Abstract

Fresnel reflection at the boundary between two media of differing refractive indices is a major contributing factor to the overall loss in mid-infrared optical systems based on high-index materials such as chalcogenide glasses. In this paper, we present a study of broadband antireflective moth-eye structures directly nanoimprinted on the surfaces of arsenic triselenide (As2Se3)-based optical windows. Using rigorous coupled-wave analysis, we identify a relief design optimized for high transmittance (<1% reflectance) at 6 μm, which when nanoimprinted features a transmittance improvement (ΔT>12%) in the 5.9–7.3 μm spectral range as well as improved omnidirectional properties. Finally, we demonstrate the adaptability of nanoimprinted surface reliefs by tailoring the nanostructure pitch and height, achieving both extremely broadband antireflective and highly efficient antireflective surface reliefs. The results and methods presented herein provide an efficient and scalable solution for improving the transmission of bulk optics, waveguides, and photonic devices in the mid-infrared.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures

Young Min Song, Yonkil Jeong, Chan Il Yeo, and Yong Tak Lee
Opt. Express 20(S6) A916-A923 (2012)

Broadband antireflection film with moth-eye-like structure for flexible display applications

Guanjun Tan, Jiun-Haw Lee, Yi-Hsin Lan, Mao-Kuo Wei, Lung-Han Peng, I-Chun Cheng, and Shin-Tson Wu
Optica 4(7) 678-683 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Frerichs, “New optical glasses with good transparency in the infrared,” J. Opt. Soc. Am. 43, 1153–1157 (1953).
    [Crossref]
  2. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
    [Crossref]
  3. T. Wang, X. Gai, W. H. Wei, R. P. Wang, Z. Y. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4, 1011–1022 (2014).
    [Crossref]
  4. X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326, 519–523 (2003).
    [Crossref]
  5. B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” in Conference on Window and Dome Technologies and Materials XII, Orlando, Florida (2011).
  6. D. H. Cha, H. J. Kim, Y. Hwang, J. C. Jeong, and J. H. Kim, “Fabrication of molded chalcogenide-glass lens for thermal imaging applications,” Appl. Opt. 51, 5649–5656 (2012).
    [Crossref]
  7. B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
    [Crossref]
  8. A. B. Seddon, N. S. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53, 071824 (2014).
    [Crossref]
  9. M. D. Pelusi, V. G. Ta’eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14, 529–539 (2008).
    [Crossref]
  10. V. G. Ta’eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007).
    [Crossref]
  11. B. Zhang, Y. Yu, C. C. Zhai, S. S. Qi, Y. W. Wang, A. P. Yang, X. Gai, R. P. Wang, Z. Y. Yang, and B. Luther-Davies, “High brightness 2.2–12  μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99, 2565–2568 (2016).
    [Crossref]
  12. C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  13. Z. M. Zhao, B. Wu, X. S. Wang, Z. H. Pan, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum covering 2.0–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
    [Crossref]
  14. C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Troles, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25, 15336–15347 (2017).
    [Crossref]
  15. T. L. Cheng, K. Nagasaka, T. H. Tuan, X. J. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1  μm in a chalcogenide step-index fiber,” Opt. Lett. 41, 2117–2120 (2016).
    [Crossref]
  16. G. Steinmeyer and J. S. Skibina, “Supercontinua entering the mid-infrared,” Nat. Photonics 8, 814–815 (2014).
    [Crossref]
  17. Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, L. Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49, 237 (2017).
    [Crossref]
  18. R. J. Weiblen, C. R. Menyuk, L. E. Busse, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Optimized moth-eye anti-reflective structures for As2S3 chalcogenide optical fibers,” Opt. Express 24, 10172–10187 (2016).
    [Crossref]
  19. J. Sanghera, C. Florea, L. Busse, B. Shaw, F. Miklos, and I. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18, 26760–26768 (2010).
    [Crossref]
  20. E. Brinley, S. Seal, R. Folks, E. Braunstein, and L. Kramer, “High efficiency SiO2-TiO2 hybrid sol-gel antireflective coating for infrared applications,” J. Vac. Sci. Technol. A 24, 1141–1146 (2006).
    [Crossref]
  21. S. Shabahang, F. A. Tan, J. D. Perlstein, G. Tao, O. Alvarez, F. Chenard, A. Sincore, L. Shah, M. C. Richardson, K. L. Schepler, and A. F. Abouraddy, “Robust multimaterial chalcogenide fibers produced by a hybrid fiber-fabrication process,” Opt. Mater. Express 7, 2336–2345 (2017).
    [Crossref]
  22. I. Kubat, C. R. Petersen, U. V. Moller, A. Seddon, T. Benson, L. Brilland, D. Mechin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
    [Crossref]
  23. C. R. Petersen, P. M. Moselund, C. Petersen, U. Moller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24, 749–758 (2016).
    [Crossref]
  24. G. J. Tan, J. H. Lee, Y. H. Lan, M. K. Wei, L. H. Peng, I. C. Cheng, and S. T. Wu, “Broadband antireflection film with moth-eye-like structure for flexible display applications,” Optica 4, 678–683 (2017).
    [Crossref]
  25. D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” in Conference on Window and Dome Technologies and Materials X, Orlando, Florida (2007).
  26. D. S. Hobbs, “Laser damage threshold measurements of anti-reflection microstructures operating in the near UV and mid-infrared,” in 42nd Annual Laser Damage Symposium, Boulder, Colorado (2010).
  27. M. Silvennoinen, K. Paivasaari, J. J. J. Kaakkunen, V. K. Tikhomirov, A. Lehmuskero, P. Vahimaa, and V. V. Moshchalkov, “Imprinting the nanostructures on the high refractive index semiconductor glass,” Appl. Surf. Sci. 257, 6829–6832 (2011).
    [Crossref]
  28. P. F. Ostergaard, J. Lopacinska-Jorgensen, J. N. Pedersen, N. Tommerup, A. Kristensen, H. Flyvbjerg, A. Silahtaroglu, R. Marie, and R. Taboryski, “Optical mapping of single-molecule human DNA in disposable, mass-produced all-polymer devices,” J. Micromech. Microeng. 25, 105002 (2015).
    [Crossref]
  29. Amorphous Materials Inc., “AMTIR-2 data sheet,” http://www.amorphousmaterials.com (accessed April 20, 2018).
  30. Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
    [Crossref]
  31. K. Han and C. H. Chang, “Numerical modeling of sub-wavelength anti-reflective structures for solar module applications,” Nanomaterials 4, 87–128 (2014).
    [Crossref]
  32. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A 8, 549–553 (1991).
    [Crossref]
  33. T. Kohoutek, J. Orava, A. L. Greer, and H. Fudouzi, “Sub-micrometer soft lithography of a bulk chalcogenide glass,” Opt. Express 21, 9584–9591 (2013).
    [Crossref]
  34. J. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33, 2500–2502 (2008).
    [Crossref]
  35. J. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18, 1469–1478 (2010).
    [Crossref]
  36. J. Yeom, Y. Wu, J. C. Selby, and M. A. Shannon, “Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect,” J. Vac. Sci. Technol. B 23, 2319–2329 (2005).
    [Crossref]
  37. S. Antipov, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “High-power mid-infrared femtosecond fiber laser in the water vapor transmission window,” Optica 3, 1373–1376 (2016).
    [Crossref]
  38. R. I. Woodward, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Generation of 70-fs pulses at 2.86  μm from a mid-infrared fiber laser,” Opt. Lett. 42, 4893–4896 (2017).
    [Crossref]

2017 (6)

Z. M. Zhao, B. Wu, X. S. Wang, Z. H. Pan, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum covering 2.0–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Troles, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25, 15336–15347 (2017).
[Crossref]

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, L. Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49, 237 (2017).
[Crossref]

S. Shabahang, F. A. Tan, J. D. Perlstein, G. Tao, O. Alvarez, F. Chenard, A. Sincore, L. Shah, M. C. Richardson, K. L. Schepler, and A. F. Abouraddy, “Robust multimaterial chalcogenide fibers produced by a hybrid fiber-fabrication process,” Opt. Mater. Express 7, 2336–2345 (2017).
[Crossref]

G. J. Tan, J. H. Lee, Y. H. Lan, M. K. Wei, L. H. Peng, I. C. Cheng, and S. T. Wu, “Broadband antireflection film with moth-eye-like structure for flexible display applications,” Optica 4, 678–683 (2017).
[Crossref]

R. I. Woodward, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Generation of 70-fs pulses at 2.86  μm from a mid-infrared fiber laser,” Opt. Lett. 42, 4893–4896 (2017).
[Crossref]

2016 (5)

2015 (1)

P. F. Ostergaard, J. Lopacinska-Jorgensen, J. N. Pedersen, N. Tommerup, A. Kristensen, H. Flyvbjerg, A. Silahtaroglu, R. Marie, and R. Taboryski, “Optical mapping of single-molecule human DNA in disposable, mass-produced all-polymer devices,” J. Micromech. Microeng. 25, 105002 (2015).
[Crossref]

2014 (8)

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

K. Han and C. H. Chang, “Numerical modeling of sub-wavelength anti-reflective structures for solar module applications,” Nanomaterials 4, 87–128 (2014).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

I. Kubat, C. R. Petersen, U. V. Moller, A. Seddon, T. Benson, L. Brilland, D. Mechin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref]

G. Steinmeyer and J. S. Skibina, “Supercontinua entering the mid-infrared,” Nat. Photonics 8, 814–815 (2014).
[Crossref]

T. Wang, X. Gai, W. H. Wei, R. P. Wang, Z. Y. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4, 1011–1022 (2014).
[Crossref]

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

A. B. Seddon, N. S. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53, 071824 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (2)

M. Silvennoinen, K. Paivasaari, J. J. J. Kaakkunen, V. K. Tikhomirov, A. Lehmuskero, P. Vahimaa, and V. V. Moshchalkov, “Imprinting the nanostructures on the high refractive index semiconductor glass,” Appl. Surf. Sci. 257, 6829–6832 (2011).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

2010 (2)

2008 (2)

J. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33, 2500–2502 (2008).
[Crossref]

M. D. Pelusi, V. G. Ta’eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14, 529–539 (2008).
[Crossref]

2007 (1)

2006 (1)

E. Brinley, S. Seal, R. Folks, E. Braunstein, and L. Kramer, “High efficiency SiO2-TiO2 hybrid sol-gel antireflective coating for infrared applications,” J. Vac. Sci. Technol. A 24, 1141–1146 (2006).
[Crossref]

2005 (1)

J. Yeom, Y. Wu, J. C. Selby, and M. A. Shannon, “Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect,” J. Vac. Sci. Technol. B 23, 2319–2329 (2005).
[Crossref]

2003 (1)

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326, 519–523 (2003).
[Crossref]

1991 (1)

1953 (1)

Abdel-Moneim, N.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Abdel-Moneim, N. S.

A. B. Seddon, N. S. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53, 071824 (2014).
[Crossref]

Abouraddy, A. F.

Adam, J. L.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Agarwal, A.

Aggarwal, I.

Aggarwal, I. D.

Alvarez, O.

Anne, M. L.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Antipov, S.

Baker, N. J.

Bang, O.

Bellec, Y.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326, 519–523 (2003).
[Crossref]

Benson, T.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

I. Kubat, C. R. Petersen, U. V. Moller, A. Seddon, T. Benson, L. Brilland, D. Mechin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref]

Benson, T. M.

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, L. Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49, 237 (2017).
[Crossref]

A. B. Seddon, N. S. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53, 071824 (2014).
[Crossref]

Birkmire, R.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Boussard, C.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Braunstein, E.

E. Brinley, S. Seal, R. Folks, E. Braunstein, and L. Kramer, “High efficiency SiO2-TiO2 hybrid sol-gel antireflective coating for infrared applications,” J. Vac. Sci. Technol. A 24, 1141–1146 (2006).
[Crossref]

Brilland, L.

Brinley, E.

E. Brinley, S. Seal, R. Folks, E. Braunstein, and L. Kramer, “High efficiency SiO2-TiO2 hybrid sol-gel antireflective coating for infrared applications,” J. Vac. Sci. Technol. A 24, 1141–1146 (2006).
[Crossref]

Bulla, D. A. P.

M. D. Pelusi, V. G. Ta’eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14, 529–539 (2008).
[Crossref]

Bureau, B.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Busse, L.

Busse, L. E.

Caillaud, C.

Camy, P.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Carlie, N.

Cha, D. H.

Chahal, R.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Chang, C. H.

K. Han and C. H. Chang, “Numerical modeling of sub-wavelength anti-reflective structures for solar module applications,” Nanomaterials 4, 87–128 (2014).
[Crossref]

Charpentier, F.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Chenard, F.

Cheng, I. C.

Cheng, T. L.

Choi, D. Y.

M. D. Pelusi, V. G. Ta’eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14, 529–539 (2008).
[Crossref]

V. G. Ta’eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007).
[Crossref]

Cui, S.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Dai, S. X.

Z. M. Zhao, B. Wu, X. S. Wang, Z. H. Pan, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum covering 2.0–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

Danto, S.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Dobson, K. D.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Doualan, J. L.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Du, Q. Y.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Dupont, S.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

M. D. Pelusi, V. G. Ta’eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14, 529–539 (2008).
[Crossref]

V. G. Ta’eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007).
[Crossref]

Engelsholm, R. D.

Fang, Y.

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, L. Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49, 237 (2017).
[Crossref]

Feng, N. N.

Finsterbusch, K.

Florea, C.

Flyvbjerg, H.

P. F. Ostergaard, J. Lopacinska-Jorgensen, J. N. Pedersen, N. Tommerup, A. Kristensen, H. Flyvbjerg, A. Silahtaroglu, R. Marie, and R. Taboryski, “Optical mapping of single-molecule human DNA in disposable, mass-produced all-polymer devices,” J. Micromech. Microeng. 25, 105002 (2015).
[Crossref]

Folks, R.

E. Brinley, S. Seal, R. Folks, E. Braunstein, and L. Kramer, “High efficiency SiO2-TiO2 hybrid sol-gel antireflective coating for infrared applications,” J. Vac. Sci. Technol. A 24, 1141–1146 (2006).
[Crossref]

Frerichs, R.

Fu, L. B.

M. D. Pelusi, V. G. Ta’eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14, 529–539 (2008).
[Crossref]

V. G. Ta’eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007).
[Crossref]

Fudouzi, H.

Fuerbach, A.

Furniss, D.

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, L. Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49, 237 (2017).
[Crossref]

A. B. Seddon, N. S. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53, 071824 (2014).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Gai, X.

B. Zhang, Y. Yu, C. C. Zhai, S. S. Qi, Y. W. Wang, A. P. Yang, X. Gai, R. P. Wang, Z. Y. Yang, and B. Luther-Davies, “High brightness 2.2–12  μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99, 2565–2568 (2016).
[Crossref]

T. Wang, X. Gai, W. H. Wei, R. P. Wang, Z. Y. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4, 1011–1022 (2014).
[Crossref]

Greer, A. L.

Guimond, Y.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326, 519–523 (2003).
[Crossref]

Han, K.

K. Han and C. H. Chang, “Numerical modeling of sub-wavelength anti-reflective structures for solar module applications,” Nanomaterials 4, 87–128 (2014).
[Crossref]

Hobbs, D. S.

B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” in Conference on Window and Dome Technologies and Materials XII, Orlando, Florida (2011).

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” in Conference on Window and Dome Technologies and Materials X, Orlando, Florida (2007).

D. S. Hobbs, “Laser damage threshold measurements of anti-reflection microstructures operating in the near UV and mid-infrared,” in 42nd Annual Laser Damage Symposium, Boulder, Colorado (2010).

Hu, J. J.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

J. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18, 1469–1478 (2010).
[Crossref]

J. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33, 2500–2502 (2008).
[Crossref]

Hudson, D. D.

Hwang, Y.

Jackson, S. D.

Jayasuriya, D.

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, L. Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49, 237 (2017).
[Crossref]

Jeong, J. C.

Kaakkunen, J. J. J.

M. Silvennoinen, K. Paivasaari, J. J. J. Kaakkunen, V. K. Tikhomirov, A. Lehmuskero, P. Vahimaa, and V. V. Moshchalkov, “Imprinting the nanostructures on the high refractive index semiconductor glass,” Appl. Surf. Sci. 257, 6829–6832 (2011).
[Crossref]

Kim, H. J.

Kim, J. H.

Kimerling, L.

Kohoutek, T.

A. B. Seddon, N. S. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53, 071824 (2014).
[Crossref]

T. Kohoutek, J. Orava, A. L. Greer, and H. Fudouzi, “Sub-micrometer soft lithography of a bulk chalcogenide glass,” Opt. Express 21, 9584–9591 (2013).
[Crossref]

Kramer, L.

E. Brinley, S. Seal, R. Folks, E. Braunstein, and L. Kramer, “High efficiency SiO2-TiO2 hybrid sol-gel antireflective coating for infrared applications,” J. Vac. Sci. Technol. A 24, 1141–1146 (2006).
[Crossref]

Kristensen, A.

P. F. Ostergaard, J. Lopacinska-Jorgensen, J. N. Pedersen, N. Tommerup, A. Kristensen, H. Flyvbjerg, A. Silahtaroglu, R. Marie, and R. Taboryski, “Optical mapping of single-molecule human DNA in disposable, mass-produced all-polymer devices,” J. Micromech. Microeng. 25, 105002 (2015).
[Crossref]

Kubat, I.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

I. Kubat, C. R. Petersen, U. V. Moller, A. Seddon, T. Benson, L. Brilland, D. Mechin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref]

Lamont, M. R. E.

M. D. Pelusi, V. G. Ta’eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14, 529–539 (2008).
[Crossref]

V. G. Ta’eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007).
[Crossref]

Lan, Y. H.

Lee, J. H.

Lehmuskero, A.

M. Silvennoinen, K. Paivasaari, J. J. J. Kaakkunen, V. K. Tikhomirov, A. Lehmuskero, P. Vahimaa, and V. V. Moshchalkov, “Imprinting the nanostructures on the high refractive index semiconductor glass,” Appl. Surf. Sci. 257, 6829–6832 (2011).
[Crossref]

Li, L.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Lin, H. T.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Liu, Z. J.

Z. M. Zhao, B. Wu, X. S. Wang, Z. H. Pan, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum covering 2.0–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

Lopacinska-Jorgensen, J.

P. F. Ostergaard, J. Lopacinska-Jorgensen, J. N. Pedersen, N. Tommerup, A. Kristensen, H. Flyvbjerg, A. Silahtaroglu, R. Marie, and R. Taboryski, “Optical mapping of single-molecule human DNA in disposable, mass-produced all-polymer devices,” J. Micromech. Microeng. 25, 105002 (2015).
[Crossref]

Loreal, O.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Lucas, J.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Lucas, P.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Luther-Davies, B.

B. Zhang, Y. Yu, C. C. Zhai, S. S. Qi, Y. W. Wang, A. P. Yang, X. Gai, R. P. Wang, Z. Y. Yang, and B. Luther-Davies, “High brightness 2.2–12  μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99, 2565–2568 (2016).
[Crossref]

T. Wang, X. Gai, W. H. Wei, R. P. Wang, Z. Y. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4, 1011–1022 (2014).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

M. D. Pelusi, V. G. Ta’eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14, 529–539 (2008).
[Crossref]

V. G. Ta’eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007).
[Crossref]

MacLeod, B. D.

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” in Conference on Window and Dome Technologies and Materials X, Orlando, Florida (2007).

B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” in Conference on Window and Dome Technologies and Materials XII, Orlando, Florida (2011).

Madden, S.

Magi, E.

M. D. Pelusi, V. G. Ta’eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14, 529–539 (2008).
[Crossref]

Marie, R.

P. F. Ostergaard, J. Lopacinska-Jorgensen, J. N. Pedersen, N. Tommerup, A. Kristensen, H. Flyvbjerg, A. Silahtaroglu, R. Marie, and R. Taboryski, “Optical mapping of single-molecule human DNA in disposable, mass-produced all-polymer devices,” J. Micromech. Microeng. 25, 105002 (2015).
[Crossref]

Markos, C.

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, L. Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49, 237 (2017).
[Crossref]

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Troles, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25, 15336–15347 (2017).
[Crossref]

Matsumoto, M.

Mechin, D.

Mellor, C. J.

A. B. Seddon, N. S. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53, 071824 (2014).
[Crossref]

Menyuk, C. R.

Miklos, F.

Moller, U.

C. R. Petersen, P. M. Moselund, C. Petersen, U. Moller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24, 749–758 (2016).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Moller, U. V.

Monbet, V.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Moreel, L.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Moselund, P. M.

Moshchalkov, V. V.

M. Silvennoinen, K. Paivasaari, J. J. J. Kaakkunen, V. K. Tikhomirov, A. Lehmuskero, P. Vahimaa, and V. V. Moshchalkov, “Imprinting the nanostructures on the high refractive index semiconductor glass,” Appl. Surf. Sci. 257, 6829–6832 (2011).
[Crossref]

Moss, D. J.

Musgraves, J. D.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Nagasaka, K.

Nazabal, V.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Nguyen, H. C.

Nie, Q. H.

Z. M. Zhao, B. Wu, X. S. Wang, Z. H. Pan, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum covering 2.0–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

Ogbuu, O.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Ohishi, Y.

Orava, J.

A. B. Seddon, N. S. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53, 071824 (2014).
[Crossref]

T. Kohoutek, J. Orava, A. L. Greer, and H. Fudouzi, “Sub-micrometer soft lithography of a bulk chalcogenide glass,” Opt. Express 21, 9584–9591 (2013).
[Crossref]

Ostergaard, P. F.

P. F. Ostergaard, J. Lopacinska-Jorgensen, J. N. Pedersen, N. Tommerup, A. Kristensen, H. Flyvbjerg, A. Silahtaroglu, R. Marie, and R. Taboryski, “Optical mapping of single-molecule human DNA in disposable, mass-produced all-polymer devices,” J. Micromech. Microeng. 25, 105002 (2015).
[Crossref]

Paivasaari, K.

M. Silvennoinen, K. Paivasaari, J. J. J. Kaakkunen, V. K. Tikhomirov, A. Lehmuskero, P. Vahimaa, and V. V. Moshchalkov, “Imprinting the nanostructures on the high refractive index semiconductor glass,” Appl. Surf. Sci. 257, 6829–6832 (2011).
[Crossref]

Pan, W. J.

A. B. Seddon, N. S. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53, 071824 (2014).
[Crossref]

Pan, Z. H.

Z. M. Zhao, B. Wu, X. S. Wang, Z. H. Pan, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum covering 2.0–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

Pedersen, J. N.

P. F. Ostergaard, J. Lopacinska-Jorgensen, J. N. Pedersen, N. Tommerup, A. Kristensen, H. Flyvbjerg, A. Silahtaroglu, R. Marie, and R. Taboryski, “Optical mapping of single-molecule human DNA in disposable, mass-produced all-polymer devices,” J. Micromech. Microeng. 25, 105002 (2015).
[Crossref]

Pelusi, M. D.

M. D. Pelusi, V. G. Ta’eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14, 529–539 (2008).
[Crossref]

Peng, L. H.

Perlstein, J. D.

Petersen, C.

Petersen, C. R.

Petit, L.

Qi, S. S.

B. Zhang, Y. Yu, C. C. Zhai, S. S. Qi, Y. W. Wang, A. P. Yang, X. Gai, R. P. Wang, Z. Y. Yang, and B. Luther-Davies, “High brightness 2.2–12  μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99, 2565–2568 (2016).
[Crossref]

Quetel, L.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Riccobono, J. R.

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” in Conference on Window and Dome Technologies and Materials X, Orlando, Florida (2007).

Richardson, K.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

J. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18, 1469–1478 (2010).
[Crossref]

J. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33, 2500–2502 (2008).
[Crossref]

Richardson, M. C.

Sabatino, E.

B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” in Conference on Window and Dome Technologies and Materials XII, Orlando, Florida (2011).

Sanghera, J.

Sanghera, J. S.

Schepler, K. L.

Seal, S.

E. Brinley, S. Seal, R. Folks, E. Braunstein, and L. Kramer, “High efficiency SiO2-TiO2 hybrid sol-gel antireflective coating for infrared applications,” J. Vac. Sci. Technol. A 24, 1141–1146 (2006).
[Crossref]

Seddon, A.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

I. Kubat, C. R. Petersen, U. V. Moller, A. Seddon, T. Benson, L. Brilland, D. Mechin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref]

Seddon, A. B.

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, L. Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49, 237 (2017).
[Crossref]

A. B. Seddon, N. S. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53, 071824 (2014).
[Crossref]

Selby, J. C.

J. Yeom, Y. Wu, J. C. Selby, and M. A. Shannon, “Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect,” J. Vac. Sci. Technol. B 23, 2319–2329 (2005).
[Crossref]

Shabahang, S.

Shah, L.

Shannon, M. A.

J. Yeom, Y. Wu, J. C. Selby, and M. A. Shannon, “Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect,” J. Vac. Sci. Technol. B 23, 2319–2329 (2005).
[Crossref]

Shaw, B.

Shaw, L. B.

Shen, X.

Z. M. Zhao, B. Wu, X. S. Wang, Z. H. Pan, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum covering 2.0–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

T. Wang, X. Gai, W. H. Wei, R. P. Wang, Z. Y. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4, 1011–1022 (2014).
[Crossref]

Silahtaroglu, A.

P. F. Ostergaard, J. Lopacinska-Jorgensen, J. N. Pedersen, N. Tommerup, A. Kristensen, H. Flyvbjerg, A. Silahtaroglu, R. Marie, and R. Taboryski, “Optical mapping of single-molecule human DNA in disposable, mass-produced all-polymer devices,” J. Micromech. Microeng. 25, 105002 (2015).
[Crossref]

Silvennoinen, M.

M. Silvennoinen, K. Paivasaari, J. J. J. Kaakkunen, V. K. Tikhomirov, A. Lehmuskero, P. Vahimaa, and V. V. Moshchalkov, “Imprinting the nanostructures on the high refractive index semiconductor glass,” Appl. Surf. Sci. 257, 6829–6832 (2011).
[Crossref]

Sincore, A.

Sire, O.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Skibina, J. S.

G. Steinmeyer and J. S. Skibina, “Supercontinua entering the mid-infrared,” Nat. Photonics 8, 814–815 (2014).
[Crossref]

Sojka, L.

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, L. Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49, 237 (2017).
[Crossref]

Southwell, W. H.

Steinmeyer, G.

G. Steinmeyer and J. S. Skibina, “Supercontinua entering the mid-infrared,” Nat. Photonics 8, 814–815 (2014).
[Crossref]

Sujecki, S.

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, L. Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49, 237 (2017).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Suzuki, T.

Ta’eed, V. G.

M. D. Pelusi, V. G. Ta’eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14, 529–539 (2008).
[Crossref]

V. G. Ta’eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007).
[Crossref]

Taboryski, R.

P. F. Ostergaard, J. Lopacinska-Jorgensen, J. N. Pedersen, N. Tommerup, A. Kristensen, H. Flyvbjerg, A. Silahtaroglu, R. Marie, and R. Taboryski, “Optical mapping of single-molecule human DNA in disposable, mass-produced all-polymer devices,” J. Micromech. Microeng. 25, 105002 (2015).
[Crossref]

Tan, F. A.

Tan, G. J.

Tang, Z. Q.

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, L. Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49, 237 (2017).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Tao, G.

Tariel, H.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Tezuka, H.

Tikhomirov, V. K.

M. Silvennoinen, K. Paivasaari, J. J. J. Kaakkunen, V. K. Tikhomirov, A. Lehmuskero, P. Vahimaa, and V. V. Moshchalkov, “Imprinting the nanostructures on the high refractive index semiconductor glass,” Appl. Surf. Sci. 257, 6829–6832 (2011).
[Crossref]

Tommerup, N.

P. F. Ostergaard, J. Lopacinska-Jorgensen, J. N. Pedersen, N. Tommerup, A. Kristensen, H. Flyvbjerg, A. Silahtaroglu, R. Marie, and R. Taboryski, “Optical mapping of single-molecule human DNA in disposable, mass-produced all-polymer devices,” J. Micromech. Microeng. 25, 105002 (2015).
[Crossref]

Troles, J.

Tuan, T. H.

Vahimaa, P.

M. Silvennoinen, K. Paivasaari, J. J. J. Kaakkunen, V. K. Tikhomirov, A. Lehmuskero, P. Vahimaa, and V. V. Moshchalkov, “Imprinting the nanostructures on the high refractive index semiconductor glass,” Appl. Surf. Sci. 257, 6829–6832 (2011).
[Crossref]

Wagner, T.

A. B. Seddon, N. S. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53, 071824 (2014).
[Crossref]

Wang, R. P.

Z. M. Zhao, B. Wu, X. S. Wang, Z. H. Pan, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum covering 2.0–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

B. Zhang, Y. Yu, C. C. Zhai, S. S. Qi, Y. W. Wang, A. P. Yang, X. Gai, R. P. Wang, Z. Y. Yang, and B. Luther-Davies, “High brightness 2.2–12  μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99, 2565–2568 (2016).
[Crossref]

T. Wang, X. Gai, W. H. Wei, R. P. Wang, Z. Y. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4, 1011–1022 (2014).
[Crossref]

Wang, T.

Wang, X. S.

Z. M. Zhao, B. Wu, X. S. Wang, Z. H. Pan, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum covering 2.0–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

Wang, Y. W.

B. Zhang, Y. Yu, C. C. Zhai, S. S. Qi, Y. W. Wang, A. P. Yang, X. Gai, R. P. Wang, Z. Y. Yang, and B. Luther-Davies, “High brightness 2.2–12  μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99, 2565–2568 (2016).
[Crossref]

Wei, M. K.

Wei, W. H.

Weiblen, R. J.

Woodward, R. I.

Wu, B.

Z. M. Zhao, B. Wu, X. S. Wang, Z. H. Pan, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum covering 2.0–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

Wu, S. T.

Wu, Y.

J. Yeom, Y. Wu, J. C. Selby, and M. A. Shannon, “Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect,” J. Vac. Sci. Technol. B 23, 2319–2329 (2005).
[Crossref]

Xue, X. J.

Yang, A. P.

B. Zhang, Y. Yu, C. C. Zhai, S. S. Qi, Y. W. Wang, A. P. Yang, X. Gai, R. P. Wang, Z. Y. Yang, and B. Luther-Davies, “High brightness 2.2–12  μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99, 2565–2568 (2016).
[Crossref]

Yang, Z. Y.

B. Zhang, Y. Yu, C. C. Zhai, S. S. Qi, Y. W. Wang, A. P. Yang, X. Gai, R. P. Wang, Z. Y. Yang, and B. Luther-Davies, “High brightness 2.2–12  μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99, 2565–2568 (2016).
[Crossref]

T. Wang, X. Gai, W. H. Wei, R. P. Wang, Z. Y. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4, 1011–1022 (2014).
[Crossref]

Yeom, J.

J. Yeom, Y. Wu, J. C. Selby, and M. A. Shannon, “Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect,” J. Vac. Sci. Technol. B 23, 2319–2329 (2005).
[Crossref]

Yu, Y.

B. Zhang, Y. Yu, C. C. Zhai, S. S. Qi, Y. W. Wang, A. P. Yang, X. Gai, R. P. Wang, Z. Y. Yang, and B. Luther-Davies, “High brightness 2.2–12  μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99, 2565–2568 (2016).
[Crossref]

Zhai, C. C.

B. Zhang, Y. Yu, C. C. Zhai, S. S. Qi, Y. W. Wang, A. P. Yang, X. Gai, R. P. Wang, Z. Y. Yang, and B. Luther-Davies, “High brightness 2.2–12  μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99, 2565–2568 (2016).
[Crossref]

Zhang, B.

B. Zhang, Y. Yu, C. C. Zhai, S. S. Qi, Y. W. Wang, A. P. Yang, X. Gai, R. P. Wang, Z. Y. Yang, and B. Luther-Davies, “High brightness 2.2–12  μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99, 2565–2568 (2016).
[Crossref]

Zhang, D. N.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Zhang, L.

A. B. Seddon, N. S. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53, 071824 (2014).
[Crossref]

Zhang, P. Q.

Z. M. Zhao, B. Wu, X. S. Wang, Z. H. Pan, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum covering 2.0–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

Zhang, X. H.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326, 519–523 (2003).
[Crossref]

Zhao, Z. M.

Z. M. Zhao, B. Wu, X. S. Wang, Z. H. Pan, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum covering 2.0–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

Zhou, B. B.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Zhou, J.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Zou, Y.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Adv. Opt. Mater. (1)

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Surf. Sci. (1)

M. Silvennoinen, K. Paivasaari, J. J. J. Kaakkunen, V. K. Tikhomirov, A. Lehmuskero, P. Vahimaa, and V. V. Moshchalkov, “Imprinting the nanostructures on the high refractive index semiconductor glass,” Appl. Surf. Sci. 257, 6829–6832 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. D. Pelusi, V. G. Ta’eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14, 529–539 (2008).
[Crossref]

J. Am. Ceram. Soc. (1)

B. Zhang, Y. Yu, C. C. Zhai, S. S. Qi, Y. W. Wang, A. P. Yang, X. Gai, R. P. Wang, Z. Y. Yang, and B. Luther-Davies, “High brightness 2.2–12  μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99, 2565–2568 (2016).
[Crossref]

J. Micromech. Microeng. (1)

P. F. Ostergaard, J. Lopacinska-Jorgensen, J. N. Pedersen, N. Tommerup, A. Kristensen, H. Flyvbjerg, A. Silahtaroglu, R. Marie, and R. Taboryski, “Optical mapping of single-molecule human DNA in disposable, mass-produced all-polymer devices,” J. Micromech. Microeng. 25, 105002 (2015).
[Crossref]

J. Non-Cryst. Solids (1)

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326, 519–523 (2003).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. A (1)

E. Brinley, S. Seal, R. Folks, E. Braunstein, and L. Kramer, “High efficiency SiO2-TiO2 hybrid sol-gel antireflective coating for infrared applications,” J. Vac. Sci. Technol. A 24, 1141–1146 (2006).
[Crossref]

J. Vac. Sci. Technol. B (1)

J. Yeom, Y. Wu, J. C. Selby, and M. A. Shannon, “Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect,” J. Vac. Sci. Technol. B 23, 2319–2329 (2005).
[Crossref]

Laser Photon. Rev. (1)

Z. M. Zhao, B. Wu, X. S. Wang, Z. H. Pan, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum covering 2.0–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

Nanomaterials (1)

K. Han and C. H. Chang, “Numerical modeling of sub-wavelength anti-reflective structures for solar module applications,” Nanomaterials 4, 87–128 (2014).
[Crossref]

Nat. Photonics (3)

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

G. Steinmeyer and J. S. Skibina, “Supercontinua entering the mid-infrared,” Nat. Photonics 8, 814–815 (2014).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Opt. Eng. (2)

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

A. B. Seddon, N. S. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53, 071824 (2014).
[Crossref]

Opt. Express (8)

V. G. Ta’eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007).
[Crossref]

R. J. Weiblen, C. R. Menyuk, L. E. Busse, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Optimized moth-eye anti-reflective structures for As2S3 chalcogenide optical fibers,” Opt. Express 24, 10172–10187 (2016).
[Crossref]

J. Sanghera, C. Florea, L. Busse, B. Shaw, F. Miklos, and I. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18, 26760–26768 (2010).
[Crossref]

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Troles, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25, 15336–15347 (2017).
[Crossref]

T. Kohoutek, J. Orava, A. L. Greer, and H. Fudouzi, “Sub-micrometer soft lithography of a bulk chalcogenide glass,” Opt. Express 21, 9584–9591 (2013).
[Crossref]

J. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18, 1469–1478 (2010).
[Crossref]

I. Kubat, C. R. Petersen, U. V. Moller, A. Seddon, T. Benson, L. Brilland, D. Mechin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref]

C. R. Petersen, P. M. Moselund, C. Petersen, U. Moller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24, 749–758 (2016).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (2)

Opt. Quantum Electron. (1)

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, L. Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49, 237 (2017).
[Crossref]

Optica (2)

Other (4)

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” in Conference on Window and Dome Technologies and Materials X, Orlando, Florida (2007).

D. S. Hobbs, “Laser damage threshold measurements of anti-reflection microstructures operating in the near UV and mid-infrared,” in 42nd Annual Laser Damage Symposium, Boulder, Colorado (2010).

Amorphous Materials Inc., “AMTIR-2 data sheet,” http://www.amorphousmaterials.com (accessed April 20, 2018).

B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” in Conference on Window and Dome Technologies and Materials XII, Orlando, Florida (2011).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental Document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Ni shim fabrication process flow. 1. Spin-coating resist; 2. DUV lithography; 3. inductively coupled plasma reactive ion etching; 4. oxygen plasma etching; 5. NiV seed layer deposition and Ni electroforming; 6. KOH wet etching and antistiction coating. SEM images at three different stages of fabrication: post-lithography, post-oxygen plasma etching, and post-KOH etching; (b) finished and diced Ni shim; (c) cross-sectional sketch of the custom-made fixture to contain the glass window during nanoimprinting.
Fig. 2.
Fig. 2. (a) RCWA model with truncated ellipsoidal-shaped moth-eye structures and whose protrusion height, h, and pattern pitch, p, have also been defined. (b) Simulated 0th order transmittance of a single air-As2Se3 interface, at normal incidence and fixed incident wavelength; λ=6  μm, using the truncated ellipsoidal protrusion model given in (a).
Fig. 3.
Fig. 3. (a) Photograph of the nanoimprinted As2Se3 windows; (b) SEM image of the As2Se3 window surface after imprinting a surface relief with a pitch size of 1050 nm, viewed at 30° tilt; (c) AFM image of the surface relief. The red and blue lines indicate the two locations used to extract two height profiles. (d) The two AFM height profiles perpendicular to each other across the same protrusion. The red and blue arrows indicate the points used to extract a protrusion height of 1276 and 1425 nm, respectively. (e) Plot of the measured 0th order transmittance of the nanoimprinted and blank window, together with the simulated window transmittance, the analytically calculated blank window transmittance, and the maximum theoretical window transmittance, all at θi=6°. (f) RCWA model used to produce the simulated transmittance result given in (e).
Fig. 4.
Fig. 4. (a) Plot of the transmittance improvement, ΔT, as function of AOI (θi), based on the measured transmittance of the nanoimprinted window shown in Fig. 3. (b) The average transmittance improvement, ΔT, as a function of AOI, averaged across the 3–14 μm and 5–9 μm spectral ranges, plotted together with the RCWA simulation and a curved fit. The inset sketch illustrates how AOI is defined.
Fig. 5.
Fig. 5. (a)–(d) SEM images of As2Se3 windows after receiving a surface relief with a different pitch and protrusion heights, viewed at the same magnification and 30° tilt; (e) calculated transmittance improvement of the nanoimprinted windows, corresponding to a transmittance measured at normal incidence. ΔTmax indicates the boundary for the theoretical maximum transmittance improvement attainable by a single-surface relief in As2Se3.

Tables (1)

Tables Icon

Table 1. Measured Peak Transmittance Improvements (ΔT) and Optimum Efficiency Spectra of the Fabricated Surface Reliefs

Metrics