Abstract

Backward stimulated Raman scattering in gases provides a promising route to the compression and amplification of a Stokes seed pulse by counter-propagating against a pump pulse, as has been demonstrated already in various platforms, mainly in free space. However, the dynamics governing this process when seeded by noise has not yet been investigated in a fully controllable collinear environment. Here we report, to the best of our knowledge, the first unambiguous observation of efficient noise-seeded backward stimulated Raman scattering in a hydrogen-filled hollow-core photonic crystal fiber. At high gas pressures, when the backward Raman gain is comparable to, but lower than, the forward gain, we report quantum conversion efficiencies exceeding 40% to the backward Stokes at 683 nm from a narrowband 532 nm pump. Efficiency increases to 65% when the backward process is seeded by a small amount of back-reflected forward-generated Stokes light. At high pump powers, the backward Stokes signal, emitted in a clean fundamental mode and spectrally pure, is unexpectedly always stronger than its forward-propagating counterpart. We attribute this striking observation to the unique temporal dynamics of the interacting fields, which cause the Raman coherence (which takes the form of a moving fine-period Bragg grating) to grow in strength toward the input end of the fiber. A good understanding of this process, together with the rapid development of novel anti-resonant-guiding hollow-core fibers, may lead to improved designs of efficient gas-based Raman lasers and amplifiers operating at wavelengths from the ultraviolet to the mid-infrared.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber

M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. St. J. Russell
J. Opt. Soc. Am. B 29(7) 1563-1568 (2012)

Manipulation of coherent Stokes light by transient stimulated Raman scattering in gas filled hollow-core PCF

A. V. Chugreev, A. Nazarkin, A. Abdolvand, J. Nold, A. Podlipensky, and P. St.J. Russell
Opt. Express 17(11) 8822-8829 (2009)

Efficient anti-Stokes generation via intermodal stimulated Raman scattering in gas-filled hollow-core PCF

B. M. Trabold, A. Abdolvand, T. G. Euser, and P. St.J. Russell
Opt. Express 21(24) 29711-29718 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Jacobs, J. Goldhar, D. Eimerl, S. B. Brown, and J. R. Murray, “High‐efficiency energy extraction in backward‐wave Raman scattering,” Appl. Phys. Lett. 37, 264–266 (1980).
    [Crossref]
  2. J. R. Murray, J. Goldhar, D. Eimerl, and A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. 15, 342–368 (1979).
    [Crossref]
  3. M. Maier, W. Kaiser, and J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580–599 (1969).
    [Crossref]
  4. J. O. White, “High-efficiency backward Stokes Raman conversion in deuterium,” J. Opt. Soc. Am. B 7, 785–789 (1990).
    [Crossref]
  5. V. V. Akulinichev, V. A. Gorbunov, and E. G. Pivinskii, “Competition between forward and backward stimulated Raman scattering in gases,” Quantum Electron. 27, 427–432 (1997).
    [Crossref]
  6. K. Sentrayan, A. Michael, and V. Kushawaha, “Intense backward Raman lasers in CH4 and H2,” Appl. Opt. 32, 930–934 (1993).
    [Crossref]
  7. G. I. Kachen and W. H. Lowdermilk, “Relaxation oscillations in stimulated Raman scattering,” Phys. Rev. A 16, 1657–1664 (1977).
    [Crossref]
  8. P. Rabinowitz, A. Kaldor, R. Brickman, and W. Schmidt, “Waveguide H2 Raman laser,” Appl. Opt. 15, 2005–2006 (1976).
    [Crossref]
  9. A. J. Berry, D. C. Hanna, and D. B. Hearn, “Low threshold operation of a waveguide H2 Raman laser,” Opt. Commun. 43, 229–232 (1982).
    [Crossref]
  10. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
    [Crossref]
  11. P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
    [Crossref]
  12. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
    [Crossref]
  13. S. T. Bauerschmidt, D. Novoa, A. Abdolvand, and P. St.J. Russell, “Broadband-tunable LP01 mode frequency shifting by Raman coherence waves in a H2-filled hollow-core photonic crystal fiber,” Optica 2, 536–539 (2015).
    [Crossref]
  14. A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St.J. Russell, “Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers,” Phys. Rev. Lett. 103, 183902 (2009).
    [Crossref]
  15. S. T. Bauerschmidt, D. Novoa, and P. St.J. Russell, “Dramatic Raman gain suppression in the vicinity of the zero dispersion point in gas-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 115, 243901 (2015).
    [Crossref]
  16. M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. St.J. Russell, “Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” J. Opt. Soc. Am. B 29, 1563–1568 (2012).
    [Crossref]
  17. I. V. Tomov, R. Fedosejevs, D. C. D. McKen, C. Domier, and A. A. Offenberger, “Phase conjugation and pulse compression of KrF-laser radiation by stimulated Raman scattering,” Opt. Lett. 8, 9–11 (1983).
    [Crossref]
  18. J. R. Murray and A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
    [Crossref]
  19. W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
    [Crossref]
  20. W. K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B 3, 677–682 (1986).
    [Crossref]
  21. K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, “Self-induced phase matching in parametric anti-Stokes stimulated Raman scattering,” Phys. Rev. Lett. 79, 209–212 (1997).
    [Crossref]
  22. S. E. Harris and A. V. Sokolov, “Subfemtosecond pulse generation by molecular modulation,” Phys. Rev. Lett. 81, 2894–2897 (1998).
    [Crossref]
  23. A. V. Sokolov, D. D. Yavuz, and S. E. Harris, “Subfemtosecond pulse generation by rotational molecular modulation,” Opt. Lett. 24, 557–559 (1999).
    [Crossref]
  24. M. K. Mridha, D. Novoa, S. T. Bauerschmidt, A. Abdolvand, and P. St.J. Russell, “Generation of a vacuum ultraviolet to visible Raman frequency comb in H2-filled kagomé photonic crystal fiber,” Opt. Lett. 41, 2811–2814 (2016).
    [Crossref]
  25. C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photon. 9, 504–561 (2017).
    [Crossref]
  26. M. Cassataro, D. Novoa, M. C. Günendi, N. N. Edavalath, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF,” Opt. Express 25, 7637–7644 (2017).
    [Crossref]
  27. F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. St.J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015).
    [Crossref]
  28. A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47, 1078–1082 (2017).
    [Crossref]
  29. A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
    [Crossref]
  30. A. Benoît, B. Beaudou, M. Alharbi, B. Debord, F. Gérôme, F. Salin, and F. Benabid, “Over-five octaves wide Raman combs in high-power picosecond-laser pumped H2-filled inhibited coupling Kagome fiber,” Opt. Express 23, 14002–14009 (2015).
    [Crossref]
  31. N. J. Fisch and V. M. Malkin, “Generation of ultrahigh intensity laser pulses,” Phys. Plasmas 10, 2056–2063 (2003).
    [Crossref]

2017 (4)

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photon. 9, 504–561 (2017).
[Crossref]

M. Cassataro, D. Novoa, M. C. Günendi, N. N. Edavalath, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF,” Opt. Express 25, 7637–7644 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47, 1078–1082 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

2016 (1)

2015 (4)

2014 (1)

P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

2012 (1)

2009 (1)

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St.J. Russell, “Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers,” Phys. Rev. Lett. 103, 183902 (2009).
[Crossref]

2007 (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

2003 (1)

N. J. Fisch and V. M. Malkin, “Generation of ultrahigh intensity laser pulses,” Phys. Plasmas 10, 2056–2063 (2003).
[Crossref]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

1999 (1)

1998 (1)

S. E. Harris and A. V. Sokolov, “Subfemtosecond pulse generation by molecular modulation,” Phys. Rev. Lett. 81, 2894–2897 (1998).
[Crossref]

1997 (2)

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, “Self-induced phase matching in parametric anti-Stokes stimulated Raman scattering,” Phys. Rev. Lett. 79, 209–212 (1997).
[Crossref]

V. V. Akulinichev, V. A. Gorbunov, and E. G. Pivinskii, “Competition between forward and backward stimulated Raman scattering in gases,” Quantum Electron. 27, 427–432 (1997).
[Crossref]

1993 (1)

1990 (1)

1986 (2)

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
[Crossref]

W. K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B 3, 677–682 (1986).
[Crossref]

1983 (1)

1982 (1)

A. J. Berry, D. C. Hanna, and D. B. Hearn, “Low threshold operation of a waveguide H2 Raman laser,” Opt. Commun. 43, 229–232 (1982).
[Crossref]

1980 (1)

R. R. Jacobs, J. Goldhar, D. Eimerl, S. B. Brown, and J. R. Murray, “High‐efficiency energy extraction in backward‐wave Raman scattering,” Appl. Phys. Lett. 37, 264–266 (1980).
[Crossref]

1979 (1)

J. R. Murray, J. Goldhar, D. Eimerl, and A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. 15, 342–368 (1979).
[Crossref]

1977 (1)

G. I. Kachen and W. H. Lowdermilk, “Relaxation oscillations in stimulated Raman scattering,” Phys. Rev. A 16, 1657–1664 (1977).
[Crossref]

1976 (1)

1972 (1)

J. R. Murray and A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[Crossref]

1969 (1)

M. Maier, W. Kaiser, and J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580–599 (1969).
[Crossref]

Abdolvand, A.

Akulinichev, V. V.

V. V. Akulinichev, V. A. Gorbunov, and E. G. Pivinskii, “Competition between forward and backward stimulated Raman scattering in gases,” Quantum Electron. 27, 427–432 (1997).
[Crossref]

Alharbi, M.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

Astapovich, M. S.

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47, 1078–1082 (2017).
[Crossref]

Bauerschmidt, S. T.

Beaudou, B.

Belli, F.

Benabid, F.

A. Benoît, B. Beaudou, M. Alharbi, B. Debord, F. Gérôme, F. Salin, and F. Benabid, “Over-five octaves wide Raman combs in high-power picosecond-laser pumped H2-filled inhibited coupling Kagome fiber,” Opt. Express 23, 14002–14009 (2015).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

Benoît, A.

Berry, A. J.

A. J. Berry, D. C. Hanna, and D. B. Hearn, “Low threshold operation of a waveguide H2 Raman laser,” Opt. Commun. 43, 229–232 (1982).
[Crossref]

Biriukov, A. S.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

Bischel, W. K.

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
[Crossref]

W. K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B 3, 677–682 (1986).
[Crossref]

Brickman, R.

Brown, S. B.

R. R. Jacobs, J. Goldhar, D. Eimerl, S. B. Brown, and J. R. Murray, “High‐efficiency energy extraction in backward‐wave Raman scattering,” Appl. Phys. Lett. 37, 264–266 (1980).
[Crossref]

Bufetov, I. A.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47, 1078–1082 (2017).
[Crossref]

Cassataro, M.

Chang, W.

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. St.J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015).
[Crossref]

P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Chugreev, A. V.

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St.J. Russell, “Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers,” Phys. Rev. Lett. 103, 183902 (2009).
[Crossref]

Couny, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

Debord, B.

Dianov, E. M.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

Domier, C.

Dyer, M. J.

W. K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B 3, 677–682 (1986).
[Crossref]

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
[Crossref]

Edavalath, N. N.

Eimerl, D.

R. R. Jacobs, J. Goldhar, D. Eimerl, S. B. Brown, and J. R. Murray, “High‐efficiency energy extraction in backward‐wave Raman scattering,” Appl. Phys. Lett. 37, 264–266 (1980).
[Crossref]

J. R. Murray, J. Goldhar, D. Eimerl, and A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. 15, 342–368 (1979).
[Crossref]

Fedosejevs, R.

Fisch, N. J.

N. J. Fisch and V. M. Malkin, “Generation of ultrahigh intensity laser pulses,” Phys. Plasmas 10, 2056–2063 (2003).
[Crossref]

Frosz, M. H.

Gérôme, F.

Giordmaine, J. A.

M. Maier, W. Kaiser, and J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580–599 (1969).
[Crossref]

Gladyshev, A. V.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47, 1078–1082 (2017).
[Crossref]

Goldhar, J.

R. R. Jacobs, J. Goldhar, D. Eimerl, S. B. Brown, and J. R. Murray, “High‐efficiency energy extraction in backward‐wave Raman scattering,” Appl. Phys. Lett. 37, 264–266 (1980).
[Crossref]

J. R. Murray, J. Goldhar, D. Eimerl, and A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. 15, 342–368 (1979).
[Crossref]

Gorbunov, V. A.

V. V. Akulinichev, V. A. Gorbunov, and E. G. Pivinskii, “Competition between forward and backward stimulated Raman scattering in gases,” Quantum Electron. 27, 427–432 (1997).
[Crossref]

Günendi, M. C.

Hakuta, K.

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, “Self-induced phase matching in parametric anti-Stokes stimulated Raman scattering,” Phys. Rev. Lett. 79, 209–212 (1997).
[Crossref]

Hanna, D. C.

A. J. Berry, D. C. Hanna, and D. B. Hearn, “Low threshold operation of a waveguide H2 Raman laser,” Opt. Commun. 43, 229–232 (1982).
[Crossref]

Harris, S. E.

A. V. Sokolov, D. D. Yavuz, and S. E. Harris, “Subfemtosecond pulse generation by rotational molecular modulation,” Opt. Lett. 24, 557–559 (1999).
[Crossref]

S. E. Harris and A. V. Sokolov, “Subfemtosecond pulse generation by molecular modulation,” Phys. Rev. Lett. 81, 2894–2897 (1998).
[Crossref]

Hearn, D. B.

A. J. Berry, D. C. Hanna, and D. B. Hearn, “Low threshold operation of a waveguide H2 Raman laser,” Opt. Commun. 43, 229–232 (1982).
[Crossref]

Hölzer, P.

P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Hu, J.

Jacobs, R. R.

R. R. Jacobs, J. Goldhar, D. Eimerl, S. B. Brown, and J. R. Murray, “High‐efficiency energy extraction in backward‐wave Raman scattering,” Appl. Phys. Lett. 37, 264–266 (1980).
[Crossref]

Javan, A.

J. R. Murray and A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[Crossref]

Kachen, G. I.

G. I. Kachen and W. H. Lowdermilk, “Relaxation oscillations in stimulated Raman scattering,” Phys. Rev. A 16, 1657–1664 (1977).
[Crossref]

Kaiser, W.

M. Maier, W. Kaiser, and J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580–599 (1969).
[Crossref]

Kaldor, A.

Kaminski, C. F.

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St.J. Russell, “Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers,” Phys. Rev. Lett. 103, 183902 (2009).
[Crossref]

Katsuragawa, M.

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, “Self-induced phase matching in parametric anti-Stokes stimulated Raman scattering,” Phys. Rev. Lett. 79, 209–212 (1997).
[Crossref]

Khudyakov, M. M.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

Kolyadin, A. N.

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47, 1078–1082 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

Kosolapov, A. F.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47, 1078–1082 (2017).
[Crossref]

Krylov, A. A.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

Kushawaha, V.

Li, J. Z.

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, “Self-induced phase matching in parametric anti-Stokes stimulated Raman scattering,” Phys. Rev. Lett. 79, 209–212 (1997).
[Crossref]

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

Likhachev, M. E.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47, 1078–1082 (2017).
[Crossref]

Lowdermilk, W. H.

G. I. Kachen and W. H. Lowdermilk, “Relaxation oscillations in stimulated Raman scattering,” Phys. Rev. A 16, 1657–1664 (1977).
[Crossref]

Maier, M.

M. Maier, W. Kaiser, and J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580–599 (1969).
[Crossref]

Malkin, V. M.

N. J. Fisch and V. M. Malkin, “Generation of ultrahigh intensity laser pulses,” Phys. Plasmas 10, 2056–2063 (2003).
[Crossref]

McKen, D. C. D.

Menyuk, C. R.

Michael, A.

Mridha, M. K.

Murray, J. R.

R. R. Jacobs, J. Goldhar, D. Eimerl, S. B. Brown, and J. R. Murray, “High‐efficiency energy extraction in backward‐wave Raman scattering,” Appl. Phys. Lett. 37, 264–266 (1980).
[Crossref]

J. R. Murray, J. Goldhar, D. Eimerl, and A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. 15, 342–368 (1979).
[Crossref]

J. R. Murray and A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[Crossref]

Nazarkin, A.

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St.J. Russell, “Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers,” Phys. Rev. Lett. 103, 183902 (2009).
[Crossref]

Novoa, D.

Offenberger, A. A.

Pivinskii, E. G.

V. V. Akulinichev, V. A. Gorbunov, and E. G. Pivinskii, “Competition between forward and backward stimulated Raman scattering in gases,” Quantum Electron. 27, 427–432 (1997).
[Crossref]

Pryamikov, A. D.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47, 1078–1082 (2017).
[Crossref]

Rabinowitz, P.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

Roberts, P. J.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

Russell, P. St.J.

M. Cassataro, D. Novoa, M. C. Günendi, N. N. Edavalath, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF,” Opt. Express 25, 7637–7644 (2017).
[Crossref]

M. K. Mridha, D. Novoa, S. T. Bauerschmidt, A. Abdolvand, and P. St.J. Russell, “Generation of a vacuum ultraviolet to visible Raman frequency comb in H2-filled kagomé photonic crystal fiber,” Opt. Lett. 41, 2811–2814 (2016).
[Crossref]

S. T. Bauerschmidt, D. Novoa, A. Abdolvand, and P. St.J. Russell, “Broadband-tunable LP01 mode frequency shifting by Raman coherence waves in a H2-filled hollow-core photonic crystal fiber,” Optica 2, 536–539 (2015).
[Crossref]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. St.J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015).
[Crossref]

S. T. Bauerschmidt, D. Novoa, and P. St.J. Russell, “Dramatic Raman gain suppression in the vicinity of the zero dispersion point in gas-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 115, 243901 (2015).
[Crossref]

P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. St.J. Russell, “Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” J. Opt. Soc. Am. B 29, 1563–1568 (2012).
[Crossref]

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St.J. Russell, “Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers,” Phys. Rev. Lett. 103, 183902 (2009).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

Salin, F.

Schmidt, W.

Sentrayan, K.

Sokolov, A. V.

A. V. Sokolov, D. D. Yavuz, and S. E. Harris, “Subfemtosecond pulse generation by rotational molecular modulation,” Opt. Lett. 24, 557–559 (1999).
[Crossref]

S. E. Harris and A. V. Sokolov, “Subfemtosecond pulse generation by molecular modulation,” Phys. Rev. Lett. 81, 2894–2897 (1998).
[Crossref]

Suzuki, M.

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, “Self-induced phase matching in parametric anti-Stokes stimulated Raman scattering,” Phys. Rev. Lett. 79, 209–212 (1997).
[Crossref]

Szoke, A.

J. R. Murray, J. Goldhar, D. Eimerl, and A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. 15, 342–368 (1979).
[Crossref]

Tomov, I. V.

Travers, J. C.

Walser, A. M.

Wei, C.

Weiblen, R. J.

White, J. O.

Yatsenko, Y. P.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

Yavuz, D. D.

Ziemienczuk, M.

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. R. Jacobs, J. Goldhar, D. Eimerl, S. B. Brown, and J. R. Murray, “High‐efficiency energy extraction in backward‐wave Raman scattering,” Appl. Phys. Lett. 37, 264–266 (1980).
[Crossref]

IEEE J. Quantum Electron. (1)

J. R. Murray, J. Goldhar, D. Eimerl, and A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. 15, 342–368 (1979).
[Crossref]

J. Mol. Spectrosc. (1)

J. R. Murray and A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[Crossref]

J. Opt. Soc. Am. B (3)

Nat. Photonics (1)

P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Opt. Commun. (1)

A. J. Berry, D. C. Hanna, and D. B. Hearn, “Low threshold operation of a waveguide H2 Raman laser,” Opt. Commun. 43, 229–232 (1982).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Optica (2)

Phys. Plasmas (1)

N. J. Fisch and V. M. Malkin, “Generation of ultrahigh intensity laser pulses,” Phys. Plasmas 10, 2056–2063 (2003).
[Crossref]

Phys. Rev. (1)

M. Maier, W. Kaiser, and J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580–599 (1969).
[Crossref]

Phys. Rev. A (2)

G. I. Kachen and W. H. Lowdermilk, “Relaxation oscillations in stimulated Raman scattering,” Phys. Rev. A 16, 1657–1664 (1977).
[Crossref]

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
[Crossref]

Phys. Rev. Lett. (4)

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St.J. Russell, “Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers,” Phys. Rev. Lett. 103, 183902 (2009).
[Crossref]

S. T. Bauerschmidt, D. Novoa, and P. St.J. Russell, “Dramatic Raman gain suppression in the vicinity of the zero dispersion point in gas-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 115, 243901 (2015).
[Crossref]

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, “Self-induced phase matching in parametric anti-Stokes stimulated Raman scattering,” Phys. Rev. Lett. 79, 209–212 (1997).
[Crossref]

S. E. Harris and A. V. Sokolov, “Subfemtosecond pulse generation by molecular modulation,” Phys. Rev. Lett. 81, 2894–2897 (1998).
[Crossref]

Quantum Electron. (3)

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47, 1078–1082 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

V. V. Akulinichev, V. A. Gorbunov, and E. G. Pivinskii, “Competition between forward and backward stimulated Raman scattering in gases,” Quantum Electron. 27, 427–432 (1997).
[Crossref]

Science (2)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Sketch of (a) the experimental setup and (b) the arrangement of photodiodes for time-resolved measurements. (c) SEMs of the fibers used in the experiments with core diameters of 47  μm (Fiber 1) and 22  μm (Fiber 2). L, lens; M, mirror; DM, dichroic mirror; FM, flip mirror; PD, photodiode; OSA, optical spectrum analyzer; DSO, digital storage oscilloscope.
Fig. 2.
Fig. 2. [(a), (b)] Experimental and [(c), (d)] simulated temporal profiles of the generated sidebands for the FIFO (left) and FIAO (right) configurations in Fiber 1 filled with 38 bar of H2. The measured energies for the initial pump (IP), residual pump (RP), first forward Stokes (FS), and backward Stokes (BS) are indicated in the panels.
Fig. 3.
Fig. 3. Temporal profiles of Raman sidebands when 58 μJ of pump pulse energy is launched into a 14-cm-long Fiber 1, filled with 38 bar of H2. We selected an AIFO configuration to enhance self-seeding. We see how at sufficiently high pump energies, BSRS overtakes FSRS.
Fig. 4.
Fig. 4. (a) Experimental and (b) simulated output energies of residual pump, and backward and forward Stokes signals with increasing pump energy. Fiber 2 was filled with 38 bar of H2 in FIAO. The residual pump energy was not recorded for pump energies below 4 μJ. The region enclosed by a black box in (a) is shown in (c). The colored circles in (c) are data taken from experiments in the FIFO configuration. (d) Measured temporal profiles for pump energy of 5.3 μJ. The solid and dashed lines represent, respectively, the FIAO and FIFO configurations. IP, initial pump; RP, residual pump; FS, first forward Stokes signal; BS, backward Stokes signal.
Fig. 5.
Fig. 5. Spectrum of (a) the forward and (b) the backward-propagating pulses normalized to the first vibrational Stokes signal. A pump pulse of 24  μJ was launched into Fiber 2 in the FIAO configuration. The forward spectrum (a) consists of a hybrid ro-vibrational Raman comb. The shaded regions enclose the rotational lines for the respective pump or vibrational line. In sharp contrast, the backward spectrum (b) is very simple, containing only the vibrational backward Stokes (BS) and a small fraction of scattered pump. The upper inset in panel (b) is a far-field image of the BS signal imaged with a CCD camera and the lower inset is a photograph of the BS signal cast onto a screen.
Fig. 6.
Fig. 6. Dispersion diagram for the forward and backward LP01-like modes of the HC-PCF. The solid blue arrows represent the coherence waves involved in the various different SRS transitions. Backward anti-Stokes generation is very strongly dephased, as expected. FSRS is also dephased, but by a much smaller degree (too small to be seen on the plot). See text for more details.
Fig. 7.
Fig. 7. Simulated spatio-temporal evolution of (a) the pump, (b) forward Stokes, and (c) backward Stokes signals in FIFO configuration. The simulation parameters correspond to those used in Fig. 2(c). The dashed horizontal lines mark the time when the backward Stokes signal attains its peak intensity. Note that the spatial scale inside the fiber is magnified for clarity.
Fig. 8.
Fig. 8. Simulated spatio-temporal evolution of the forward and backward coherence waves. The parameters correspond to those used in Figs. 2(c) and 7. In spite of the lower overall Raman gain, the peak strength of the backward coherence is more than double that of the forward coherence.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δνrf=309ρ+51.8ρ,
γf=9.37×106(52ρ/Δνrf)(KB/0.658)×(νP4155)(7.19×109νP2)2,
CwSq=(ββSq,ΩR),CwASq=(βASqβ,ΩR).

Metrics