Abstract

Point projection is a mature geometry of x-ray imaging that is implemented in scientific and industrial applications. Objects to be imaged are placed near a microscopic x-ray source, and the magnification is accomplished by x-ray propagation towards a distant detector. The source size is a trade-off between the signal level and the spatial resolution. In this work, we demonstrate multipoint-projection x-ray imaging realized with an x-ray tube and compound structured microcapillary optics that generates nearly one thousand submicrometer secondary x-ray sources. The generated microbeams are multiplexed at the object. Demultiplexing of the transmitted beams, magnification, and phase contrast are achieved by the free-space propagation. A massive improvement in the signal-to-noise ratio, relative to a single secondary source, was achieved without a loss in spatial resolution. Hence, x-ray projections of highly absorbing samples at submicrometer spatial resolution could be recorded with only a few photons per detector pixel. For weakly absorbing samples, the multipoint-projection method enabled us to record, in a parallel way, replicated in-line x-ray holograms with incoherent radiation from an x-ray tube. Our method may enrich the panel of x-ray nanoscale imaging techniques and may be adopted for on-chip x-ray photonic devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
X-ray holographic microscopy using photoresists

Chris Jacobsen, Malcolm Howells, Janos Kirz, and Stephen Rothman
J. Opt. Soc. Am. A 7(10) 1847-1861 (1990)

X-ray phase-contrast microscopy and microtomography

S.C. Mayo, T.J. Davis, T.E. Gureyev, P.R. Miller, D. Paganin, A. Pogany, A.W. Stevenson, and S.W. Wilkins
Opt. Express 11(19) 2289-2302 (2003)

Simulation of image formation in x-ray coded aperture microscopy with polycapillary optics

P. Korecki, T. P. Roszczynialski, and K. M. Sowa
Opt. Express 23(7) 8749-8761 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Sakdinawat and D. Attwood, “Nanoscale x-ray imaging,” Nat. Photonics 4, 840–848 (2010).
    [Crossref]
  2. H. N. Chapman and K. A. Nugent, “Coherent lensless x-ray imaging,” Nat. Photonics 4, 833–839 (2010).
    [Crossref]
  3. V. E. Cosslett and W. C. Nixon, “X-ray shadow microscope,” Nature 168, 24–25 (1951).
    [Crossref]
  4. J. Kastner, B. Harrer, G. Requena, and O. Brunke, “A comparative study of high resolution cone beam x-ray tomography and synchrotron tomography applied to Fe- and Al-alloys,” NDT & E Int. 43, 599–605 (2010).
    [Crossref]
  5. F. Nachtrab, T. Hofmann, C. Speier, J. Lučić, M. Firsching, N. Uhlmann, P. Takman, C. Heinzl, A. Holmberg, M. Krumm, and C. Sauerwein, “Development of a timepix based detector for the NanoXCT project,” J. Instrum. 10, C11009 (2015).
    [Crossref]
  6. P. Bidola, K. Morgan, M. Willner, A. Fehringer, S. Allner, F. Prade, F. Pfeiffer, and K. Achterhold, “Application of sensitive, high-resolution imaging at a commercial lab-based x-ray micro-ct system using propagation-based phase retrieval,” J. Microsc. 266, 211–220 (2017).
    [Crossref]
  7. S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative x-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207, 79–96 (2002).
    [Crossref]
  8. D. Paganin, Coherent X-Ray Optics (Oxford University, 2006).
  9. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [Crossref]
  10. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
    [Crossref]
  11. P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
    [Crossref]
  12. T. E. Gureyev, S. Mayo, S. W. Wilkins, D. Paganin, and A. W. Stevenson, “Quantitative in-line phase-contrast imaging with multienergy x rays,” Phys. Rev. Lett. 86, 5827–5830 (2001).
    [Crossref]
  13. K. Giewekemeyer, H. Neubauer, S. Kalbfleisch, S. P. Krüger, and T. Salditt, “Holographic and diffractive x-ray imaging using waveguides as quasi-point sources,” New J. Phys. 12, 035008 (2010).
    [Crossref]
  14. D. H. Bilderback, S. A. Hoffman, and D. J. Thiel, “Nanometer spatial resolution achieved in hard x-ray imaging and Laue diffraction experiments,” Science 263, 201–203 (1994).
    [Crossref]
  15. A. H. Compton, “Die Totalreflexion der Röntgenstrahlen,” Philos. Mag. 45, 1121–1131 (1923).
    [Crossref]
  16. M. Kumakhov and F. Komarov, “Multiple reflection from surface x-ray optics,” Phys. Rep. 191, 289–350 (1990).
    [Crossref]
  17. C. A. MacDonald, “Structured x-ray optics for laboratory-based materials analysis,” Annu. Rev. Mater. Res. 47, 115–134 (2017).
    [Crossref]
  18. D. Hampai, S. B. Dabagov, G. Cappuccio, A. Longoni, T. Frizzi, G. Cibin, V. Guglielmotti, and M. Sala, “Elemental mapping and microimaging by x-ray capillary optics,” Opt. Lett. 33, 2743–2745 (2008).
    [Crossref]
  19. S. Bashir, S. Tahir, C. MacDonald, and J. C. Petruccelli, “Phase imaging using focused polycapillary optics,” Opt. Commun. 369, 28–37 (2016).
    [Crossref]
  20. P. Korecki, K. M. Sowa, B. R. Jany, and F. Krok, “Defect-assisted hard-x-ray microscopy with capillary optics,” Phys. Rev. Lett. 116, 233902 (2016).
    [Crossref]
  21. Y. Sung, L. Xu, V. Nagarkar, and R. Gupta, “Compressed x-ray phase-contrast imaging using a coded source,” Opt. Commun. 332, 370–378 (2014).
    [Crossref]
  22. G. W. Goonan, A. Fouras, and S. Dubsky, “Array-source x-ray velocimetry,” Opt. Express 26, 935–950 (2018).
    [Crossref]
  23. P. Korecki, T. P. Roszczynialski, and K. M. Sowa, “Simulation of image formation in x-ray coded aperture microscopy with polycapillary optics,” Opt. Express 23, 8749–8761 (2015).
    [Crossref]
  24. D. X. Balaic and K. A. Nugent, “X-ray optics of tapered capillaries,” Appl. Opt. 34, 7263–7272 (1995).
    [Crossref]
  25. A. G. Peele, K. A. Nugent, A. V. Rode, K. Gabel, M. C. Richardson, R. Strack, and W. Siegmund, “X-ray focusing with lobster-eye optics: a comparison of theory with experiment,” Appl. Opt. 35, 4420–4425 (1996).
    [Crossref]
  26. K. M. Dabrowski, D. T. Dul, and P. Korecki, “X-ray imaging inside the focal spot of polycapillary optics using the coded aperture concept,” Opt. Express 21, 2920–2927 (2013).
    [Crossref]
  27. K. M. Sowa, A. Last, and P. Korecki, “Grid-enhanced x-ray coded aperture microscopy with polycapillary optics,” Sci. Rep. 7, 44944 (2017).
    [Crossref]
  28. P. Alle, E. Wenger, S. Dahaoui, D. Schaniel, and C. Lecomte, “Comparison of CCD, CMOS and hybrid pixel x-ray detectors: detection principle and data quality,” Phys. Scripta 91, 063001 (2016).
    [Crossref]
  29. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
    [Crossref]
  30. I. Zanette, T. Zhou, A. Burvall, U. Lundström, D. H. Larsson, M. Zdora, P. Thibault, F. Pfeiffer, and H. M. Hertz, “Speckle-based x-ray phase-contrast and dark-field imaging with a laboratory source,” Phys. Rev. Lett. 112, 253903 (2014).
    [Crossref]
  31. M. Endrizzi, F. A. Vittoria, P. C. Diemoz, R. Lorenzo, R. D. Speller, U. H. Wagner, C. Rau, I. K. Robinson, and A. Olivo, “Phase-contrast microscopy at high x-ray energy with a laboratory setup,” Opt. Lett. 39, 3332–3335 (2014).
    [Crossref]
  32. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
    [Crossref]
  33. F. Pfeiffer, “X-ray ptychography,” Nat. Photonics 12, 9–17 (2018).
    [Crossref]
  34. W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, “Multiple reference Fourier transform holography with soft x rays,” Appl. Phys. Lett. 89, 163112 (2006).
    [Crossref]
  35. S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. Chapman, M. Frank, S. P. Hau-Riege, A. Szöke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu, and M. M. Seibert, “Massively parallel x-ray holography,” Nat. Photonics 2, 560–563 (2008).
    [Crossref]
  36. L.-M. Stadler, C. Gutt, T. Autenrieth, O. Leupold, S. Rehbein, Y. Chushkin, and G. Grübel, “Hard x ray holographic diffraction imaging,” Phys. Rev. Lett. 100, 245503 (2008).
    [Crossref]
  37. J. Karch, F. Krejci, B. Bartl, J. Dudak, J. Kuba, J. Kvacek, and J. Zemlicka, “High-contrast x-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel detector array of 10 × 5 timepix chips,” J. Instrum. 11, C01073 (2016).
    [Crossref]
  38. K. M. Dabrowski, D. T. Dul, A. Wrobel, and P. Korecki, “X-ray microlaminography with polycapillary optics,” Appl. Phys. Lett. 102, 224104 (2013).
    [Crossref]
  39. E. Kosior, S. Bohic, H. Suhonen, R. Ortega, G. Devès, A. Carmona, F. Marchi, J. F. Guillet, and P. Cloetens, “Combined use of hard x-ray phase contrast imaging and x-ray fluorescence microscopy for sub-cellular metal quantification,” J. Struct. Biol. 177, 239–247 (2012).
    [Crossref]
  40. T. Salditt, S. Hoffmann, M. Vassholz, J. Haber, M. Osterhoff, and J. Hilhorst, “X-ray optics on a chip: guiding x rays in curved channels,” Phys. Rev. Lett. 115, 203902 (2015).
    [Crossref]
  41. A. Wawrzyniak, A. Marendziak, A. Kisiel, P. Borowiec, R. Nietubyć, J. Wiechecki, K. Karas, K. Szamota-Leandersson, M. Zając, C. Bocchetta, and M. Stankiewicz, “Solaris a new class of low energy and high brightness light source,” Nucl. Instrum. Methods Phys. Res. B 411, 4–11 (2017).
    [Crossref]
  42. A. Döpp, L. Hehn, J. Götzfried, J. Wenz, M. Gilljohann, H. Ding, S. Schindler, F. Pfeiffer, and S. Karsch, “Quick x-ray microtomography using a laser-driven betatron source,” Optica 5, 199–203 (2018).
    [Crossref]

2018 (3)

2017 (4)

A. Wawrzyniak, A. Marendziak, A. Kisiel, P. Borowiec, R. Nietubyć, J. Wiechecki, K. Karas, K. Szamota-Leandersson, M. Zając, C. Bocchetta, and M. Stankiewicz, “Solaris a new class of low energy and high brightness light source,” Nucl. Instrum. Methods Phys. Res. B 411, 4–11 (2017).
[Crossref]

K. M. Sowa, A. Last, and P. Korecki, “Grid-enhanced x-ray coded aperture microscopy with polycapillary optics,” Sci. Rep. 7, 44944 (2017).
[Crossref]

P. Bidola, K. Morgan, M. Willner, A. Fehringer, S. Allner, F. Prade, F. Pfeiffer, and K. Achterhold, “Application of sensitive, high-resolution imaging at a commercial lab-based x-ray micro-ct system using propagation-based phase retrieval,” J. Microsc. 266, 211–220 (2017).
[Crossref]

C. A. MacDonald, “Structured x-ray optics for laboratory-based materials analysis,” Annu. Rev. Mater. Res. 47, 115–134 (2017).
[Crossref]

2016 (4)

S. Bashir, S. Tahir, C. MacDonald, and J. C. Petruccelli, “Phase imaging using focused polycapillary optics,” Opt. Commun. 369, 28–37 (2016).
[Crossref]

P. Korecki, K. M. Sowa, B. R. Jany, and F. Krok, “Defect-assisted hard-x-ray microscopy with capillary optics,” Phys. Rev. Lett. 116, 233902 (2016).
[Crossref]

P. Alle, E. Wenger, S. Dahaoui, D. Schaniel, and C. Lecomte, “Comparison of CCD, CMOS and hybrid pixel x-ray detectors: detection principle and data quality,” Phys. Scripta 91, 063001 (2016).
[Crossref]

J. Karch, F. Krejci, B. Bartl, J. Dudak, J. Kuba, J. Kvacek, and J. Zemlicka, “High-contrast x-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel detector array of 10 × 5 timepix chips,” J. Instrum. 11, C01073 (2016).
[Crossref]

2015 (3)

T. Salditt, S. Hoffmann, M. Vassholz, J. Haber, M. Osterhoff, and J. Hilhorst, “X-ray optics on a chip: guiding x rays in curved channels,” Phys. Rev. Lett. 115, 203902 (2015).
[Crossref]

P. Korecki, T. P. Roszczynialski, and K. M. Sowa, “Simulation of image formation in x-ray coded aperture microscopy with polycapillary optics,” Opt. Express 23, 8749–8761 (2015).
[Crossref]

F. Nachtrab, T. Hofmann, C. Speier, J. Lučić, M. Firsching, N. Uhlmann, P. Takman, C. Heinzl, A. Holmberg, M. Krumm, and C. Sauerwein, “Development of a timepix based detector for the NanoXCT project,” J. Instrum. 10, C11009 (2015).
[Crossref]

2014 (3)

Y. Sung, L. Xu, V. Nagarkar, and R. Gupta, “Compressed x-ray phase-contrast imaging using a coded source,” Opt. Commun. 332, 370–378 (2014).
[Crossref]

I. Zanette, T. Zhou, A. Burvall, U. Lundström, D. H. Larsson, M. Zdora, P. Thibault, F. Pfeiffer, and H. M. Hertz, “Speckle-based x-ray phase-contrast and dark-field imaging with a laboratory source,” Phys. Rev. Lett. 112, 253903 (2014).
[Crossref]

M. Endrizzi, F. A. Vittoria, P. C. Diemoz, R. Lorenzo, R. D. Speller, U. H. Wagner, C. Rau, I. K. Robinson, and A. Olivo, “Phase-contrast microscopy at high x-ray energy with a laboratory setup,” Opt. Lett. 39, 3332–3335 (2014).
[Crossref]

2013 (2)

K. M. Dabrowski, D. T. Dul, and P. Korecki, “X-ray imaging inside the focal spot of polycapillary optics using the coded aperture concept,” Opt. Express 21, 2920–2927 (2013).
[Crossref]

K. M. Dabrowski, D. T. Dul, A. Wrobel, and P. Korecki, “X-ray microlaminography with polycapillary optics,” Appl. Phys. Lett. 102, 224104 (2013).
[Crossref]

2012 (1)

E. Kosior, S. Bohic, H. Suhonen, R. Ortega, G. Devès, A. Carmona, F. Marchi, J. F. Guillet, and P. Cloetens, “Combined use of hard x-ray phase contrast imaging and x-ray fluorescence microscopy for sub-cellular metal quantification,” J. Struct. Biol. 177, 239–247 (2012).
[Crossref]

2010 (4)

K. Giewekemeyer, H. Neubauer, S. Kalbfleisch, S. P. Krüger, and T. Salditt, “Holographic and diffractive x-ray imaging using waveguides as quasi-point sources,” New J. Phys. 12, 035008 (2010).
[Crossref]

J. Kastner, B. Harrer, G. Requena, and O. Brunke, “A comparative study of high resolution cone beam x-ray tomography and synchrotron tomography applied to Fe- and Al-alloys,” NDT & E Int. 43, 599–605 (2010).
[Crossref]

A. Sakdinawat and D. Attwood, “Nanoscale x-ray imaging,” Nat. Photonics 4, 840–848 (2010).
[Crossref]

H. N. Chapman and K. A. Nugent, “Coherent lensless x-ray imaging,” Nat. Photonics 4, 833–839 (2010).
[Crossref]

2008 (4)

D. Hampai, S. B. Dabagov, G. Cappuccio, A. Longoni, T. Frizzi, G. Cibin, V. Guglielmotti, and M. Sala, “Elemental mapping and microimaging by x-ray capillary optics,” Opt. Lett. 33, 2743–2745 (2008).
[Crossref]

S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. Chapman, M. Frank, S. P. Hau-Riege, A. Szöke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu, and M. M. Seibert, “Massively parallel x-ray holography,” Nat. Photonics 2, 560–563 (2008).
[Crossref]

L.-M. Stadler, C. Gutt, T. Autenrieth, O. Leupold, S. Rehbein, Y. Chushkin, and G. Grübel, “Hard x ray holographic diffraction imaging,” Phys. Rev. Lett. 100, 245503 (2008).
[Crossref]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref]

2006 (1)

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, “Multiple reference Fourier transform holography with soft x rays,” Appl. Phys. Lett. 89, 163112 (2006).
[Crossref]

2002 (2)

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[Crossref]

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative x-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207, 79–96 (2002).
[Crossref]

2001 (1)

T. E. Gureyev, S. Mayo, S. W. Wilkins, D. Paganin, and A. W. Stevenson, “Quantitative in-line phase-contrast imaging with multienergy x rays,” Phys. Rev. Lett. 86, 5827–5830 (2001).
[Crossref]

1996 (2)

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[Crossref]

A. G. Peele, K. A. Nugent, A. V. Rode, K. Gabel, M. C. Richardson, R. Strack, and W. Siegmund, “X-ray focusing with lobster-eye optics: a comparison of theory with experiment,” Appl. Opt. 35, 4420–4425 (1996).
[Crossref]

1995 (2)

D. X. Balaic and K. A. Nugent, “X-ray optics of tapered capillaries,” Appl. Opt. 34, 7263–7272 (1995).
[Crossref]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[Crossref]

1994 (1)

D. H. Bilderback, S. A. Hoffman, and D. J. Thiel, “Nanometer spatial resolution achieved in hard x-ray imaging and Laue diffraction experiments,” Science 263, 201–203 (1994).
[Crossref]

1990 (1)

M. Kumakhov and F. Komarov, “Multiple reflection from surface x-ray optics,” Phys. Rep. 191, 289–350 (1990).
[Crossref]

1951 (1)

V. E. Cosslett and W. C. Nixon, “X-ray shadow microscope,” Nature 168, 24–25 (1951).
[Crossref]

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

1923 (1)

A. H. Compton, “Die Totalreflexion der Röntgenstrahlen,” Philos. Mag. 45, 1121–1131 (1923).
[Crossref]

Achterhold, K.

P. Bidola, K. Morgan, M. Willner, A. Fehringer, S. Allner, F. Prade, F. Pfeiffer, and K. Achterhold, “Application of sensitive, high-resolution imaging at a commercial lab-based x-ray micro-ct system using propagation-based phase retrieval,” J. Microsc. 266, 211–220 (2017).
[Crossref]

Alle, P.

P. Alle, E. Wenger, S. Dahaoui, D. Schaniel, and C. Lecomte, “Comparison of CCD, CMOS and hybrid pixel x-ray detectors: detection principle and data quality,” Phys. Scripta 91, 063001 (2016).
[Crossref]

Allner, S.

P. Bidola, K. Morgan, M. Willner, A. Fehringer, S. Allner, F. Prade, F. Pfeiffer, and K. Achterhold, “Application of sensitive, high-resolution imaging at a commercial lab-based x-ray micro-ct system using propagation-based phase retrieval,” J. Microsc. 266, 211–220 (2017).
[Crossref]

Attwood, D.

A. Sakdinawat and D. Attwood, “Nanoscale x-ray imaging,” Nat. Photonics 4, 840–848 (2010).
[Crossref]

Autenrieth, T.

L.-M. Stadler, C. Gutt, T. Autenrieth, O. Leupold, S. Rehbein, Y. Chushkin, and G. Grübel, “Hard x ray holographic diffraction imaging,” Phys. Rev. Lett. 100, 245503 (2008).
[Crossref]

Bajt, S.

S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. Chapman, M. Frank, S. P. Hau-Riege, A. Szöke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu, and M. M. Seibert, “Massively parallel x-ray holography,” Nat. Photonics 2, 560–563 (2008).
[Crossref]

Balaic, D. X.

Barrett, R.

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[Crossref]

Bartl, B.

J. Karch, F. Krejci, B. Bartl, J. Dudak, J. Kuba, J. Kvacek, and J. Zemlicka, “High-contrast x-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel detector array of 10 × 5 timepix chips,” J. Instrum. 11, C01073 (2016).
[Crossref]

Barty, A.

S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. Chapman, M. Frank, S. P. Hau-Riege, A. Szöke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu, and M. M. Seibert, “Massively parallel x-ray holography,” Nat. Photonics 2, 560–563 (2008).
[Crossref]

Baruchel, J.

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[Crossref]

Bashir, S.

S. Bashir, S. Tahir, C. MacDonald, and J. C. Petruccelli, “Phase imaging using focused polycapillary optics,” Opt. Commun. 369, 28–37 (2016).
[Crossref]

Bidola, P.

P. Bidola, K. Morgan, M. Willner, A. Fehringer, S. Allner, F. Prade, F. Pfeiffer, and K. Achterhold, “Application of sensitive, high-resolution imaging at a commercial lab-based x-ray micro-ct system using propagation-based phase retrieval,” J. Microsc. 266, 211–220 (2017).
[Crossref]

Bilderback, D. H.

D. H. Bilderback, S. A. Hoffman, and D. J. Thiel, “Nanometer spatial resolution achieved in hard x-ray imaging and Laue diffraction experiments,” Science 263, 201–203 (1994).
[Crossref]

Bocchetta, C.

A. Wawrzyniak, A. Marendziak, A. Kisiel, P. Borowiec, R. Nietubyć, J. Wiechecki, K. Karas, K. Szamota-Leandersson, M. Zając, C. Bocchetta, and M. Stankiewicz, “Solaris a new class of low energy and high brightness light source,” Nucl. Instrum. Methods Phys. Res. B 411, 4–11 (2017).
[Crossref]

Bogan, M. J.

S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. Chapman, M. Frank, S. P. Hau-Riege, A. Szöke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu, and M. M. Seibert, “Massively parallel x-ray holography,” Nat. Photonics 2, 560–563 (2008).
[Crossref]

Bohic, S.

E. Kosior, S. Bohic, H. Suhonen, R. Ortega, G. Devès, A. Carmona, F. Marchi, J. F. Guillet, and P. Cloetens, “Combined use of hard x-ray phase contrast imaging and x-ray fluorescence microscopy for sub-cellular metal quantification,” J. Struct. Biol. 177, 239–247 (2012).
[Crossref]

Borowiec, P.

A. Wawrzyniak, A. Marendziak, A. Kisiel, P. Borowiec, R. Nietubyć, J. Wiechecki, K. Karas, K. Szamota-Leandersson, M. Zając, C. Bocchetta, and M. Stankiewicz, “Solaris a new class of low energy and high brightness light source,” Nucl. Instrum. Methods Phys. Res. B 411, 4–11 (2017).
[Crossref]

Boutet, S.

S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. Chapman, M. Frank, S. P. Hau-Riege, A. Szöke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu, and M. M. Seibert, “Massively parallel x-ray holography,” Nat. Photonics 2, 560–563 (2008).
[Crossref]

Brunke, O.

J. Kastner, B. Harrer, G. Requena, and O. Brunke, “A comparative study of high resolution cone beam x-ray tomography and synchrotron tomography applied to Fe- and Al-alloys,” NDT & E Int. 43, 599–605 (2010).
[Crossref]

Bunk, O.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref]

Burvall, A.

I. Zanette, T. Zhou, A. Burvall, U. Lundström, D. H. Larsson, M. Zdora, P. Thibault, F. Pfeiffer, and H. M. Hertz, “Speckle-based x-ray phase-contrast and dark-field imaging with a laboratory source,” Phys. Rev. Lett. 112, 253903 (2014).
[Crossref]

Cappuccio, G.

Carmona, A.

E. Kosior, S. Bohic, H. Suhonen, R. Ortega, G. Devès, A. Carmona, F. Marchi, J. F. Guillet, and P. Cloetens, “Combined use of hard x-ray phase contrast imaging and x-ray fluorescence microscopy for sub-cellular metal quantification,” J. Struct. Biol. 177, 239–247 (2012).
[Crossref]

Chapman, H.

S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. Chapman, M. Frank, S. P. Hau-Riege, A. Szöke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu, and M. M. Seibert, “Massively parallel x-ray holography,” Nat. Photonics 2, 560–563 (2008).
[Crossref]

Chapman, H. N.

H. N. Chapman and K. A. Nugent, “Coherent lensless x-ray imaging,” Nat. Photonics 4, 833–839 (2010).
[Crossref]

Chen, K.

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, “Multiple reference Fourier transform holography with soft x rays,” Appl. Phys. Lett. 89, 163112 (2006).
[Crossref]

Chushkin, Y.

L.-M. Stadler, C. Gutt, T. Autenrieth, O. Leupold, S. Rehbein, Y. Chushkin, and G. Grübel, “Hard x ray holographic diffraction imaging,” Phys. Rev. Lett. 100, 245503 (2008).
[Crossref]

Cibin, G.

Cloetens, P.

E. Kosior, S. Bohic, H. Suhonen, R. Ortega, G. Devès, A. Carmona, F. Marchi, J. F. Guillet, and P. Cloetens, “Combined use of hard x-ray phase contrast imaging and x-ray fluorescence microscopy for sub-cellular metal quantification,” J. Struct. Biol. 177, 239–247 (2012).
[Crossref]

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[Crossref]

Compton, A. H.

A. H. Compton, “Die Totalreflexion der Röntgenstrahlen,” Philos. Mag. 45, 1121–1131 (1923).
[Crossref]

Cosslett, V. E.

V. E. Cosslett and W. C. Nixon, “X-ray shadow microscope,” Nature 168, 24–25 (1951).
[Crossref]

Cui, C.

S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. Chapman, M. Frank, S. P. Hau-Riege, A. Szöke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu, and M. M. Seibert, “Massively parallel x-ray holography,” Nat. Photonics 2, 560–563 (2008).
[Crossref]

Dabagov, S. B.

Dabrowski, K. M.

K. M. Dabrowski, D. T. Dul, and P. Korecki, “X-ray imaging inside the focal spot of polycapillary optics using the coded aperture concept,” Opt. Express 21, 2920–2927 (2013).
[Crossref]

K. M. Dabrowski, D. T. Dul, A. Wrobel, and P. Korecki, “X-ray microlaminography with polycapillary optics,” Appl. Phys. Lett. 102, 224104 (2013).
[Crossref]

Dahaoui, S.

P. Alle, E. Wenger, S. Dahaoui, D. Schaniel, and C. Lecomte, “Comparison of CCD, CMOS and hybrid pixel x-ray detectors: detection principle and data quality,” Phys. Scripta 91, 063001 (2016).
[Crossref]

David, C.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref]

Davis, T. J.

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative x-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207, 79–96 (2002).
[Crossref]

Devès, G.

E. Kosior, S. Bohic, H. Suhonen, R. Ortega, G. Devès, A. Carmona, F. Marchi, J. F. Guillet, and P. Cloetens, “Combined use of hard x-ray phase contrast imaging and x-ray fluorescence microscopy for sub-cellular metal quantification,” J. Struct. Biol. 177, 239–247 (2012).
[Crossref]

Diemoz, P. C.

Dierolf, M.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref]

Ding, H.

Döpp, A.

Dubsky, S.

Dudak, J.

J. Karch, F. Krejci, B. Bartl, J. Dudak, J. Kuba, J. Kvacek, and J. Zemlicka, “High-contrast x-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel detector array of 10 × 5 timepix chips,” J. Instrum. 11, C01073 (2016).
[Crossref]

Dul, D. T.

K. M. Dabrowski, D. T. Dul, A. Wrobel, and P. Korecki, “X-ray microlaminography with polycapillary optics,” Appl. Phys. Lett. 102, 224104 (2013).
[Crossref]

K. M. Dabrowski, D. T. Dul, and P. Korecki, “X-ray imaging inside the focal spot of polycapillary optics using the coded aperture concept,” Opt. Express 21, 2920–2927 (2013).
[Crossref]

Eberhardt, W.

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, “Multiple reference Fourier transform holography with soft x rays,” Appl. Phys. Lett. 89, 163112 (2006).
[Crossref]

Eisebitt, S.

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, “Multiple reference Fourier transform holography with soft x rays,” Appl. Phys. Lett. 89, 163112 (2006).
[Crossref]

Endrizzi, M.

Fehringer, A.

P. Bidola, K. Morgan, M. Willner, A. Fehringer, S. Allner, F. Prade, F. Pfeiffer, and K. Achterhold, “Application of sensitive, high-resolution imaging at a commercial lab-based x-ray micro-ct system using propagation-based phase retrieval,” J. Microsc. 266, 211–220 (2017).
[Crossref]

Firsching, M.

F. Nachtrab, T. Hofmann, C. Speier, J. Lučić, M. Firsching, N. Uhlmann, P. Takman, C. Heinzl, A. Holmberg, M. Krumm, and C. Sauerwein, “Development of a timepix based detector for the NanoXCT project,” J. Instrum. 10, C11009 (2015).
[Crossref]

Fouras, A.

Frank, M.

S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. Chapman, M. Frank, S. P. Hau-Riege, A. Szöke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu, and M. M. Seibert, “Massively parallel x-ray holography,” Nat. Photonics 2, 560–563 (2008).
[Crossref]

Frizzi, T.

Gabel, K.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Gao, D.

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative x-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207, 79–96 (2002).
[Crossref]

Giewekemeyer, K.

K. Giewekemeyer, H. Neubauer, S. Kalbfleisch, S. P. Krüger, and T. Salditt, “Holographic and diffractive x-ray imaging using waveguides as quasi-point sources,” New J. Phys. 12, 035008 (2010).
[Crossref]

Gilljohann, M.

Goonan, G. W.

Götzfried, J.

Grübel, G.

L.-M. Stadler, C. Gutt, T. Autenrieth, O. Leupold, S. Rehbein, Y. Chushkin, and G. Grübel, “Hard x ray holographic diffraction imaging,” Phys. Rev. Lett. 100, 245503 (2008).
[Crossref]

Guglielmotti, V.

Guigay, J.-P.

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[Crossref]

Guillet, J. F.

E. Kosior, S. Bohic, H. Suhonen, R. Ortega, G. Devès, A. Carmona, F. Marchi, J. F. Guillet, and P. Cloetens, “Combined use of hard x-ray phase contrast imaging and x-ray fluorescence microscopy for sub-cellular metal quantification,” J. Struct. Biol. 177, 239–247 (2012).
[Crossref]

Günther, C.

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, “Multiple reference Fourier transform holography with soft x rays,” Appl. Phys. Lett. 89, 163112 (2006).
[Crossref]

Gupta, R.

Y. Sung, L. Xu, V. Nagarkar, and R. Gupta, “Compressed x-ray phase-contrast imaging using a coded source,” Opt. Commun. 332, 370–378 (2014).
[Crossref]

Gureyev, T. E.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[Crossref]

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative x-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207, 79–96 (2002).
[Crossref]

T. E. Gureyev, S. Mayo, S. W. Wilkins, D. Paganin, and A. W. Stevenson, “Quantitative in-line phase-contrast imaging with multienergy x rays,” Phys. Rev. Lett. 86, 5827–5830 (2001).
[Crossref]

Gutt, C.

L.-M. Stadler, C. Gutt, T. Autenrieth, O. Leupold, S. Rehbein, Y. Chushkin, and G. Grübel, “Hard x ray holographic diffraction imaging,” Phys. Rev. Lett. 100, 245503 (2008).
[Crossref]

Haber, J.

T. Salditt, S. Hoffmann, M. Vassholz, J. Haber, M. Osterhoff, and J. Hilhorst, “X-ray optics on a chip: guiding x rays in curved channels,” Phys. Rev. Lett. 115, 203902 (2015).
[Crossref]

Hajdu, J.

S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. Chapman, M. Frank, S. P. Hau-Riege, A. Szöke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu, and M. M. Seibert, “Massively parallel x-ray holography,” Nat. Photonics 2, 560–563 (2008).
[Crossref]

Hampai, D.

Harrer, B.

J. Kastner, B. Harrer, G. Requena, and O. Brunke, “A comparative study of high resolution cone beam x-ray tomography and synchrotron tomography applied to Fe- and Al-alloys,” NDT & E Int. 43, 599–605 (2010).
[Crossref]

Hau-Riege, S. P.

S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. Chapman, M. Frank, S. P. Hau-Riege, A. Szöke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu, and M. M. Seibert, “Massively parallel x-ray holography,” Nat. Photonics 2, 560–563 (2008).
[Crossref]

Hehn, L.

Heinzl, C.

F. Nachtrab, T. Hofmann, C. Speier, J. Lučić, M. Firsching, N. Uhlmann, P. Takman, C. Heinzl, A. Holmberg, M. Krumm, and C. Sauerwein, “Development of a timepix based detector for the NanoXCT project,” J. Instrum. 10, C11009 (2015).
[Crossref]

Hellwig, O.

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, “Multiple reference Fourier transform holography with soft x rays,” Appl. Phys. Lett. 89, 163112 (2006).
[Crossref]

Hertz, H. M.

I. Zanette, T. Zhou, A. Burvall, U. Lundström, D. H. Larsson, M. Zdora, P. Thibault, F. Pfeiffer, and H. M. Hertz, “Speckle-based x-ray phase-contrast and dark-field imaging with a laboratory source,” Phys. Rev. Lett. 112, 253903 (2014).
[Crossref]

Hilhorst, J.

T. Salditt, S. Hoffmann, M. Vassholz, J. Haber, M. Osterhoff, and J. Hilhorst, “X-ray optics on a chip: guiding x rays in curved channels,” Phys. Rev. Lett. 115, 203902 (2015).
[Crossref]

Hoffman, S. A.

D. H. Bilderback, S. A. Hoffman, and D. J. Thiel, “Nanometer spatial resolution achieved in hard x-ray imaging and Laue diffraction experiments,” Science 263, 201–203 (1994).
[Crossref]

Hoffmann, S.

T. Salditt, S. Hoffmann, M. Vassholz, J. Haber, M. Osterhoff, and J. Hilhorst, “X-ray optics on a chip: guiding x rays in curved channels,” Phys. Rev. Lett. 115, 203902 (2015).
[Crossref]

Hofmann, T.

F. Nachtrab, T. Hofmann, C. Speier, J. Lučić, M. Firsching, N. Uhlmann, P. Takman, C. Heinzl, A. Holmberg, M. Krumm, and C. Sauerwein, “Development of a timepix based detector for the NanoXCT project,” J. Instrum. 10, C11009 (2015).
[Crossref]

Holmberg, A.

F. Nachtrab, T. Hofmann, C. Speier, J. Lučić, M. Firsching, N. Uhlmann, P. Takman, C. Heinzl, A. Holmberg, M. Krumm, and C. Sauerwein, “Development of a timepix based detector for the NanoXCT project,” J. Instrum. 10, C11009 (2015).
[Crossref]

Howells, M. R.

S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. Chapman, M. Frank, S. P. Hau-Riege, A. Szöke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu, and M. M. Seibert, “Massively parallel x-ray holography,” Nat. Photonics 2, 560–563 (2008).
[Crossref]

Jany, B. R.

P. Korecki, K. M. Sowa, B. R. Jany, and F. Krok, “Defect-assisted hard-x-ray microscopy with capillary optics,” Phys. Rev. Lett. 116, 233902 (2016).
[Crossref]

Kalbfleisch, S.

K. Giewekemeyer, H. Neubauer, S. Kalbfleisch, S. P. Krüger, and T. Salditt, “Holographic and diffractive x-ray imaging using waveguides as quasi-point sources,” New J. Phys. 12, 035008 (2010).
[Crossref]

Karas, K.

A. Wawrzyniak, A. Marendziak, A. Kisiel, P. Borowiec, R. Nietubyć, J. Wiechecki, K. Karas, K. Szamota-Leandersson, M. Zając, C. Bocchetta, and M. Stankiewicz, “Solaris a new class of low energy and high brightness light source,” Nucl. Instrum. Methods Phys. Res. B 411, 4–11 (2017).
[Crossref]

Karch, J.

J. Karch, F. Krejci, B. Bartl, J. Dudak, J. Kuba, J. Kvacek, and J. Zemlicka, “High-contrast x-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel detector array of 10 × 5 timepix chips,” J. Instrum. 11, C01073 (2016).
[Crossref]

Karsch, S.

Kastner, J.

J. Kastner, B. Harrer, G. Requena, and O. Brunke, “A comparative study of high resolution cone beam x-ray tomography and synchrotron tomography applied to Fe- and Al-alloys,” NDT & E Int. 43, 599–605 (2010).
[Crossref]

Kisiel, A.

A. Wawrzyniak, A. Marendziak, A. Kisiel, P. Borowiec, R. Nietubyć, J. Wiechecki, K. Karas, K. Szamota-Leandersson, M. Zając, C. Bocchetta, and M. Stankiewicz, “Solaris a new class of low energy and high brightness light source,” Nucl. Instrum. Methods Phys. Res. B 411, 4–11 (2017).
[Crossref]

Kohn, V.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[Crossref]

Komarov, F.

M. Kumakhov and F. Komarov, “Multiple reflection from surface x-ray optics,” Phys. Rep. 191, 289–350 (1990).
[Crossref]

Korecki, P.

K. M. Sowa, A. Last, and P. Korecki, “Grid-enhanced x-ray coded aperture microscopy with polycapillary optics,” Sci. Rep. 7, 44944 (2017).
[Crossref]

P. Korecki, K. M. Sowa, B. R. Jany, and F. Krok, “Defect-assisted hard-x-ray microscopy with capillary optics,” Phys. Rev. Lett. 116, 233902 (2016).
[Crossref]

P. Korecki, T. P. Roszczynialski, and K. M. Sowa, “Simulation of image formation in x-ray coded aperture microscopy with polycapillary optics,” Opt. Express 23, 8749–8761 (2015).
[Crossref]

K. M. Dabrowski, D. T. Dul, and P. Korecki, “X-ray imaging inside the focal spot of polycapillary optics using the coded aperture concept,” Opt. Express 21, 2920–2927 (2013).
[Crossref]

K. M. Dabrowski, D. T. Dul, A. Wrobel, and P. Korecki, “X-ray microlaminography with polycapillary optics,” Appl. Phys. Lett. 102, 224104 (2013).
[Crossref]

Kosior, E.

E. Kosior, S. Bohic, H. Suhonen, R. Ortega, G. Devès, A. Carmona, F. Marchi, J. F. Guillet, and P. Cloetens, “Combined use of hard x-ray phase contrast imaging and x-ray fluorescence microscopy for sub-cellular metal quantification,” J. Struct. Biol. 177, 239–247 (2012).
[Crossref]

Krejci, F.

J. Karch, F. Krejci, B. Bartl, J. Dudak, J. Kuba, J. Kvacek, and J. Zemlicka, “High-contrast x-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel detector array of 10 × 5 timepix chips,” J. Instrum. 11, C01073 (2016).
[Crossref]

Krok, F.

P. Korecki, K. M. Sowa, B. R. Jany, and F. Krok, “Defect-assisted hard-x-ray microscopy with capillary optics,” Phys. Rev. Lett. 116, 233902 (2016).
[Crossref]

Krüger, S. P.

K. Giewekemeyer, H. Neubauer, S. Kalbfleisch, S. P. Krüger, and T. Salditt, “Holographic and diffractive x-ray imaging using waveguides as quasi-point sources,” New J. Phys. 12, 035008 (2010).
[Crossref]

Krumm, M.

F. Nachtrab, T. Hofmann, C. Speier, J. Lučić, M. Firsching, N. Uhlmann, P. Takman, C. Heinzl, A. Holmberg, M. Krumm, and C. Sauerwein, “Development of a timepix based detector for the NanoXCT project,” J. Instrum. 10, C11009 (2015).
[Crossref]

Kuba, J.

J. Karch, F. Krejci, B. Bartl, J. Dudak, J. Kuba, J. Kvacek, and J. Zemlicka, “High-contrast x-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel detector array of 10 × 5 timepix chips,” J. Instrum. 11, C01073 (2016).
[Crossref]

Kumakhov, M.

M. Kumakhov and F. Komarov, “Multiple reflection from surface x-ray optics,” Phys. Rep. 191, 289–350 (1990).
[Crossref]

Kuznetsov, S.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[Crossref]

Kvacek, J.

J. Karch, F. Krejci, B. Bartl, J. Dudak, J. Kuba, J. Kvacek, and J. Zemlicka, “High-contrast x-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel detector array of 10 × 5 timepix chips,” J. Instrum. 11, C01073 (2016).
[Crossref]

Larsson, D. H.

I. Zanette, T. Zhou, A. Burvall, U. Lundström, D. H. Larsson, M. Zdora, P. Thibault, F. Pfeiffer, and H. M. Hertz, “Speckle-based x-ray phase-contrast and dark-field imaging with a laboratory source,” Phys. Rev. Lett. 112, 253903 (2014).
[Crossref]

Last, A.

K. M. Sowa, A. Last, and P. Korecki, “Grid-enhanced x-ray coded aperture microscopy with polycapillary optics,” Sci. Rep. 7, 44944 (2017).
[Crossref]

Lecomte, C.

P. Alle, E. Wenger, S. Dahaoui, D. Schaniel, and C. Lecomte, “Comparison of CCD, CMOS and hybrid pixel x-ray detectors: detection principle and data quality,” Phys. Scripta 91, 063001 (2016).
[Crossref]

Lee, J. Y.

S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. Chapman, M. Frank, S. P. Hau-Riege, A. Szöke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu, and M. M. Seibert, “Massively parallel x-ray holography,” Nat. Photonics 2, 560–563 (2008).
[Crossref]

Leupold, O.

L.-M. Stadler, C. Gutt, T. Autenrieth, O. Leupold, S. Rehbein, Y. Chushkin, and G. Grübel, “Hard x ray holographic diffraction imaging,” Phys. Rev. Lett. 100, 245503 (2008).
[Crossref]

Longoni, A.

Lorenzo, R.

Lucic, J.

F. Nachtrab, T. Hofmann, C. Speier, J. Lučić, M. Firsching, N. Uhlmann, P. Takman, C. Heinzl, A. Holmberg, M. Krumm, and C. Sauerwein, “Development of a timepix based detector for the NanoXCT project,” J. Instrum. 10, C11009 (2015).
[Crossref]

Lundström, U.

I. Zanette, T. Zhou, A. Burvall, U. Lundström, D. H. Larsson, M. Zdora, P. Thibault, F. Pfeiffer, and H. M. Hertz, “Speckle-based x-ray phase-contrast and dark-field imaging with a laboratory source,” Phys. Rev. Lett. 112, 253903 (2014).
[Crossref]

Lüning, J.

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, “Multiple reference Fourier transform holography with soft x rays,” Appl. Phys. Lett. 89, 163112 (2006).
[Crossref]

MacDonald, C.

S. Bashir, S. Tahir, C. MacDonald, and J. C. Petruccelli, “Phase imaging using focused polycapillary optics,” Opt. Commun. 369, 28–37 (2016).
[Crossref]

MacDonald, C. A.

C. A. MacDonald, “Structured x-ray optics for laboratory-based materials analysis,” Annu. Rev. Mater. Res. 47, 115–134 (2017).
[Crossref]

Marchesini, S.

S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. Chapman, M. Frank, S. P. Hau-Riege, A. Szöke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu, and M. M. Seibert, “Massively parallel x-ray holography,” Nat. Photonics 2, 560–563 (2008).
[Crossref]

Marchi, F.

E. Kosior, S. Bohic, H. Suhonen, R. Ortega, G. Devès, A. Carmona, F. Marchi, J. F. Guillet, and P. Cloetens, “Combined use of hard x-ray phase contrast imaging and x-ray fluorescence microscopy for sub-cellular metal quantification,” J. Struct. Biol. 177, 239–247 (2012).
[Crossref]

Marendziak, A.

A. Wawrzyniak, A. Marendziak, A. Kisiel, P. Borowiec, R. Nietubyć, J. Wiechecki, K. Karas, K. Szamota-Leandersson, M. Zając, C. Bocchetta, and M. Stankiewicz, “Solaris a new class of low energy and high brightness light source,” Nucl. Instrum. Methods Phys. Res. B 411, 4–11 (2017).
[Crossref]

Mayo, S.

T. E. Gureyev, S. Mayo, S. W. Wilkins, D. Paganin, and A. W. Stevenson, “Quantitative in-line phase-contrast imaging with multienergy x rays,” Phys. Rev. Lett. 86, 5827–5830 (2001).
[Crossref]

Mayo, S. C.

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative x-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207, 79–96 (2002).
[Crossref]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[Crossref]

McNulty, I.

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, “Multiple reference Fourier transform holography with soft x rays,” Appl. Phys. Lett. 89, 163112 (2006).
[Crossref]

Menzel, A.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref]

Miller, P. R.

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative x-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207, 79–96 (2002).
[Crossref]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[Crossref]

Morgan, K.

P. Bidola, K. Morgan, M. Willner, A. Fehringer, S. Allner, F. Prade, F. Pfeiffer, and K. Achterhold, “Application of sensitive, high-resolution imaging at a commercial lab-based x-ray micro-ct system using propagation-based phase retrieval,” J. Microsc. 266, 211–220 (2017).
[Crossref]

Nachtrab, F.

F. Nachtrab, T. Hofmann, C. Speier, J. Lučić, M. Firsching, N. Uhlmann, P. Takman, C. Heinzl, A. Holmberg, M. Krumm, and C. Sauerwein, “Development of a timepix based detector for the NanoXCT project,” J. Instrum. 10, C11009 (2015).
[Crossref]

Nagarkar, V.

Y. Sung, L. Xu, V. Nagarkar, and R. Gupta, “Compressed x-ray phase-contrast imaging using a coded source,” Opt. Commun. 332, 370–378 (2014).
[Crossref]

Neubauer, H.

K. Giewekemeyer, H. Neubauer, S. Kalbfleisch, S. P. Krüger, and T. Salditt, “Holographic and diffractive x-ray imaging using waveguides as quasi-point sources,” New J. Phys. 12, 035008 (2010).
[Crossref]

Nietubyc, R.

A. Wawrzyniak, A. Marendziak, A. Kisiel, P. Borowiec, R. Nietubyć, J. Wiechecki, K. Karas, K. Szamota-Leandersson, M. Zając, C. Bocchetta, and M. Stankiewicz, “Solaris a new class of low energy and high brightness light source,” Nucl. Instrum. Methods Phys. Res. B 411, 4–11 (2017).
[Crossref]

Nixon, W. C.

V. E. Cosslett and W. C. Nixon, “X-ray shadow microscope,” Nature 168, 24–25 (1951).
[Crossref]

Nugent, K. A.

Olivo, A.

Ortega, R.

E. Kosior, S. Bohic, H. Suhonen, R. Ortega, G. Devès, A. Carmona, F. Marchi, J. F. Guillet, and P. Cloetens, “Combined use of hard x-ray phase contrast imaging and x-ray fluorescence microscopy for sub-cellular metal quantification,” J. Struct. Biol. 177, 239–247 (2012).
[Crossref]

Osterhoff, M.

T. Salditt, S. Hoffmann, M. Vassholz, J. Haber, M. Osterhoff, and J. Hilhorst, “X-ray optics on a chip: guiding x rays in curved channels,” Phys. Rev. Lett. 115, 203902 (2015).
[Crossref]

Paganin, D.

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative x-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207, 79–96 (2002).
[Crossref]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[Crossref]

T. E. Gureyev, S. Mayo, S. W. Wilkins, D. Paganin, and A. W. Stevenson, “Quantitative in-line phase-contrast imaging with multienergy x rays,” Phys. Rev. Lett. 86, 5827–5830 (2001).
[Crossref]

D. Paganin, Coherent X-Ray Optics (Oxford University, 2006).

Parry, D. J.

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative x-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207, 79–96 (2002).
[Crossref]

Peele, A. G.

Petruccelli, J. C.

S. Bashir, S. Tahir, C. MacDonald, and J. C. Petruccelli, “Phase imaging using focused polycapillary optics,” Opt. Commun. 369, 28–37 (2016).
[Crossref]

Pfeiffer, F.

A. Döpp, L. Hehn, J. Götzfried, J. Wenz, M. Gilljohann, H. Ding, S. Schindler, F. Pfeiffer, and S. Karsch, “Quick x-ray microtomography using a laser-driven betatron source,” Optica 5, 199–203 (2018).
[Crossref]

F. Pfeiffer, “X-ray ptychography,” Nat. Photonics 12, 9–17 (2018).
[Crossref]

P. Bidola, K. Morgan, M. Willner, A. Fehringer, S. Allner, F. Prade, F. Pfeiffer, and K. Achterhold, “Application of sensitive, high-resolution imaging at a commercial lab-based x-ray micro-ct system using propagation-based phase retrieval,” J. Microsc. 266, 211–220 (2017).
[Crossref]

I. Zanette, T. Zhou, A. Burvall, U. Lundström, D. H. Larsson, M. Zdora, P. Thibault, F. Pfeiffer, and H. M. Hertz, “Speckle-based x-ray phase-contrast and dark-field imaging with a laboratory source,” Phys. Rev. Lett. 112, 253903 (2014).
[Crossref]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref]

Pogany, A.

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative x-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207, 79–96 (2002).
[Crossref]

Prade, F.

P. Bidola, K. Morgan, M. Willner, A. Fehringer, S. Allner, F. Prade, F. Pfeiffer, and K. Achterhold, “Application of sensitive, high-resolution imaging at a commercial lab-based x-ray micro-ct system using propagation-based phase retrieval,” J. Microsc. 266, 211–220 (2017).
[Crossref]

Rau, C.

Rehbein, S.

L.-M. Stadler, C. Gutt, T. Autenrieth, O. Leupold, S. Rehbein, Y. Chushkin, and G. Grübel, “Hard x ray holographic diffraction imaging,” Phys. Rev. Lett. 100, 245503 (2008).
[Crossref]

Requena, G.

J. Kastner, B. Harrer, G. Requena, and O. Brunke, “A comparative study of high resolution cone beam x-ray tomography and synchrotron tomography applied to Fe- and Al-alloys,” NDT & E Int. 43, 599–605 (2010).
[Crossref]

Richardson, M. C.

Rick, R.

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, “Multiple reference Fourier transform holography with soft x rays,” Appl. Phys. Lett. 89, 163112 (2006).
[Crossref]

Robinson, I. K.

Rode, A. V.

Roszczynialski, T. P.

Sakdinawat, A.

A. Sakdinawat and D. Attwood, “Nanoscale x-ray imaging,” Nat. Photonics 4, 840–848 (2010).
[Crossref]

Sakdinawat, A. E.

S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. Chapman, M. Frank, S. P. Hau-Riege, A. Szöke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu, and M. M. Seibert, “Massively parallel x-ray holography,” Nat. Photonics 2, 560–563 (2008).
[Crossref]

Sala, M.

Salditt, T.

T. Salditt, S. Hoffmann, M. Vassholz, J. Haber, M. Osterhoff, and J. Hilhorst, “X-ray optics on a chip: guiding x rays in curved channels,” Phys. Rev. Lett. 115, 203902 (2015).
[Crossref]

K. Giewekemeyer, H. Neubauer, S. Kalbfleisch, S. P. Krüger, and T. Salditt, “Holographic and diffractive x-ray imaging using waveguides as quasi-point sources,” New J. Phys. 12, 035008 (2010).
[Crossref]

Sauerwein, C.

F. Nachtrab, T. Hofmann, C. Speier, J. Lučić, M. Firsching, N. Uhlmann, P. Takman, C. Heinzl, A. Holmberg, M. Krumm, and C. Sauerwein, “Development of a timepix based detector for the NanoXCT project,” J. Instrum. 10, C11009 (2015).
[Crossref]

Schaniel, D.

P. Alle, E. Wenger, S. Dahaoui, D. Schaniel, and C. Lecomte, “Comparison of CCD, CMOS and hybrid pixel x-ray detectors: detection principle and data quality,” Phys. Scripta 91, 063001 (2016).
[Crossref]

Schelokov, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[Crossref]

Scherz, A.

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, “Multiple reference Fourier transform holography with soft x rays,” Appl. Phys. Lett. 89, 163112 (2006).
[Crossref]

Schindler, S.

Schlenker, M.

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[Crossref]

Schlotter, W. F.

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, “Multiple reference Fourier transform holography with soft x rays,” Appl. Phys. Lett. 89, 163112 (2006).
[Crossref]

Seibert, M. M.

S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. Chapman, M. Frank, S. P. Hau-Riege, A. Szöke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu, and M. M. Seibert, “Massively parallel x-ray holography,” Nat. Photonics 2, 560–563 (2008).
[Crossref]

Shaevitz, J. W.

S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. Chapman, M. Frank, S. P. Hau-Riege, A. Szöke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu, and M. M. Seibert, “Massively parallel x-ray holography,” Nat. Photonics 2, 560–563 (2008).
[Crossref]

Shapiro, D. A.

S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. Chapman, M. Frank, S. P. Hau-Riege, A. Szöke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu, and M. M. Seibert, “Massively parallel x-ray holography,” Nat. Photonics 2, 560–563 (2008).
[Crossref]

Siegmund, W.

Snigirev, A.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[Crossref]

Snigireva, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[Crossref]

Sowa, K. M.

K. M. Sowa, A. Last, and P. Korecki, “Grid-enhanced x-ray coded aperture microscopy with polycapillary optics,” Sci. Rep. 7, 44944 (2017).
[Crossref]

P. Korecki, K. M. Sowa, B. R. Jany, and F. Krok, “Defect-assisted hard-x-ray microscopy with capillary optics,” Phys. Rev. Lett. 116, 233902 (2016).
[Crossref]

P. Korecki, T. P. Roszczynialski, and K. M. Sowa, “Simulation of image formation in x-ray coded aperture microscopy with polycapillary optics,” Opt. Express 23, 8749–8761 (2015).
[Crossref]

Speier, C.

F. Nachtrab, T. Hofmann, C. Speier, J. Lučić, M. Firsching, N. Uhlmann, P. Takman, C. Heinzl, A. Holmberg, M. Krumm, and C. Sauerwein, “Development of a timepix based detector for the NanoXCT project,” J. Instrum. 10, C11009 (2015).
[Crossref]

Speller, R. D.

Spence, J. C. H.

S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. Chapman, M. Frank, S. P. Hau-Riege, A. Szöke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu, and M. M. Seibert, “Massively parallel x-ray holography,” Nat. Photonics 2, 560–563 (2008).
[Crossref]

Stadler, L.-M.

L.-M. Stadler, C. Gutt, T. Autenrieth, O. Leupold, S. Rehbein, Y. Chushkin, and G. Grübel, “Hard x ray holographic diffraction imaging,” Phys. Rev. Lett. 100, 245503 (2008).
[Crossref]

Stankiewicz, M.

A. Wawrzyniak, A. Marendziak, A. Kisiel, P. Borowiec, R. Nietubyć, J. Wiechecki, K. Karas, K. Szamota-Leandersson, M. Zając, C. Bocchetta, and M. Stankiewicz, “Solaris a new class of low energy and high brightness light source,” Nucl. Instrum. Methods Phys. Res. B 411, 4–11 (2017).
[Crossref]

Stevenson, A. W.

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative x-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207, 79–96 (2002).
[Crossref]

T. E. Gureyev, S. Mayo, S. W. Wilkins, D. Paganin, and A. W. Stevenson, “Quantitative in-line phase-contrast imaging with multienergy x rays,” Phys. Rev. Lett. 86, 5827–5830 (2001).
[Crossref]

Stöhr, J.

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, “Multiple reference Fourier transform holography with soft x rays,” Appl. Phys. Lett. 89, 163112 (2006).
[Crossref]

Strack, R.

Suhonen, H.

E. Kosior, S. Bohic, H. Suhonen, R. Ortega, G. Devès, A. Carmona, F. Marchi, J. F. Guillet, and P. Cloetens, “Combined use of hard x-ray phase contrast imaging and x-ray fluorescence microscopy for sub-cellular metal quantification,” J. Struct. Biol. 177, 239–247 (2012).
[Crossref]

Sung, Y.

Y. Sung, L. Xu, V. Nagarkar, and R. Gupta, “Compressed x-ray phase-contrast imaging using a coded source,” Opt. Commun. 332, 370–378 (2014).
[Crossref]

Szamota-Leandersson, K.

A. Wawrzyniak, A. Marendziak, A. Kisiel, P. Borowiec, R. Nietubyć, J. Wiechecki, K. Karas, K. Szamota-Leandersson, M. Zając, C. Bocchetta, and M. Stankiewicz, “Solaris a new class of low energy and high brightness light source,” Nucl. Instrum. Methods Phys. Res. B 411, 4–11 (2017).
[Crossref]

Szöke, A.

S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. Chapman, M. Frank, S. P. Hau-Riege, A. Szöke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu, and M. M. Seibert, “Massively parallel x-ray holography,” Nat. Photonics 2, 560–563 (2008).
[Crossref]

Tahir, S.

S. Bashir, S. Tahir, C. MacDonald, and J. C. Petruccelli, “Phase imaging using focused polycapillary optics,” Opt. Commun. 369, 28–37 (2016).
[Crossref]

Takman, P.

F. Nachtrab, T. Hofmann, C. Speier, J. Lučić, M. Firsching, N. Uhlmann, P. Takman, C. Heinzl, A. Holmberg, M. Krumm, and C. Sauerwein, “Development of a timepix based detector for the NanoXCT project,” J. Instrum. 10, C11009 (2015).
[Crossref]

Thibault, P.

I. Zanette, T. Zhou, A. Burvall, U. Lundström, D. H. Larsson, M. Zdora, P. Thibault, F. Pfeiffer, and H. M. Hertz, “Speckle-based x-ray phase-contrast and dark-field imaging with a laboratory source,” Phys. Rev. Lett. 112, 253903 (2014).
[Crossref]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref]

Thiel, D. J.

D. H. Bilderback, S. A. Hoffman, and D. J. Thiel, “Nanometer spatial resolution achieved in hard x-ray imaging and Laue diffraction experiments,” Science 263, 201–203 (1994).
[Crossref]

Uhlmann, N.

F. Nachtrab, T. Hofmann, C. Speier, J. Lučić, M. Firsching, N. Uhlmann, P. Takman, C. Heinzl, A. Holmberg, M. Krumm, and C. Sauerwein, “Development of a timepix based detector for the NanoXCT project,” J. Instrum. 10, C11009 (2015).
[Crossref]

Vassholz, M.

T. Salditt, S. Hoffmann, M. Vassholz, J. Haber, M. Osterhoff, and J. Hilhorst, “X-ray optics on a chip: guiding x rays in curved channels,” Phys. Rev. Lett. 115, 203902 (2015).
[Crossref]

Vittoria, F. A.

Wagner, U. H.

Wawrzyniak, A.

A. Wawrzyniak, A. Marendziak, A. Kisiel, P. Borowiec, R. Nietubyć, J. Wiechecki, K. Karas, K. Szamota-Leandersson, M. Zając, C. Bocchetta, and M. Stankiewicz, “Solaris a new class of low energy and high brightness light source,” Nucl. Instrum. Methods Phys. Res. B 411, 4–11 (2017).
[Crossref]

Wenger, E.

P. Alle, E. Wenger, S. Dahaoui, D. Schaniel, and C. Lecomte, “Comparison of CCD, CMOS and hybrid pixel x-ray detectors: detection principle and data quality,” Phys. Scripta 91, 063001 (2016).
[Crossref]

Wenz, J.

Wiechecki, J.

A. Wawrzyniak, A. Marendziak, A. Kisiel, P. Borowiec, R. Nietubyć, J. Wiechecki, K. Karas, K. Szamota-Leandersson, M. Zając, C. Bocchetta, and M. Stankiewicz, “Solaris a new class of low energy and high brightness light source,” Nucl. Instrum. Methods Phys. Res. B 411, 4–11 (2017).
[Crossref]

Wilkins, S. W.

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative x-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207, 79–96 (2002).
[Crossref]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[Crossref]

T. E. Gureyev, S. Mayo, S. W. Wilkins, D. Paganin, and A. W. Stevenson, “Quantitative in-line phase-contrast imaging with multienergy x rays,” Phys. Rev. Lett. 86, 5827–5830 (2001).
[Crossref]

Willner, M.

P. Bidola, K. Morgan, M. Willner, A. Fehringer, S. Allner, F. Prade, F. Pfeiffer, and K. Achterhold, “Application of sensitive, high-resolution imaging at a commercial lab-based x-ray micro-ct system using propagation-based phase retrieval,” J. Microsc. 266, 211–220 (2017).
[Crossref]

Wrobel, A.

K. M. Dabrowski, D. T. Dul, A. Wrobel, and P. Korecki, “X-ray microlaminography with polycapillary optics,” Appl. Phys. Lett. 102, 224104 (2013).
[Crossref]

Xu, L.

Y. Sung, L. Xu, V. Nagarkar, and R. Gupta, “Compressed x-ray phase-contrast imaging using a coded source,” Opt. Commun. 332, 370–378 (2014).
[Crossref]

Zajac, M.

A. Wawrzyniak, A. Marendziak, A. Kisiel, P. Borowiec, R. Nietubyć, J. Wiechecki, K. Karas, K. Szamota-Leandersson, M. Zając, C. Bocchetta, and M. Stankiewicz, “Solaris a new class of low energy and high brightness light source,” Nucl. Instrum. Methods Phys. Res. B 411, 4–11 (2017).
[Crossref]

Zanette, I.

I. Zanette, T. Zhou, A. Burvall, U. Lundström, D. H. Larsson, M. Zdora, P. Thibault, F. Pfeiffer, and H. M. Hertz, “Speckle-based x-ray phase-contrast and dark-field imaging with a laboratory source,” Phys. Rev. Lett. 112, 253903 (2014).
[Crossref]

Zdora, M.

I. Zanette, T. Zhou, A. Burvall, U. Lundström, D. H. Larsson, M. Zdora, P. Thibault, F. Pfeiffer, and H. M. Hertz, “Speckle-based x-ray phase-contrast and dark-field imaging with a laboratory source,” Phys. Rev. Lett. 112, 253903 (2014).
[Crossref]

Zemlicka, J.

J. Karch, F. Krejci, B. Bartl, J. Dudak, J. Kuba, J. Kvacek, and J. Zemlicka, “High-contrast x-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel detector array of 10 × 5 timepix chips,” J. Instrum. 11, C01073 (2016).
[Crossref]

Zhou, T.

I. Zanette, T. Zhou, A. Burvall, U. Lundström, D. H. Larsson, M. Zdora, P. Thibault, F. Pfeiffer, and H. M. Hertz, “Speckle-based x-ray phase-contrast and dark-field imaging with a laboratory source,” Phys. Rev. Lett. 112, 253903 (2014).
[Crossref]

Annu. Rev. Mater. Res. (1)

C. A. MacDonald, “Structured x-ray optics for laboratory-based materials analysis,” Annu. Rev. Mater. Res. 47, 115–134 (2017).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, “Multiple reference Fourier transform holography with soft x rays,” Appl. Phys. Lett. 89, 163112 (2006).
[Crossref]

K. M. Dabrowski, D. T. Dul, A. Wrobel, and P. Korecki, “X-ray microlaminography with polycapillary optics,” Appl. Phys. Lett. 102, 224104 (2013).
[Crossref]

J. Instrum. (2)

J. Karch, F. Krejci, B. Bartl, J. Dudak, J. Kuba, J. Kvacek, and J. Zemlicka, “High-contrast x-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel detector array of 10 × 5 timepix chips,” J. Instrum. 11, C01073 (2016).
[Crossref]

F. Nachtrab, T. Hofmann, C. Speier, J. Lučić, M. Firsching, N. Uhlmann, P. Takman, C. Heinzl, A. Holmberg, M. Krumm, and C. Sauerwein, “Development of a timepix based detector for the NanoXCT project,” J. Instrum. 10, C11009 (2015).
[Crossref]

J. Microsc. (3)

P. Bidola, K. Morgan, M. Willner, A. Fehringer, S. Allner, F. Prade, F. Pfeiffer, and K. Achterhold, “Application of sensitive, high-resolution imaging at a commercial lab-based x-ray micro-ct system using propagation-based phase retrieval,” J. Microsc. 266, 211–220 (2017).
[Crossref]

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative x-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207, 79–96 (2002).
[Crossref]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[Crossref]

J. Phys. D (1)

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[Crossref]

J. Struct. Biol. (1)

E. Kosior, S. Bohic, H. Suhonen, R. Ortega, G. Devès, A. Carmona, F. Marchi, J. F. Guillet, and P. Cloetens, “Combined use of hard x-ray phase contrast imaging and x-ray fluorescence microscopy for sub-cellular metal quantification,” J. Struct. Biol. 177, 239–247 (2012).
[Crossref]

Nat. Photonics (4)

S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. Chapman, M. Frank, S. P. Hau-Riege, A. Szöke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu, and M. M. Seibert, “Massively parallel x-ray holography,” Nat. Photonics 2, 560–563 (2008).
[Crossref]

A. Sakdinawat and D. Attwood, “Nanoscale x-ray imaging,” Nat. Photonics 4, 840–848 (2010).
[Crossref]

H. N. Chapman and K. A. Nugent, “Coherent lensless x-ray imaging,” Nat. Photonics 4, 833–839 (2010).
[Crossref]

F. Pfeiffer, “X-ray ptychography,” Nat. Photonics 12, 9–17 (2018).
[Crossref]

Nature (2)

V. E. Cosslett and W. C. Nixon, “X-ray shadow microscope,” Nature 168, 24–25 (1951).
[Crossref]

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

NDT & E Int. (1)

J. Kastner, B. Harrer, G. Requena, and O. Brunke, “A comparative study of high resolution cone beam x-ray tomography and synchrotron tomography applied to Fe- and Al-alloys,” NDT & E Int. 43, 599–605 (2010).
[Crossref]

New J. Phys. (1)

K. Giewekemeyer, H. Neubauer, S. Kalbfleisch, S. P. Krüger, and T. Salditt, “Holographic and diffractive x-ray imaging using waveguides as quasi-point sources,” New J. Phys. 12, 035008 (2010).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

A. Wawrzyniak, A. Marendziak, A. Kisiel, P. Borowiec, R. Nietubyć, J. Wiechecki, K. Karas, K. Szamota-Leandersson, M. Zając, C. Bocchetta, and M. Stankiewicz, “Solaris a new class of low energy and high brightness light source,” Nucl. Instrum. Methods Phys. Res. B 411, 4–11 (2017).
[Crossref]

Opt. Commun. (2)

Y. Sung, L. Xu, V. Nagarkar, and R. Gupta, “Compressed x-ray phase-contrast imaging using a coded source,” Opt. Commun. 332, 370–378 (2014).
[Crossref]

S. Bashir, S. Tahir, C. MacDonald, and J. C. Petruccelli, “Phase imaging using focused polycapillary optics,” Opt. Commun. 369, 28–37 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Optica (1)

Philos. Mag. (1)

A. H. Compton, “Die Totalreflexion der Röntgenstrahlen,” Philos. Mag. 45, 1121–1131 (1923).
[Crossref]

Phys. Rep. (1)

M. Kumakhov and F. Komarov, “Multiple reflection from surface x-ray optics,” Phys. Rep. 191, 289–350 (1990).
[Crossref]

Phys. Rev. Lett. (5)

T. E. Gureyev, S. Mayo, S. W. Wilkins, D. Paganin, and A. W. Stevenson, “Quantitative in-line phase-contrast imaging with multienergy x rays,” Phys. Rev. Lett. 86, 5827–5830 (2001).
[Crossref]

P. Korecki, K. M. Sowa, B. R. Jany, and F. Krok, “Defect-assisted hard-x-ray microscopy with capillary optics,” Phys. Rev. Lett. 116, 233902 (2016).
[Crossref]

I. Zanette, T. Zhou, A. Burvall, U. Lundström, D. H. Larsson, M. Zdora, P. Thibault, F. Pfeiffer, and H. M. Hertz, “Speckle-based x-ray phase-contrast and dark-field imaging with a laboratory source,” Phys. Rev. Lett. 112, 253903 (2014).
[Crossref]

L.-M. Stadler, C. Gutt, T. Autenrieth, O. Leupold, S. Rehbein, Y. Chushkin, and G. Grübel, “Hard x ray holographic diffraction imaging,” Phys. Rev. Lett. 100, 245503 (2008).
[Crossref]

T. Salditt, S. Hoffmann, M. Vassholz, J. Haber, M. Osterhoff, and J. Hilhorst, “X-ray optics on a chip: guiding x rays in curved channels,” Phys. Rev. Lett. 115, 203902 (2015).
[Crossref]

Phys. Scripta (1)

P. Alle, E. Wenger, S. Dahaoui, D. Schaniel, and C. Lecomte, “Comparison of CCD, CMOS and hybrid pixel x-ray detectors: detection principle and data quality,” Phys. Scripta 91, 063001 (2016).
[Crossref]

Rev. Sci. Instrum. (1)

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[Crossref]

Sci. Rep. (1)

K. M. Sowa, A. Last, and P. Korecki, “Grid-enhanced x-ray coded aperture microscopy with polycapillary optics,” Sci. Rep. 7, 44944 (2017).
[Crossref]

Science (2)

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref]

D. H. Bilderback, S. A. Hoffman, and D. J. Thiel, “Nanometer spatial resolution achieved in hard x-ray imaging and Laue diffraction experiments,” Science 263, 201–203 (1994).
[Crossref]

Other (1)

D. Paganin, Coherent X-Ray Optics (Oxford University, 2006).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Principle and realization of multipoint-projection x-ray microscopy. (a) General concept of an x-ray optical device that realizes multipoint-projection x-ray microscopy with propagation-based multiplexing and demultiplexing (mux/demux); (b) schematic; (c) laboratory realization with two polycapillary devices and a thick laser-drilled multipinhole mask. For clarity, only one of several dozen capillary bundles is shown. The mask selects a sparse array of n1000 capillaries, which generates the secondary x-ray sources. Other capillaries (N>105) serve as a supporting matrix. (d)–(f) SEM images of the multipinhole mask (d) and input (e) and exit (f) surfaces of the concentrating optics. The inset in (d) shows a demagnified fragment, and the insets in (e) and (f) show magnified fragments of the underlying images. Scale bars: 10 μm.
Fig. 2.
Fig. 2. Multipoint-projection x-ray microscopy of a highly absorbing object. (a) Nearly one thousand-fold replicated shadow projections of the object (a single letter E ion-beam milled in a gold foil, which is shown in the inset) obtained using radiation from an x-ray tube with a mean energy of 9  keV; (b) higher-resolution image recorded with an HPD. Acquisition time: 180 s; (c) distribution of secondary sources obtained with a 0.5 μm diameter pinhole in the object plane; (d) multiple projections of the object for a short (10 s) acquisition time with only a few photons per detector pixel; (e) total image calculated as a simple sum over n=18 type c1 secondary sources from (c), which has a similar signal-to-noise ratio as individual object projections in (b); (f) resolution test; images of tungsten slits with various widths. In all the images, the geometrical magnification is M200, and pixel size is 300  nm.
Fig. 3.
Fig. 3. Propagation-based phase contrast in multipoint-projection x-ray microscopy. (a) Multiply-replicated phase-contrast projections or in-line holograms of a polystyrene sphere with a diameter of 8  μm. Acquisition time: 80 min. Color bar shows normalized intensity. (b) An image averaged over the multipoint projections; (c) field of view extension; image of the sphere stitched from 3×3 images showing a silicon cantilever to which the sphere was glued; (d) retrieved phase image. Scale bar: 5 μm.
Fig. 4.
Fig. 4. Several weakly absorbing objects imaged with multipoint-projection x-ray microscopy. Left, background normalized x-ray images; right, retrieved phase maps. Color bars in false color images show phase shifts in radians. (a) Carbon fiber with 8  μm diameter; (b) polystyrene spheres with diameters of 3  μm; (c) frustule of a diatom from diatomaceous earth; (d) dandelion (Taraxacum officinale) pollen grain. The geometrical magnification is M200, and the pixel size is 300  nm. Scale bars: 5 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

aexitw,

Metrics