

Semenov, A.

I. Charaev, A. Semenov, S. Doerner, G. Gomard, K. Ilin, and M. Siegel, “Current dependence of the hot-spot response spectrum of superconducting single-photon detectors with different layouts,” Supercond. Sci. Technol. 30, 025016 (2017).
[Crossref]

D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86, 144504 (2012).
[Crossref]

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Seol, K. H.

Sergienko, A.

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref]

Shadbolt, P. J.

J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Shaw, M. D.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Shi, Y.

J. Zhang, W. Liu, Y. Shi, and S. He, “High-Q side-coupled semi-2D-photonic crystal cavity,” Sci. Rep. 6, 26038 (2016).
[Crossref]

Siegel, M.

I. Charaev, A. Semenov, S. Doerner, G. Gomard, K. Ilin, and M. Siegel, “Current dependence of the hot-spot response spectrum of superconducting single-photon detectors with different layouts,” Supercond. Sci. Technol. 30, 025016 (2017).
[Crossref]

D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86, 144504 (2012).
[Crossref]

Siirola, J.

Silverstone, J. W.

J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Sinclair, A. G.

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: A review,” Opt. Eng. 53, 081910 (2014).
[Crossref]

Slowik, K.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

Smirnov, K.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Sobolewski, R.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Song, B.-S.

B.-S. Song, T. Asano, and S. Noda, “Heterostructures in two-dimensional photonic-crystal slabs and their application to nanocavities,” J. Phys. D 40, 2629–2634 (2007).
[Crossref]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

Song, S. H.

Sparrow, C.

J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Sprengers, J. P.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Starbuck, A.

Steinmetz, V.

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Stern, J.

J. Stern and W. Farr, “Fabrication and characterization of superconducting NbN nanowire single photon detectors,” IEEE Trans. Appl. Supercond. 17, 306–309 (2007).
[Crossref]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Stevens, M. J.

Su, Z.-E.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).
[Crossref]

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref]

Suh, W.

Tajima, A.

Takahashi, S.

Takesue, H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Tamaki, K.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Tanaka, A.

Tanaka, Y.

B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[Crossref]

Tang, H.

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref]

Tang, H. X.

C. Schuck, X. Guo, L. Fan, X.-S. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nat. Commun. 7, 10352 (2016).
[Crossref]

C. Schuck, W. H. P. Pernice, and H. X. Tang, “NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits,” Appl. Phys. Lett. 102, 051101 (2013).
[Crossref]

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3, 1893 (2013).
[Crossref]

Tanner, M. G.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: Physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

Taylor, R. A.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97, 111101 (2010).
[Crossref]

Thew, R.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

Thompson, M. G.

J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

A. Politi, J. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

Tomita, A.

Trotter, D.

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

Varnava, M.

M. Varnava, D. E. Browne, and T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100, 1–4 (2008).
[Crossref]

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Verma, V. B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Vetter, A.

O. Kahl, S. Ferrari, V. Kovalyuk, A. Vetter, G. Lewes-Malandrakis, C. Nebel, A. Korneev, G. Goltsman, and W. Pernice, “Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits,” Optica 4, 557–562 (2017).
[Crossref]

O. Kahl, S. Ferrari, P. Rath, A. Vetter, C. Nebel, and W. H. P. Pernice, “High efficiency on-chip single-photon detection for diamond nanophotonic circuits,” J. Lightwave Technol. 34, 249–255 (2016).
[Crossref]

P. Rath, A. Vetter, V. Kovalyuk, S. Ferrari, O. Kahl, C. Nebel, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Travelling-wave single-photon detectors integrated with diamond photonic circuits—operation at visible and telecom wavelengths with a timing jitter down to 23  ps,” Proc. SPIE 9750, 97500T (2016).
[Crossref]

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16, 7085–7092 (2016).
[Crossref]

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

Vodolazov, D. Y.

D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86, 144504 (2012).
[Crossref]

Voronov, B.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Vuckovic, J.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Wang, H.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).
[Crossref]

Wang, X.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97, 111101 (2010).
[Crossref]

Wang, X.-L.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref]

Wang, Z.

Williams, C.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Williams, D. A.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97, 111101 (2010).
[Crossref]

Winn, J. N. J.

J. Joannopoulos, S. Johnson, J. N. J. Winn, and R. R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Wright, J. B.

Wu, D.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref]

Xu, H.

V. Burenkov, H. Xu, B. Qi, R. H. Hadfield, and H. K. Lo, “Investigations of afterpulsing and detection efficiency recovery in superconducting nanowire single-photon detectors,” J. Appl. Phys. 113, 213102 (2013).
[Crossref]

Xu, X. L.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97, 111101 (2010).
[Crossref]

Yamamoto, Y.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Yamashita, T.

Yariv, A.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002).
[Crossref]

Yoon, J.

Yoshino, K.

Young, J. F.

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[Crossref]

Yvind, K.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Zhang, J.

J. Zhang, W. Liu, Y. Shi, and S. He, “High-Q side-coupled semi-2D-photonic crystal cavity,” Sci. Rep. 6, 26038 (2016).
[Crossref]

Zhang, Q.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Zhao, Q.-Y.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109, 152601 (2016).
[Crossref]

Zhu, D.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109, 152601 (2016).
[Crossref]

Zhu, S.-N.

Y.-X. Gong, X.-B. Zou, T. C. Ralph, S.-N. Zhu, and G.-C. Guo, “Linear optical quantum computation with imperfect entangled photon-pair sources and inefficient non-photon-number-resolving detectors,” Phys. Rev. A 81, 052303 (2010).
[Crossref]

Zotova, A.

D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86, 144504 (2012).
[Crossref]

Zou, X.-B.

Y.-X. Gong, X.-B. Zou, T. C. Ralph, S.-N. Zhu, and G.-C. Guo, “Linear optical quantum computation with imperfect entangled photon-pair sources and inefficient non-photon-number-resolving detectors,” Phys. Rev. A 81, 052303 (2010).
[Crossref]

Zwiller, V.

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

APL Photon. (1)

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Appl. Phys. Lett. (8)

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100, 112601 (2012).
[Crossref]

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109, 152601 (2016).
[Crossref]

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97, 111101 (2010).
[Crossref]

B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

C. Schuck, W. H. P. Pernice, and H. X. Tang, “NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits,” Appl. Phys. Lett. 102, 051101 (2013).
[Crossref]

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

S. Ferrari, O. Kahl, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires,” Appl. Phys. Lett. 106, 151101 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Politi, J. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002).
[Crossref]

IEEE Trans. Appl. Supercond. (2)

J. Stern and W. Farr, “Fabrication and characterization of superconducting NbN nanowire single photon detectors,” IEEE Trans. Appl. Supercond. 17, 306–309 (2007).
[Crossref]

X. Hu, C. Holzwarth, D. Masciarelli, E. Dauler, and K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009).
[Crossref]

J. Appl. Phys. (2)

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys. 108, 084507 (2010).
[Crossref]

V. Burenkov, H. Xu, B. Qi, R. H. Hadfield, and H. K. Lo, “Investigations of afterpulsing and detection efficiency recovery in superconducting nanowire single-photon detectors,” J. Appl. Phys. 113, 213102 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Phys. D (1)

B.-S. Song, T. Asano, and S. Noda, “Heterostructures in two-dimensional photonic-crystal slabs and their application to nanocavities,” J. Phys. D 40, 2629–2634 (2007).
[Crossref]

Nano Lett. (3)

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, “Cavity-enhanced and ultrafast superconducting single-photon detectors,” Nano Lett. 16, 7085–7092 (2016).
[Crossref]

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Levy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett. 10, 2977–2981 (2010).
[Crossref]

Nanotechnology (1)

A. J. Annunziata, D. F. Santavicca, L. Frunzio, G. Catelani, M. J. Rooks, A. Frydman, and D. E. Prober, “Tunable superconducting nanoinductors,” Nanotechnology 21, 445202 (2010).
[Crossref]

Nat. Commun. (3)

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref]

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[Crossref]

C. Schuck, X. Guo, L. Fan, X.-S. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nat. Commun. 7, 10352 (2016).
[Crossref]

Nat. Mater. (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Nat. Photonics (7)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

R. H. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).
[Crossref]

Nature (4)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

Opt. Commun. (1)

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Opt. Eng. (1)

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: A review,” Opt. Eng. 53, 081910 (2014).
[Crossref]

Opt. Express (4)

Optica (2)

Phys. Rev. A (2)

C. Lee, S. Ferrari, W. H. P. Pernice, and C. Rockstuhl, “Sub-Poisson-binomial light,” Phys. Rev. A 94, 053844 (2016).
[Crossref]

Y.-X. Gong, X.-B. Zou, T. C. Ralph, S.-N. Zhu, and G.-C. Guo, “Linear optical quantum computation with imperfect entangled photon-pair sources and inefficient non-photon-number-resolving detectors,” Phys. Rev. A 81, 052303 (2010).
[Crossref]

Phys. Rev. B (2)

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84, 174510 (2011).
[Crossref]

D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86, 144504 (2012).
[Crossref]

Phys. Rev. Lett. (2)

M. Varnava, D. E. Browne, and T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100, 1–4 (2008).
[Crossref]

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref]

Proc. SPIE (1)

P. Rath, A. Vetter, V. Kovalyuk, S. Ferrari, O. Kahl, C. Nebel, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Travelling-wave single-photon detectors integrated with diamond photonic circuits—operation at visible and telecom wavelengths with a timing jitter down to 23  ps,” Proc. SPIE 9750, 97500T (2016).
[Crossref]

Sci. Rep. (3)

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3, 1893 (2013).
[Crossref]

J. Zhang, W. Liu, Y. Shi, and S. He, “High-Q side-coupled semi-2D-photonic crystal cavity,” Sci. Rep. 6, 26038 (2016).
[Crossref]

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Rep. 3, 1901 (2013).
[Crossref]

Science (3)

J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

A. Politi, J. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325, 1221 (2009).
[Crossref]

J. L. O’Brien, “Optical quantum computing,” Science 318, 1567–1570 (2007).
[Crossref]

Supercond. Sci. Technol. (2)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: Physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

I. Charaev, A. Semenov, S. Doerner, G. Gomard, K. Ilin, and M. Siegel, “Current dependence of the hot-spot response spectrum of superconducting single-photon detectors with different layouts,” Supercond. Sci. Technol. 30, 025016 (2017).
[Crossref]

Other (2)

A. Migdall, Single-Photon Generation and Detection (Elsevier, 2009).

J. Joannopoulos, S. Johnson, J. N. J. Winn, and R. R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplementary Material

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Illustration of the detector. Dark areas correspond to the front and back reflector with modified lattice constants. The change in the lattice constant is exaggerated in comparison to the real device for better visibility. (b) A colorized SEM image of the SNSPD viewed from the top. The nanowire (red) is integrated into an asymmetric heterostructure PhC cavity by locally altering the lattice constant in the direction of the defect line. (c) An SEM image showing the detector as well as the gold contact pads (yellow) and the photonic circuitry (blue).
Fig. 2.
Fig. 2. (a) Resonance wavelength (black hexagons) and quality factor (red squares) of mode M 0 for the symmetric cavity as a function of the lattice constant in the cavity region a c . The lattice constant in the reflector region is chosen as a r = a c 10    nm . The resonance wavelength depends linearly on a c . The black ellipse denotes the selected value for the lattice constant in further simulations. (b) The quality factor of the fundamental cavity mode M 0 for a varying front reflector length n rl (red squares) and nanowire width (black hexagons). For a nanowire width of 70 nm and a front reflector length of n rl = 2 , the resonant absorption condition is satisfied (blue dashed line). (c) The numerical full-wave simulation of the complete detector compared to the TCMT approach. The electric field profiles are shown at the peak of resonance M 0 (right) and M 1 (left) in a cut plane in the middle of the waveguide. The results in (b) and (c) are obtained for the parameters corresponding to the marked data points in (a) with a c = 400    nm .
Fig. 3.
Fig. 3. (a) Spectrally resolved OCDE for three selected devices. #3 is a detector that is coupled more strongly to the waveguide, showing a broader resonance. Please note that devices #1 and #3 are characterized at a normalized bias current that is lower than the maximal possible, while device #2 is measured at the maximum bias current. The solid lines are Lorentzian fits to the data over a spectral range where a fit is applicable. The device parameters are listed and elucidated in Supplement 1. (b) OCDE as a function of the normalized bias current at the individual resonance wavelength for the same devices as in (a). (c) The resonance wavelength λ res versus the lattice constant a c ( a r = a c 10    nm ) as obtained from the Lorentzian fits in (a). The solid lines represent a linear fit to the data points for devices with identical hole radii r and represent a guide for the eye. The legend indicates the hole radii and the length of the front reflector.
Fig. 4.
Fig. 4. Interarrival times in a start-multistop measurement (blue) and pulse shape (red) of device #3. The bin width of the histogram amounts to 25.8 ps. One thousand voltage traces have been evaluated for the averaged pulse shape (white).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R ( ω ) = ( ω ω 0 ω 0 ) 2 + 1 4 ( 1 / Q diss 1 / Q wg ) 2 ( ω ω 0 ω 0 ) 2 + 1 4 ( 1 / Q diss + 1 / Q wg ) 2 .
L K l nw w nw · h nw τ rec ,

Metrics