Abstract

The ability to simultaneously recover multiple fluorophores within biological tissue (multiplexing) can have important applications for tracking parallel disease processes in vivo. Here we present a novel method for rapid and quantitative multiplexing within a scattering medium, such as biological tissue, based on fluorescence lifetime contrast. This method employs a tomographic inversion of the asymptotic (late) portion of time-resolved spatial frequency (SF) domain measurements. Using Monte Carlo simulations and phantom experiments, we show that the SF-asymptotic time domain (SF-ATD) approach provides a several-fold improvement in relative quantitation and localization accuracy over conventional SF-time domain inversion. We also show that the SF-ATD approach can exploit selective filtering of high spatial frequencies to dramatically improve reconstruction accuracy for fluorophores with subnanosecond lifetimes, which is typical of most near-infrared fluorophores. These results suggest that the SF-ATD approach will serve as a powerful new tool for whole-body lifetime multiplexing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tomographic phosphorescence lifetime multiplexing

Anand T. N. Kumar and Steven S. Hou
Opt. Lett. 43(13) 3104-3107 (2018)

Optimal estimator for tomographic fluorescence lifetime multiplexing

Steven S. Hou, Brian J. Bacskai, and Anand T. N. Kumar
Opt. Lett. 41(7) 1352-1355 (2016)

Comparison of tomographic fluorescence spectral and lifetime multiplexing

Steven S. Hou, Brian J. Bacskai, and Anand T. N. Kumar
Opt. Lett. 41(22) 5337-5340 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, J. Biomed. Opt. 17, 0713111 (2012).
    [Crossref]
  2. A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, J. Biomed. Opt. 15, 010506 (2010).
    [Crossref]
  3. V. Venugopal and X. Intes, J. Biomed. Opt. 18, 036006 (2013).
    [Crossref]
  4. N. Ducros, A. Bassi, G. Valentini, G. Canti, S. Arridge, and C. D. Andrea, J. Biomed. Opt. 18, 020503 (2013).
    [Crossref]
  5. V. Lukic, V. A. Markel, and J. C. Schotland, Opt. Lett. 34, 983 (2009).
    [Crossref]
  6. S. S. Hou, B. J. Bacskai, and A. T. Kumar, Opt. Lett. 41, 1352 (2016).
    [Crossref]
  7. Q. Fang and D. A. Boas, Opt. Express 17, 20178 (2009).
    [Crossref]
  8. A. Bassi, C. D’Andrea, G. Valentini, R. Cubeddu, and S. Arridge, Opt. Lett. 33, 2836 (2008).
    [Crossref]
  9. M. Y. Berezin and S. Achilefu, Chem. Rev. 110, 2641 (2010).
    [Crossref]

2016 (1)

2013 (2)

V. Venugopal and X. Intes, J. Biomed. Opt. 18, 036006 (2013).
[Crossref]

N. Ducros, A. Bassi, G. Valentini, G. Canti, S. Arridge, and C. D. Andrea, J. Biomed. Opt. 18, 020503 (2013).
[Crossref]

2012 (1)

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, J. Biomed. Opt. 17, 0713111 (2012).
[Crossref]

2010 (2)

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, J. Biomed. Opt. 15, 010506 (2010).
[Crossref]

M. Y. Berezin and S. Achilefu, Chem. Rev. 110, 2641 (2010).
[Crossref]

2009 (2)

2008 (1)

Achilefu, S.

M. Y. Berezin and S. Achilefu, Chem. Rev. 110, 2641 (2010).
[Crossref]

Andrea, C. D.

N. Ducros, A. Bassi, G. Valentini, G. Canti, S. Arridge, and C. D. Andrea, J. Biomed. Opt. 18, 020503 (2013).
[Crossref]

Arridge, S.

N. Ducros, A. Bassi, G. Valentini, G. Canti, S. Arridge, and C. D. Andrea, J. Biomed. Opt. 18, 020503 (2013).
[Crossref]

A. Bassi, C. D’Andrea, G. Valentini, R. Cubeddu, and S. Arridge, Opt. Lett. 33, 2836 (2008).
[Crossref]

Bacskai, B. J.

Bassi, A.

N. Ducros, A. Bassi, G. Valentini, G. Canti, S. Arridge, and C. D. Andrea, J. Biomed. Opt. 18, 020503 (2013).
[Crossref]

A. Bassi, C. D’Andrea, G. Valentini, R. Cubeddu, and S. Arridge, Opt. Lett. 33, 2836 (2008).
[Crossref]

Berezin, M. Y.

M. Y. Berezin and S. Achilefu, Chem. Rev. 110, 2641 (2010).
[Crossref]

Boas, D. A.

Canti, G.

N. Ducros, A. Bassi, G. Valentini, G. Canti, S. Arridge, and C. D. Andrea, J. Biomed. Opt. 18, 020503 (2013).
[Crossref]

Cerussi, A. E.

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, J. Biomed. Opt. 17, 0713111 (2012).
[Crossref]

Cubeddu, R.

Cuccia, D. J.

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, J. Biomed. Opt. 17, 0713111 (2012).
[Crossref]

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, J. Biomed. Opt. 15, 010506 (2010).
[Crossref]

D’Andrea, C.

Ducros, N.

N. Ducros, A. Bassi, G. Valentini, G. Canti, S. Arridge, and C. D. Andrea, J. Biomed. Opt. 18, 020503 (2013).
[Crossref]

Durkin, A. J.

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, J. Biomed. Opt. 15, 010506 (2010).
[Crossref]

Fang, Q.

Frangioni, J. V.

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, J. Biomed. Opt. 15, 010506 (2010).
[Crossref]

Gioux, S.

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, J. Biomed. Opt. 15, 010506 (2010).
[Crossref]

Hou, S. S.

Intes, X.

V. Venugopal and X. Intes, J. Biomed. Opt. 18, 036006 (2013).
[Crossref]

Kumar, A. T.

Lukic, V.

Markel, V. A.

Mazhar, A.

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, J. Biomed. Opt. 15, 010506 (2010).
[Crossref]

O’Sullivan, T. D.

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, J. Biomed. Opt. 17, 0713111 (2012).
[Crossref]

Schotland, J. C.

Tromberg, B. J.

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, J. Biomed. Opt. 17, 0713111 (2012).
[Crossref]

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, J. Biomed. Opt. 15, 010506 (2010).
[Crossref]

Valentini, G.

N. Ducros, A. Bassi, G. Valentini, G. Canti, S. Arridge, and C. D. Andrea, J. Biomed. Opt. 18, 020503 (2013).
[Crossref]

A. Bassi, C. D’Andrea, G. Valentini, R. Cubeddu, and S. Arridge, Opt. Lett. 33, 2836 (2008).
[Crossref]

Venugopal, V.

V. Venugopal and X. Intes, J. Biomed. Opt. 18, 036006 (2013).
[Crossref]

Chem. Rev. (1)

M. Y. Berezin and S. Achilefu, Chem. Rev. 110, 2641 (2010).
[Crossref]

J. Biomed. Opt. (4)

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, J. Biomed. Opt. 17, 0713111 (2012).
[Crossref]

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, J. Biomed. Opt. 15, 010506 (2010).
[Crossref]

V. Venugopal and X. Intes, J. Biomed. Opt. 18, 036006 (2013).
[Crossref]

N. Ducros, A. Bassi, G. Valentini, G. Canti, S. Arridge, and C. D. Andrea, J. Biomed. Opt. 18, 020503 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Supplementary Material (1)

NameDescription
» Supplement 1       Supplement

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Comparison of (a)–(f) SF-DTD with (g)–(l) SF-ATD reconstructions of two fluorescent inclusions (indicated by “x”) with lifetimes of 0.8 ns and 1.2 ns and equal fluorescence yields, embedded at a height of 13 mm in a 1.9 cm thick turbid slab, with separations of 10 mm (left), 2 mm (center), and 0 mm (right). The 2D slices of the (a)–(c) SF-DTD and (g)–(i) SF-ATD yield reconstructions η1 and η2 for 0.8 ns and 1.2 ns lifetimes are shown as red and green components of a single RGB image, normalized to the maximum of both yields (yellow thus indicates equal yield for overlapping inclusions, i.e., for the 0 mm case). (d)–(f) Normalized line profiles across the centroid of SF-DTD and (j–l) SF-ATD reconstructed η1 (red) and η2 (green) along the X-direction, with true inclusion locations (vertical gray lines).
Fig. 2.
Fig. 2. Dependence of fluorescence lifetimes on source and detector spatial frequencies, simulated for a 1.9 cm thick slab with an inclusion of lifetime 0.3 ns (left) or 0.5 ns (right) placed at a height of 1.3 cm. The images show the error, |τfitτactual|/τactual×100, of the lifetimes recovered from a single exponential fit to the asymptotic data.
Fig. 3.
Fig. 3. Tomographic multiplexing of lifetimes shorter than the absorption timescale vμa1 using high spatial frequency data. The simulation conditions were as in Fig. 1, with 2 mm separated inclusions of lifetimes 0.3 ns and 0.5 ns and equal yield. (a), (c) SF-ATD reconstructions, η1 and η2 for the 0.3 ns (red) and 0.5 ns (green) using all spatial frequencies from 0 to 0.5  cm1. (b), (d) SF-ATD reconstructions using k>0.1  cm1. (c)–(d) Normalized line profiles of η1 (red) and η2 (green) through the location of their individual maxima.
Fig. 4.
Fig. 4. Experimental demonstration of the SF-ATD approach. (a) Dish phantom with two tubes filled with IRdye800CW (0.45 ns, red) and DTTC (0.65 ns, green), separated by 4 mm, shown with the illumination area and the lifetime map of the tubes. (b) Spatial patterns for the lowest (kx=0) and highest (kx=0.51  cm1) frequency used. (c) Representative TD fluorescence data (dots) for kx=0 and a detector (CCD pixel) above the tubes, and linear bi-exponential fit (black) using the known lifetimes of 0.45 ns and 0.65 ns. The individual decay components at 0.45 ns (red) and 0.65 ns (green) intersect t=0 (dotted line) at the value of the decay amplitudes a1 and a2 used in tomography [Eqs. (4)–(5)]. t=0 is determined from the peak of the instrument response function (IRF; dashed line shows IRF for kx=0 at a single detection pixel), measured with a white paper in place of the dish. X–Z slices of (d) SF-DTD and (e) SF-ATD reconstructions of the 0.45 ns (red) and 0.65 ns (green) components shown as a RGB image. (f), (g) Line profiles along X for the reconstructions shown in (d) and (e) for the 0.45 ns (red line) and 0.65 ns (green line) components, shown with the true yields of the tubes normalized to the maximum yield (green and red dashed lines).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

UF(ks,kd,t)t>τan=1Nan(ks,kd)eΓnt,
an(ks,kd)=d3rW¯n(ks,kd,r)ηn(r),
y=Wη=t>τaAW¯η.
ηSF-ATD=W¯T(W¯W¯T+λI)1a,
ηSF-DTD=W¯T(W¯W¯T+λCa/Cη)1a,

Metrics