Abstract

The time-frequency degree of freedom is a powerful resource for implementing high-dimensional quantum information processing. In particular, field-orthogonal pulsed temporal modes offer a flexible framework compatible with both long-distance fiber networks and integrated waveguide devices. In order for this architecture to be fully utilized, techniques to reliably generate diverse quantum states of light and accurately measure complex temporal waveforms must be developed. To this end, nonlinear processes mediated by spectrally shaped pump pulses in group-velocity engineered waveguides and crystals provide a capable toolbox. In this review, we examine how tailoring the phase-matching conditions of parametric downconversion and sum-frequency generation allows for highly pure single-photon generation, flexible temporal-mode entanglement, and accurate measurement of time-frequency photon states. We provide an overview of experimental progress towards these goals and summarize challenges that remain in the field.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Heralded generation of high-purity ultrashort single photons in programmable temporal shapes

V. Ansari, E. Roccia, M. Santandrea, M. Doostdar, C. Eigner, L. Padberg, I. Gianani, M. Sbroscia, J. M. Donohue, L. Mancino, M. Barbieri, and C. Silberhorn
Opt. Express 26(3) 2764-2774 (2018)

A quantum pulse gate based on spectrally engineered sum frequency generation

Andreas Eckstein, Benjamin Brecht, and Christine Silberhorn
Opt. Express 19(15) 13770-13778 (2011)

Two-photon quantum state engineering in nonlinear photonic nanowires

Dongpeng Kang, Arthur Pang, Yuxiang Zhao, and Amr S. Helmy
J. Opt. Soc. Am. B 31(7) 1581-1589 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. Grice and I. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
    [Crossref]
  2. D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8, 180–198 (2007).
    [Crossref]
  3. C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite Hilbert space and entropy control,” Phys. Rev. Lett. 84, 5304–5307 (2000).
    [Crossref]
  4. J. Ghalbouni, I. Agha, R. Frey, E. Diamanti, and I. Zaquine, “Experimental wavelength-division-multiplexed photon-pair distribution,” Opt. Lett. 38, 34–36 (2013).
    [Crossref]
  5. N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal quantum computation with continuous-variable cluster states,” Phys. Rev. Lett. 97, 110501 (2006).
    [Crossref]
  6. M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
    [Crossref]
  7. S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
    [Crossref]
  8. M. Chen, N. C. Menicucci, and O. Pfister, “Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb,” Phys. Rev. Lett. 112, 120505 (2014).
    [Crossref]
  9. G. J. De Valcarcel, G. Patera, N. Treps, and C. Fabre, “Multimode squeezing of frequency combs,” Phys. Rev. A 74, 061801 (2006).
    [Crossref]
  10. O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
    [Crossref]
  11. W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006).
    [Crossref]
  12. G. Patera, C. Navarrete-Benlloch, G. J. de Valcárcel, and C. Fabre, “Quantum coherent control of highly multipartite continuous-variable entangled states by tailoring parametric interactions,” Eur. Phys. J. D 66, 1–14 (2012).
    [Crossref]
  13. J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2014).
    [Crossref]
  14. S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb Gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
    [Crossref]
  15. H. Huang and J. H. Eberly, “Correlations and one-quantum pulse shapes in photon pair generation,” J. Mod. Opt. 40, 915–930 (1993).
    [Crossref]
  16. A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).
  17. Y. M. Mikhailova, P. Volkov, and M. Fedorov, “Biphoton wave packets in parametric down-conversion: spectral and temporal structure and degree of entanglement,” Phys. Rev. A 78, 062327 (2008).
    [Crossref]
  18. A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
    [Crossref]
  19. A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
    [Crossref]
  20. K. Wakui, Y. Eto, H. Benichi, S. Izumi, T. Yanagida, K. Ema, T. Numata, D. Fukuda, M. Takeoka, and M. Sasaki, “Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength,” Sci. Rep. 4, 4535 (2014).
    [Crossref]
  21. M. B. Nasr, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
    [Crossref]
  22. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchronization,” Nature 412, 417–419 (2001).
    [Crossref]
  23. V. Averchenko, D. Sych, G. Schunk, U. Vogl, C. Marquardt, and G. Leuchs, “Temporal shaping of single photons enabled by entanglement,” Phys. Rev. A 96, 043822 (2017).
    [Crossref]
  24. T. Keller and M. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
    [Crossref]
  25. R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled photons produced by ultrashort pulses,” Phys. Rev. A 62, 053810 (2000).
    [Crossref]
  26. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
    [Crossref]
  27. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
    [Crossref]
  28. O. Kuzucu, M. Fiorentino, M. Albota, F. N. C. Wong, and F. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 083601 (2005).
    [Crossref]
  29. T. Lutz, P. Kolenderski, and T. Jennewein, “Demonstration of spectral correlation control in a source of polarization-entangled photon pairs at telecom wavelength,” Opt. Lett. 39, 1481–1484 (2014).
    [Crossref]
  30. V. Ansari, B. Brecht, G. Harder, and C. Silberhorn, “Probing spectral-temporal correlations with a versatile integrated source of parametric down-conversion states,” arXiv:1404.7725 (2014).
  31. R. S. Bennink, “Optimal collinear Gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A 81, 053805 (2010).
    [Crossref]
  32. A. Valencia, A. Cere, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
    [Crossref]
  33. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
    [Crossref]
  34. C. Hong, Z.-Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref]
  35. O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett. 101, 153602 (2008).
    [Crossref]
  36. T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express 19, 24434–24447 (2011).
    [Crossref]
  37. G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21, 13975–13985 (2013).
    [Crossref]
  38. R.-B. Jin, R. Shimizu, K. Wakui, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength,” Opt. Express 22, 11498–11507 (2014).
    [Crossref]
  39. M. M. Weston, H. M. Chrzanowski, S. Wollmann, A. Boston, J. Ho, L. K. Shalm, V. B. Verma, M. S. Allman, S. W. Nam, R. B. Patel, S. Slussarenko, and G. J. Pryde, “Efficient and pure femtosecond-pulse-length source of polarization-entangled photons,” Opt. Express 24, 10869–10879 (2016).
    [Crossref]
  40. A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inf. Comput. 3, 480–502 (2003).
  41. E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95, 061803 (2017).
    [Crossref]
  42. J. Huang, X. Xie, C. Langrock, R. Roussev, D. Hum, and M. Fejer, “Amplitude modulation and apodization of quasi-phase-matched interactions,” Opt. Lett. 31, 604–606 (2006).
    [Crossref]
  43. A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19, 55–65 (2011).
    [Crossref]
  44. P. Ben Dixon, J. H. Shapiro, and F. N. C. Wong, “Spectral engineering by Gaussian phase-matching for quantum photonics,” Opt. Express 21, 5879–5890 (2013).
    [Crossref]
  45. C. Chen, C. Bo, M. Y. Niu, F. Xu, Z. Zhang, J. H. Shapiro, and F. N. C. Wong, “Efficient generation and characterization of spectrally factorable biphotons,” Opt. Express 25, 7300–7312 (2017).
    [Crossref]
  46. A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
    [Crossref]
  47. J.-L. Tambasco, A. Boes, L. G. Helt, M. J. Steel, and A. Mitchell, “Domain engineering algorithm for practical and effective photon sources,” Opt. Express 24, 19616–19626 (2016).
    [Crossref]
  48. F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
    [Crossref]
  49. F. Graffitti, P. Barrow, M. Proietti, D. Kundys, and A. Fedrizzi, “Independent high-purity photons created in domain-engineered crystals,” arXiv:1712.07140 (2017).
  50. V. Ansari, E. Roccia, M. Santandrea, M. Doostdar, C. Eigner, L. Padberg, I. Gianani, M. Sbroscia, J. M. Donohue, L. Mancino, M. Barbieri, and C. Silberhorn, “Heralded generation of high-purity ultrashort single photons in programmable temporal shapes,” Opt. Express 26, 2764–2774 (2018).
    [Crossref]
  51. B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).
    [Crossref]
  52. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [Crossref]
  53. A. Christ, B. Brecht, W. Mauerer, and C. Silberhorn, “Theory of quantum frequency conversion and type-II parametric down-conversion in the high-gain regime,” New J. Phys. 15, 053038 (2013).
    [Crossref]
  54. N. Quesada and J. E. Sipe, “Time-ordering effects in the generation of entangled photons using nonlinear optical processes,” Phys. Rev. Lett. 114, 093903 (2015).
    [Crossref]
  55. S. Lemieux, M. Manceau, P. R. Sharapova, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Engineering the frequency spectrum of bright squeezed vacuum via group velocity dispersion in an SU(1, 1) interferometer,” Phys. Rev. Lett. 117, 183601 (2016).
    [Crossref]
  56. G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits, and C. Silberhorn, “Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics,” Phys. Rev. Lett. 116, 143601 (2016).
    [Crossref]
  57. G. Harder, V. Ansari, T. J. Bartley, B. Brecht, and C. Silberhorn, “Harnessing temporal modes for multi-photon quantum information processing based on integrated optics,” Philos. Trans. A Math. Phys. Eng. Sci. 375, 20160244 (2017).
    [Crossref]
  58. P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15, 1476–1478 (1990).
    [Crossref]
  59. J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68, 2153–2156 (1992).
    [Crossref]
  60. C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532  nm,” Phys. Rev. Lett. 112, 073602 (2014).
    [Crossref]
  61. C. Baune, J. Gniesmer, A. Schönbeck, C. E. Vollmer, J. Fiurášek, and R. Schnabel, “Strongly squeezed states at 532  nm based on frequency up-conversion,” Opt. Express 23, 16035–16041 (2015).
    [Crossref]
  62. W. Liu, N. Wang, Z. Li, and Y. Li, “Quantum frequency up-conversion of continuous variable entangled states,” Appl. Phys. Lett. 107, 231109 (2015).
    [Crossref]
  63. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
    [Crossref]
  64. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100  km using frequency up-conversion detectors,” Opt. Express 15, 13957–13964 (2007).
    [Crossref]
  65. K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
    [Crossref]
  66. S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
    [Crossref]
  67. S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
    [Crossref]
  68. S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
    [Crossref]
  69. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
    [Crossref]
  70. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
    [Crossref]
  71. A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).
    [Crossref]
  72. A. P. VanDevender and P. G. Kwiat, “Quantum transduction via frequency upconversion,” J. Opt. Soc. Am. B 24, 295–299 (2007).
    [Crossref]
  73. J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550  nm: performance and noise analysis,” Opt. Express 19, 21445–21456 (2011).
    [Crossref]
  74. M. A. Albota and F. N. Wong, “Efficient single-photon counting at 1.55  μm by means of frequency upconversion,” Opt. Lett. 29, 1449–1451 (2004).
    [Crossref]
  75. R. V. Roussev, C. Langrock, J. R. Kurz, and M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29, 1518–1520 (2004).
    [Crossref]
  76. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
    [Crossref]
  77. R. T. Thew, S. Tanzilli, L. Krainer, S. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
    [Crossref]
  78. M. Legré, R. Thew, H. Zbinden, and N. Gisin, “High resolution optical time domain reflectometer based on 1.55  μm up-conversion photon-counting module,” Opt. Express 15, 8237–8242 (2007).
    [Crossref]
  79. G. Giorgi, P. Mataloni, and F. De Martini, “Frequency hopping in quantum interferometry: efficient up-down conversion for qubits and ebits,” Phys. Rev. Lett. 90, 027902 (2003).
    [Crossref]
  80. Y. Ding and Z. Ou, “Frequency downconversion for a quantum network,” Opt. Lett. 35, 2591–2593 (2010).
    [Crossref]
  81. H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82, 013833 (2010).
    [Crossref]
  82. R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
    [Crossref]
  83. N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18, 22099–22104 (2010).
    [Crossref]
  84. R. Ikuta, T. Kobayashi, S. Yasui, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Frequency down-conversion of 637  nm light to the telecommunication band for non-classical light emitted from NV centers in diamond,” Opt. Express 22, 11205–11214 (2014).
    [Crossref]
  85. P. S. Kuo, J. S. Pelc, O. Slattery, Y.-S. Kim, M. M. Fejer, and X. Tang, “Reducing noise in single-photon-level frequency conversion,” Opt. Lett. 38, 1310–1312 (2013).
    [Crossref]
  86. Y.-H. Cheng, T. Thomay, G. S. Solomon, A. L. Migdall, and S. V. Polyakov, “Statistically background-free, phase-preserving parametric up-conversion with faint light,” Opt. Express 23, 18671–18678 (2015).
    [Crossref]
  87. F. Steinlechner, N. Hermosa, V. Pruneri, and J. P. Torres, “Frequency conversion of structured light,” Sci. Rep. 6, 21390 (2016).
    [Crossref]
  88. H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7, 024021 (2017).
    [Crossref]
  89. N. Maring, P. Farrera, K. Kutluer, M. Mazzera, G. Heinze, and H. de Riedmatten, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
    [Crossref]
  90. M. Raymer, S. van Enk, C. McKinstrie, and H. McGuinness, “Interference of two photons of different color,” Opt. Commun. 283, 747–752 (2010).
    [Crossref]
  91. S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
    [Crossref]
  92. T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong-Ou-Mandel interference,” Nat. Photonics 10, 441–444 (2016).
    [Crossref]
  93. A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Opt. Express 19, 13770–13778 (2011).
    [Crossref]
  94. B. Brecht, A. Eckstein, and C. Silberhorn, “Controlling the correlations in frequency upconversion in PPLN and PPKTP waveguides,” Phys. Status Solidi C 8, 1235–1238 (2011).
    [Crossref]
  95. D. V. Reddy, M. G. Raymer, C. J. McKinstrie, L. Mejling, and K. Rottwitt, “Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides,” Opt. Express 21, 13840–13863 (2013).
    [Crossref]
  96. N. Quesada and J. E. Sipe, “Effects of time ordering in quantum nonlinear optics,” Phys. Rev. A 90, 1–13 (2014).
    [Crossref]
  97. D. V. Reddy, M. G. Raymer, and C. J. McKinstrie, “Efficient sorting of quantum-optical wave packets by temporal-mode interferometry,” Opt. Lett. 39, 2924–2927 (2014).
    [Crossref]
  98. P. Manurkar, N. Jain, M. Silver, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Multidimensional mode-separable frequency conversion for high-speed quantum communication,” Optica 3, 1300–1307 (2016).
    [Crossref]
  99. B. Brecht, A. Eckstein, R. Ricken, V. Quiring, H. Suche, L. Sansoni, and C. Silberhorn, “Demonstration of coherent time-frequency Schmidt mode selection using dispersion-engineered frequency conversion,” Phys. Rev. A 90, 030302 (2014).
    [Crossref]
  100. A. S. Kowligy, P. Manurkar, N. V. Corzo, V. G. Velev, M. Silver, R. P. Scott, S. J. B. Yoo, P. Kumar, G. S. Kanter, and Y.-P. Huang, “Quantum optical arbitrary waveform manipulation and measurement in real time,” Opt. Express 22, 27942–27957 (2014).
    [Crossref]
  101. J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
    [Crossref]
  102. Z. Zheng and A. Weiner, “Spectral phase correlation of coded femtosecond pulses by second-harmonic generation in thick nonlinear crystals,” Opt. Lett. 25, 984–986 (2000).
    [Crossref]
  103. Z. Zheng, A. Weiner, K. Parameswaran, M. Chou, and M. Fejer, “Low-power spectral phase correlator using periodically poled LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 13, 376–378 (2001).
    [Crossref]
  104. J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112, 133602 (2014).
    [Crossref]
  105. V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” arXiv 1607.03001 (2018).
  106. Y.-P. Huang and P. Kumar, “Mode-resolved photon counting via cascaded quantum frequency conversion,” Opt. Lett. 38, 468–470 (2013).
    [Crossref]
  107. P. Manurkar, N. Jain, P. Kumar, and G. S. Kanter, “Programmable optical waveform reshaping on a picosecond timescale,” Opt. Lett. 42, 951–954 (2017).
    [Crossref]
  108. A. Shahverdi, Y. M. Sua, L. Tumeh, and Y.-P. Huang, “Quantum parametric mode sorting: beating the time-frequency filtering,” Sci. Rep. 7, 6495 (2017).
    [Crossref]
  109. D. V. Reddy and M. G. Raymer, “Engineering temporal-mode-selective frequency conversion in nonlinear optical waveguides: from theory to experiment,” Opt. Express 25, 12952–12966 (2017).
    [Crossref]
  110. D. V. Reddy and M. G. Raymer, “High-selectivity quantum pulse gating of photonic temporal modes using all-optical Ramsey interferometry,” Optica 5, 423–428(2018).
  111. D. V. Reddy, M. G. Raymer, and C. J. McKinstrie, “Sorting photon wave packets using temporal-mode interferometry based on multiple-stage quantum frequency conversion,” Phys. Rev. A 91, 012323 (2015).
    [Crossref]
  112. N. Quesada and J. E. Sipe, “High efficiency in mode-selective frequency conversion,” Opt. Lett. 41, 364–367 (2016).
    [Crossref]
  113. J. Nunn, I. Walmsley, M. Raymer, K. Surmacz, F. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wave packets into an atomic memory,” Phys. Rev. A 75, 011401 (2007).
    [Crossref]
  114. Z. Zheng, O. Mishina, N. Treps, and C. Fabre, “Atomic quantum memory for multimode frequency combs,” Phys. Rev. A 91, 031802 (2015).
    [Crossref]
  115. K. A. G. Fisher, D. G. England, J.-P. W. MacLean, P. J. Bustard, K. J. Resch, and B. J. Sussman, “Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory,” Nat. Commun. 7, 11200 (2016).
    [Crossref]
  116. P. J. Bustard, D. G. England, K. Heshami, C. Kupchak, and B. J. Sussman, “Quantum frequency conversion with ultra-broadband tuning in a Raman memory,” Phys. Rev. A 95, 053816 (2017).
    [Crossref]
  117. J. H. Munns, S. Park, B. Brecht, and I. A. Walmsley, “Temporal amplitude & phase: algorithmic reconstruction via time-domain interferometry (teAPARTI),” in Frontiers in Optics (Optical Society of America, 2017), paper JW3A-34.
  118. J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
    [Crossref]
  119. D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum optical waveform conversion,” Phys. Rev. Lett. 106, 130501 (2011).
    [Crossref]
  120. I. Agha, S. Ates, L. Sapienza, and K. Srinivasan, “Spectral broadening and shaping of nanosecond pulses: toward shaping of single photons from quantum emitters,” Opt. Lett. 39, 5677–5680 (2014).
    [Crossref]
  121. G. Heinze, H. de Riedmatten, K. Kutluer, M. Mazzera, N. Maring, and P. Farrera, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
    [Crossref]
  122. M. Allgaier, V. Ansari, C. Eigner, V. Quiring, R. Ricken, J. M. Donohue, T. Czerniuk, M. Aßmann, M. Bayer, B. Brecht, and C. Silberhorn, “Streak camera imaging of single photons at telecom wavelength,” Appl. Phys. Lett. 112, 031110 (2018).
    [Crossref]
  123. J.-P. W. MacLean, J. M. Donohue, and K. J. Resch, “Direct characterization of ultrafast energy-time entangled photon pairs,” Phys. Rev. Lett. 120, 053601 (2018).
    [Crossref]
  124. J. M. Donohue, J. Lavoie, and K. J. Resch, “Ultrafast time-division demultiplexing of polarization-entangled photons,” Phys. Rev. Lett. 113, 163602 (2014).
    [Crossref]
  125. B. H. Kolner and M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett. 14, 630–632 (1989).
    [Crossref]
  126. C. Bennett, R. Scott, and B. Kolner, “Temporal magnification and reversal of 100  Gb/s optical data with an up-conversion time microscope,” Appl. Phys. Lett. 65, 2513–2515 (1994).
    [Crossref]
  127. J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7, 363–366 (2013).
    [Crossref]
  128. J. M. Donohue, M. Mastrovich, and K. J. Resch, “Spectrally engineering photonic entanglement with a time lens,” Phys. Rev. Lett. 117, 1–15 (2016).
    [Crossref]
  129. J. M. Donohue, M. D. Mazurek, and K. J. Resch, “Theory of high-efficiency sum-frequency generation for single-photon waveform conversion,” Phys. Rev. A 91, 1–11 (2015).
    [Crossref]
  130. G. Patera and M. I. Kolobov, “Temporal imaging with squeezed light,” Opt. Lett. 40, 1125–1128 (2015).
    [Crossref]
  131. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33, 1047–1049 (2008).
    [Crossref]
  132. J. Shi, G. Patera, M. I. Kolobov, and S. Han, “Quantum temporal imaging by four-wave mixing,” Opt. Lett. 42, 3121–3124 (2017).
    [Crossref]
  133. M. Karpiński, M. Jachura, L. J. Wright, and B. J. Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photonics 11, 53–57 (2016).
    [Crossref]
  134. L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
    [Crossref]
  135. S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
    [Crossref]
  136. N. Matsuda, “Deterministic reshaping of single-photon spectra using cross-phase modulation,” Sci. Adv. 2, e1501223 (2016).
    [Crossref]
  137. S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury, and F. Vatan, “A new proof for the existence of mutually unbiased bases,” Algorithmica 34, 512–528 (2002).
    [Crossref]
  138. W. K. Wootters and B. D. Fields, “Optimal state-determination by mutually unbiased measurements,” Ann. Phys. 191, 363–381 (1989).
    [Crossref]
  139. S. J. Nowierski, N. N. Oza, P. Kumar, and G. S. Kanter, “Tomographic reconstruction of time-bin-entangled qudits,” Phys. Rev. A 94, 042328 (2016).
    [Crossref]
  140. S. Schwarz, B. Bessire, and A. Stefanov, “Experimental violation of a d-dimensional Bell inequality using energy-time entangled photons,” Int. J. Quantum Inf. 12, 1560026 (2014).
    [Crossref]
  141. M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
    [Crossref]
  142. M. Agnew, J. Leach, M. McLaren, F. S. Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84, 062101 (2011).
    [Crossref]
  143. J. M. Arrazola, O. Gittsovich, and N. Lütkenhaus, “Accessible nonlinear entanglement witnesses,” Phys. Rev. A 85, 062327 (2012).
    [Crossref]
  144. M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. USA 111, 6243–6247 (2014).
    [Crossref]
  145. Z. Huang, L. Maccone, A. Karim, C. Macchiavello, R. J. Chapman, and A. Peruzzo, “High-dimensional entanglement certification,” Sci. Rep. 6, 27637 (2016).
    [Crossref]
  146. P. Erker, M. Krenn, and M. Huber, “Quantifying high dimensional entanglement with two mutually unbiased bases,” Quantum 1, 22 (2017).
    [Crossref]
  147. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10  km apart,” Phys. Rev. Lett. 81, 3563–3566 (1998).
    [Crossref]
  148. I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
    [Crossref]
  149. R. Valivarthi, Q. Zhou, G. H. Aguilar, V. B. Verma, F. Marsili, M. D. Shaw, S. W. Nam, D. Oblak, and W. Tittel, “Quantum teleportation across a metropolitan fibre network,” Nat. Photonics 10, 676–680 (2016).
    [Crossref]
  150. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug-and-play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
    [Crossref]
  151. T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
    [Crossref]
  152. Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536–542 (2015).
    [Crossref]
  153. T. Ikuta and H. Takesue, “Four-dimensional entanglement distribution over 100  km,” Sci. Rep. 8, 817 (2018).
    [Crossref]
  154. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
    [Crossref]
  155. R. T. Thew, A. Acin, H. Zbinden, and N. Gisin, “Bell-type test of energy-time entangled qutrits,” Phys. Rev. Lett. 93, 010503 (2004).
    [Crossref]
  156. J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, “Coherent ultrafast measurement of time-bin encoded photons,” Phys. Rev. Lett. 111, 153602 (2013).
    [Crossref]
  157. K. A. O’Donnell and A. B. U’Ren, “Time-resolved up-conversion of entangled photon pairs,” Phys. Rev. Lett. 103, 123602 (2009).
    [Crossref]
  158. A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
    [Crossref]
  159. L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
    [Crossref]
  160. J. A. Jaramillo-Villegas, P. Imany, O. D. Odele, D. E. Leaird, Z.-Y. Ou, M. Qi, and A. M. Weiner, “Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb,” Optica 4, 655–658 (2017).
    [Crossref]
  161. J. M. Lukens and P. Lougovski, “Frequency-encoded photonic qubits for scalable quantum information processing,” Optica 4, 8–16 (2017).
    [Crossref]
  162. H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird, A. M. Weiner, and P. Lougovski, “Electro-optic frequency beamsplitters and tritters for high-fidelity photonic quantum information processing,” Phys. Rev. Lett. 120, 030502 (2018).
    [Crossref]
  163. M. Grimau Puigibert, G. Aguilar, Q. Zhou, F. Marsili, M. Shaw, V. Verma, S. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
    [Crossref]
  164. M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
    [Crossref]
  165. V. Ansari, G. Harder, M. Allgaier, B. Brecht, and C. Silberhorn, “Temporal-mode measurement tomography of a quantum pulse gate,” Phys. Rev. A 96, 063817 (2017).
    [Crossref]
  166. V. A. Averchenko, V. Thiel, and N. Treps, “Non-linear photon subtraction from a multimode quantum field,” Phys. Rev. A 89, 063808 (2014).
    [Crossref]
  167. V. Averchenko, C. Jacquard, V. Thiel, C. Fabre, and N. Treps, “Multimode theory of single-photon subtraction,” New J. Phys. 18, 083042 (2016).
    [Crossref]
  168. Y.-S. Ra, C. Jacquard, A. Dufour, C. Fabre, and N. Treps, “Tomography of a mode-tunable coherent single-photon subtractor,” Phys. Rev. X 7, 031012 (2017).
    [Crossref]
  169. D. V. Reddy and M. G. Raymer, “Photonic temporal-mode multiplexing by quantum frequency conversion in a dichroic-finesse cavity,” arXiv:1708.01705 (2017).
  170. G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
    [Crossref]
  171. M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure,” Opt. Lett. 28, 558–560 (2003).
    [Crossref]
  172. M. Silver, P. Manurkar, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Spectrally multiplexed upconversion detection with C-band pump and signal wavelengths,” IEEE Photon. Technol. Lett. 29, 1097–1100 (2017).
    [Crossref]

2018 (6)

M. Allgaier, V. Ansari, C. Eigner, V. Quiring, R. Ricken, J. M. Donohue, T. Czerniuk, M. Aßmann, M. Bayer, B. Brecht, and C. Silberhorn, “Streak camera imaging of single photons at telecom wavelength,” Appl. Phys. Lett. 112, 031110 (2018).
[Crossref]

J.-P. W. MacLean, J. M. Donohue, and K. J. Resch, “Direct characterization of ultrafast energy-time entangled photon pairs,” Phys. Rev. Lett. 120, 053601 (2018).
[Crossref]

T. Ikuta and H. Takesue, “Four-dimensional entanglement distribution over 100  km,” Sci. Rep. 8, 817 (2018).
[Crossref]

H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird, A. M. Weiner, and P. Lougovski, “Electro-optic frequency beamsplitters and tritters for high-fidelity photonic quantum information processing,” Phys. Rev. Lett. 120, 030502 (2018).
[Crossref]

V. Ansari, E. Roccia, M. Santandrea, M. Doostdar, C. Eigner, L. Padberg, I. Gianani, M. Sbroscia, J. M. Donohue, L. Mancino, M. Barbieri, and C. Silberhorn, “Heralded generation of high-purity ultrashort single photons in programmable temporal shapes,” Opt. Express 26, 2764–2774 (2018).
[Crossref]

D. V. Reddy and M. G. Raymer, “High-selectivity quantum pulse gating of photonic temporal modes using all-optical Ramsey interferometry,” Optica 5, 423–428(2018).

2017 (25)

J. M. Lukens and P. Lougovski, “Frequency-encoded photonic qubits for scalable quantum information processing,” Optica 4, 8–16 (2017).
[Crossref]

P. Manurkar, N. Jain, P. Kumar, and G. S. Kanter, “Programmable optical waveform reshaping on a picosecond timescale,” Opt. Lett. 42, 951–954 (2017).
[Crossref]

C. Chen, C. Bo, M. Y. Niu, F. Xu, Z. Zhang, J. H. Shapiro, and F. N. C. Wong, “Efficient generation and characterization of spectrally factorable biphotons,” Opt. Express 25, 7300–7312 (2017).
[Crossref]

D. V. Reddy and M. G. Raymer, “Engineering temporal-mode-selective frequency conversion in nonlinear optical waveguides: from theory to experiment,” Opt. Express 25, 12952–12966 (2017).
[Crossref]

J. A. Jaramillo-Villegas, P. Imany, O. D. Odele, D. E. Leaird, Z.-Y. Ou, M. Qi, and A. M. Weiner, “Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb,” Optica 4, 655–658 (2017).
[Crossref]

J. Shi, G. Patera, M. I. Kolobov, and S. Han, “Quantum temporal imaging by four-wave mixing,” Opt. Lett. 42, 3121–3124 (2017).
[Crossref]

M. Grimau Puigibert, G. Aguilar, Q. Zhou, F. Marsili, M. Shaw, V. Verma, S. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
[Crossref]

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref]

V. Ansari, G. Harder, M. Allgaier, B. Brecht, and C. Silberhorn, “Temporal-mode measurement tomography of a quantum pulse gate,” Phys. Rev. A 96, 063817 (2017).
[Crossref]

Y.-S. Ra, C. Jacquard, A. Dufour, C. Fabre, and N. Treps, “Tomography of a mode-tunable coherent single-photon subtractor,” Phys. Rev. X 7, 031012 (2017).
[Crossref]

M. Silver, P. Manurkar, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Spectrally multiplexed upconversion detection with C-band pump and signal wavelengths,” IEEE Photon. Technol. Lett. 29, 1097–1100 (2017).
[Crossref]

P. Erker, M. Krenn, and M. Huber, “Quantifying high dimensional entanglement with two mutually unbiased bases,” Quantum 1, 22 (2017).
[Crossref]

G. Heinze, H. de Riedmatten, K. Kutluer, M. Mazzera, N. Maring, and P. Farrera, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref]

P. J. Bustard, D. G. England, K. Heshami, C. Kupchak, and B. J. Sussman, “Quantum frequency conversion with ultra-broadband tuning in a Raman memory,” Phys. Rev. A 95, 053816 (2017).
[Crossref]

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref]

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

V. Averchenko, D. Sych, G. Schunk, U. Vogl, C. Marquardt, and G. Leuchs, “Temporal shaping of single photons enabled by entanglement,” Phys. Rev. A 96, 043822 (2017).
[Crossref]

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95, 061803 (2017).
[Crossref]

G. Harder, V. Ansari, T. J. Bartley, B. Brecht, and C. Silberhorn, “Harnessing temporal modes for multi-photon quantum information processing based on integrated optics,” Philos. Trans. A Math. Phys. Eng. Sci. 375, 20160244 (2017).
[Crossref]

F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
[Crossref]

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7, 024021 (2017).
[Crossref]

N. Maring, P. Farrera, K. Kutluer, M. Mazzera, G. Heinze, and H. de Riedmatten, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref]

A. Shahverdi, Y. M. Sua, L. Tumeh, and Y.-P. Huang, “Quantum parametric mode sorting: beating the time-frequency filtering,” Sci. Rep. 7, 6495 (2017).
[Crossref]

2016 (18)

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref]

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong-Ou-Mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

F. Steinlechner, N. Hermosa, V. Pruneri, and J. P. Torres, “Frequency conversion of structured light,” Sci. Rep. 6, 21390 (2016).
[Crossref]

A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
[Crossref]

S. Lemieux, M. Manceau, P. R. Sharapova, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Engineering the frequency spectrum of bright squeezed vacuum via group velocity dispersion in an SU(1, 1) interferometer,” Phys. Rev. Lett. 117, 183601 (2016).
[Crossref]

G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits, and C. Silberhorn, “Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics,” Phys. Rev. Lett. 116, 143601 (2016).
[Crossref]

S. J. Nowierski, N. N. Oza, P. Kumar, and G. S. Kanter, “Tomographic reconstruction of time-bin-entangled qudits,” Phys. Rev. A 94, 042328 (2016).
[Crossref]

N. Matsuda, “Deterministic reshaping of single-photon spectra using cross-phase modulation,” Sci. Adv. 2, e1501223 (2016).
[Crossref]

K. A. G. Fisher, D. G. England, J.-P. W. MacLean, P. J. Bustard, K. J. Resch, and B. J. Sussman, “Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory,” Nat. Commun. 7, 11200 (2016).
[Crossref]

M. Karpiński, M. Jachura, L. J. Wright, and B. J. Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photonics 11, 53–57 (2016).
[Crossref]

Z. Huang, L. Maccone, A. Karim, C. Macchiavello, R. J. Chapman, and A. Peruzzo, “High-dimensional entanglement certification,” Sci. Rep. 6, 27637 (2016).
[Crossref]

R. Valivarthi, Q. Zhou, G. H. Aguilar, V. B. Verma, F. Marsili, M. D. Shaw, S. W. Nam, D. Oblak, and W. Tittel, “Quantum teleportation across a metropolitan fibre network,” Nat. Photonics 10, 676–680 (2016).
[Crossref]

J. M. Donohue, M. Mastrovich, and K. J. Resch, “Spectrally engineering photonic entanglement with a time lens,” Phys. Rev. Lett. 117, 1–15 (2016).
[Crossref]

V. Averchenko, C. Jacquard, V. Thiel, C. Fabre, and N. Treps, “Multimode theory of single-photon subtraction,” New J. Phys. 18, 083042 (2016).
[Crossref]

N. Quesada and J. E. Sipe, “High efficiency in mode-selective frequency conversion,” Opt. Lett. 41, 364–367 (2016).
[Crossref]

M. M. Weston, H. M. Chrzanowski, S. Wollmann, A. Boston, J. Ho, L. K. Shalm, V. B. Verma, M. S. Allman, S. W. Nam, R. B. Patel, S. Slussarenko, and G. J. Pryde, “Efficient and pure femtosecond-pulse-length source of polarization-entangled photons,” Opt. Express 24, 10869–10879 (2016).
[Crossref]

J.-L. Tambasco, A. Boes, L. G. Helt, M. J. Steel, and A. Mitchell, “Domain engineering algorithm for practical and effective photon sources,” Opt. Express 24, 19616–19626 (2016).
[Crossref]

P. Manurkar, N. Jain, M. Silver, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Multidimensional mode-separable frequency conversion for high-speed quantum communication,” Optica 3, 1300–1307 (2016).
[Crossref]

2015 (12)

G. Patera and M. I. Kolobov, “Temporal imaging with squeezed light,” Opt. Lett. 40, 1125–1128 (2015).
[Crossref]

C. Baune, J. Gniesmer, A. Schönbeck, C. E. Vollmer, J. Fiurášek, and R. Schnabel, “Strongly squeezed states at 532  nm based on frequency up-conversion,” Opt. Express 23, 16035–16041 (2015).
[Crossref]

Y.-H. Cheng, T. Thomay, G. S. Solomon, A. L. Migdall, and S. V. Polyakov, “Statistically background-free, phase-preserving parametric up-conversion with faint light,” Opt. Express 23, 18671–18678 (2015).
[Crossref]

J. M. Donohue, M. D. Mazurek, and K. J. Resch, “Theory of high-efficiency sum-frequency generation for single-photon waveform conversion,” Phys. Rev. A 91, 1–11 (2015).
[Crossref]

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536–542 (2015).
[Crossref]

Z. Zheng, O. Mishina, N. Treps, and C. Fabre, “Atomic quantum memory for multimode frequency combs,” Phys. Rev. A 91, 031802 (2015).
[Crossref]

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).
[Crossref]

N. Quesada and J. E. Sipe, “Time-ordering effects in the generation of entangled photons using nonlinear optical processes,” Phys. Rev. Lett. 114, 093903 (2015).
[Crossref]

W. Liu, N. Wang, Z. Li, and Y. Li, “Quantum frequency up-conversion of continuous variable entangled states,” Appl. Phys. Lett. 107, 231109 (2015).
[Crossref]

D. V. Reddy, M. G. Raymer, and C. J. McKinstrie, “Sorting photon wave packets using temporal-mode interferometry based on multiple-stage quantum frequency conversion,” Phys. Rev. A 91, 012323 (2015).
[Crossref]

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb Gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref]

2014 (17)

J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2014).
[Crossref]

K. Wakui, Y. Eto, H. Benichi, S. Izumi, T. Yanagida, K. Ema, T. Numata, D. Fukuda, M. Takeoka, and M. Sasaki, “Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength,” Sci. Rep. 4, 4535 (2014).
[Crossref]

M. Chen, N. C. Menicucci, and O. Pfister, “Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb,” Phys. Rev. Lett. 112, 120505 (2014).
[Crossref]

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112, 133602 (2014).
[Crossref]

N. Quesada and J. E. Sipe, “Effects of time ordering in quantum nonlinear optics,” Phys. Rev. A 90, 1–13 (2014).
[Crossref]

B. Brecht, A. Eckstein, R. Ricken, V. Quiring, H. Suche, L. Sansoni, and C. Silberhorn, “Demonstration of coherent time-frequency Schmidt mode selection using dispersion-engineered frequency conversion,” Phys. Rev. A 90, 030302 (2014).
[Crossref]

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532  nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref]

J. M. Donohue, J. Lavoie, and K. J. Resch, “Ultrafast time-division demultiplexing of polarization-entangled photons,” Phys. Rev. Lett. 113, 163602 (2014).
[Crossref]

S. Schwarz, B. Bessire, and A. Stefanov, “Experimental violation of a d-dimensional Bell inequality using energy-time entangled photons,” Int. J. Quantum Inf. 12, 1560026 (2014).
[Crossref]

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. USA 111, 6243–6247 (2014).
[Crossref]

V. A. Averchenko, V. Thiel, and N. Treps, “Non-linear photon subtraction from a multimode quantum field,” Phys. Rev. A 89, 063808 (2014).
[Crossref]

T. Lutz, P. Kolenderski, and T. Jennewein, “Demonstration of spectral correlation control in a source of polarization-entangled photon pairs at telecom wavelength,” Opt. Lett. 39, 1481–1484 (2014).
[Crossref]

R. Ikuta, T. Kobayashi, S. Yasui, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Frequency down-conversion of 637  nm light to the telecommunication band for non-classical light emitted from NV centers in diamond,” Opt. Express 22, 11205–11214 (2014).
[Crossref]

R.-B. Jin, R. Shimizu, K. Wakui, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength,” Opt. Express 22, 11498–11507 (2014).
[Crossref]

D. V. Reddy, M. G. Raymer, and C. J. McKinstrie, “Efficient sorting of quantum-optical wave packets by temporal-mode interferometry,” Opt. Lett. 39, 2924–2927 (2014).
[Crossref]

I. Agha, S. Ates, L. Sapienza, and K. Srinivasan, “Spectral broadening and shaping of nanosecond pulses: toward shaping of single photons from quantum emitters,” Opt. Lett. 39, 5677–5680 (2014).
[Crossref]

A. S. Kowligy, P. Manurkar, N. V. Corzo, V. G. Velev, M. Silver, R. P. Scott, S. J. B. Yoo, P. Kumar, G. S. Kanter, and Y.-P. Huang, “Quantum optical arbitrary waveform manipulation and measurement in real time,” Opt. Express 22, 27942–27957 (2014).
[Crossref]

2013 (10)

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7, 363–366 (2013).
[Crossref]

J. Ghalbouni, I. Agha, R. Frey, E. Diamanti, and I. Zaquine, “Experimental wavelength-division-multiplexed photon-pair distribution,” Opt. Lett. 38, 34–36 (2013).
[Crossref]

Y.-P. Huang and P. Kumar, “Mode-resolved photon counting via cascaded quantum frequency conversion,” Opt. Lett. 38, 468–470 (2013).
[Crossref]

P. Ben Dixon, J. H. Shapiro, and F. N. C. Wong, “Spectral engineering by Gaussian phase-matching for quantum photonics,” Opt. Express 21, 5879–5890 (2013).
[Crossref]

P. S. Kuo, J. S. Pelc, O. Slattery, Y.-S. Kim, M. M. Fejer, and X. Tang, “Reducing noise in single-photon-level frequency conversion,” Opt. Lett. 38, 1310–1312 (2013).
[Crossref]

D. V. Reddy, M. G. Raymer, C. J. McKinstrie, L. Mejling, and K. Rottwitt, “Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides,” Opt. Express 21, 13840–13863 (2013).
[Crossref]

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21, 13975–13985 (2013).
[Crossref]

J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, “Coherent ultrafast measurement of time-bin encoded photons,” Phys. Rev. Lett. 111, 153602 (2013).
[Crossref]

A. Christ, B. Brecht, W. Mauerer, and C. Silberhorn, “Theory of quantum frequency conversion and type-II parametric down-conversion in the high-gain regime,” New J. Phys. 15, 053038 (2013).
[Crossref]

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

2012 (7)

G. Patera, C. Navarrete-Benlloch, G. J. de Valcárcel, and C. Fabre, “Quantum coherent control of highly multipartite continuous-variable entangled states by tailoring parametric interactions,” Eur. Phys. J. D 66, 1–14 (2012).
[Crossref]

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref]

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
[Crossref]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref]

J. M. Arrazola, O. Gittsovich, and N. Lütkenhaus, “Accessible nonlinear entanglement witnesses,” Phys. Rev. A 85, 062327 (2012).
[Crossref]

2011 (11)

M. Agnew, J. Leach, M. McLaren, F. S. Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84, 062101 (2011).
[Crossref]

D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum optical waveform conversion,” Phys. Rev. Lett. 106, 130501 (2011).
[Crossref]

A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19, 55–65 (2011).
[Crossref]

A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Opt. Express 19, 13770–13778 (2011).
[Crossref]

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550  nm: performance and noise analysis,” Opt. Express 19, 21445–21456 (2011).
[Crossref]

T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express 19, 24434–24447 (2011).
[Crossref]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref]

B. Brecht, A. Eckstein, and C. Silberhorn, “Controlling the correlations in frequency upconversion in PPLN and PPKTP waveguides,” Phys. Status Solidi C 8, 1235–1238 (2011).
[Crossref]

M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
[Crossref]

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref]

2010 (9)

R. S. Bennink, “Optimal collinear Gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A 81, 053805 (2010).
[Crossref]

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82, 013833 (2010).
[Crossref]

M. Raymer, S. van Enk, C. McKinstrie, and H. McGuinness, “Interference of two photons of different color,” Opt. Commun. 283, 747–752 (2010).
[Crossref]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[Crossref]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref]

Y. Ding and Z. Ou, “Frequency downconversion for a quantum network,” Opt. Lett. 35, 2591–2593 (2010).
[Crossref]

N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18, 22099–22104 (2010).
[Crossref]

G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[Crossref]

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[Crossref]

2009 (1)

K. A. O’Donnell and A. B. U’Ren, “Time-resolved up-conversion of entangled photon pairs,” Phys. Rev. Lett. 103, 123602 (2009).
[Crossref]

2008 (4)

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33, 1047–1049 (2008).
[Crossref]

Y. M. Mikhailova, P. Volkov, and M. Fedorov, “Biphoton wave packets in parametric down-conversion: spectral and temporal structure and degree of entanglement,” Phys. Rev. A 78, 062327 (2008).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett. 101, 153602 (2008).
[Crossref]

2007 (6)

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8, 180–198 (2007).
[Crossref]

A. Valencia, A. Cere, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
[Crossref]

J. Nunn, I. Walmsley, M. Raymer, K. Surmacz, F. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wave packets into an atomic memory,” Phys. Rev. A 75, 011401 (2007).
[Crossref]

A. P. VanDevender and P. G. Kwiat, “Quantum transduction via frequency upconversion,” J. Opt. Soc. Am. B 24, 295–299 (2007).
[Crossref]

M. Legré, R. Thew, H. Zbinden, and N. Gisin, “High resolution optical time domain reflectometer based on 1.55  μm up-conversion photon-counting module,” Opt. Express 15, 8237–8242 (2007).
[Crossref]

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100  km using frequency up-conversion detectors,” Opt. Express 15, 13957–13964 (2007).
[Crossref]

2006 (5)

J. Huang, X. Xie, C. Langrock, R. Roussev, D. Hum, and M. Fejer, “Amplitude modulation and apodization of quasi-phase-matched interactions,” Opt. Lett. 31, 604–606 (2006).
[Crossref]

R. T. Thew, S. Tanzilli, L. Krainer, S. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal quantum computation with continuous-variable cluster states,” Phys. Rev. Lett. 97, 110501 (2006).
[Crossref]

G. J. De Valcarcel, G. Patera, N. Treps, and C. Fabre, “Multimode squeezing of frequency combs,” Phys. Rev. A 74, 061801 (2006).
[Crossref]

W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006).
[Crossref]

2005 (5)

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

O. Kuzucu, M. Fiorentino, M. Albota, F. N. C. Wong, and F. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 083601 (2005).
[Crossref]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
[Crossref]

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

2004 (5)

R. T. Thew, A. Acin, H. Zbinden, and N. Gisin, “Bell-type test of energy-time entangled qutrits,” Phys. Rev. Lett. 93, 010503 (2004).
[Crossref]

I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

M. A. Albota and F. N. Wong, “Efficient single-photon counting at 1.55  μm by means of frequency upconversion,” Opt. Lett. 29, 1449–1451 (2004).
[Crossref]

R. V. Roussev, C. Langrock, J. R. Kurz, and M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29, 1518–1520 (2004).
[Crossref]

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).
[Crossref]

2003 (4)

G. Giorgi, P. Mataloni, and F. De Martini, “Frequency hopping in quantum interferometry: efficient up-down conversion for qubits and ebits,” Phys. Rev. Lett. 90, 027902 (2003).
[Crossref]

A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inf. Comput. 3, 480–502 (2003).

M. B. Nasr, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure,” Opt. Lett. 28, 558–560 (2003).
[Crossref]

2002 (2)

S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury, and F. Vatan, “A new proof for the existence of mutually unbiased bases,” Algorithmica 34, 512–528 (2002).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[Crossref]

2001 (3)

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchronization,” Nature 412, 417–419 (2001).
[Crossref]

Z. Zheng, A. Weiner, K. Parameswaran, M. Chou, and M. Fejer, “Low-power spectral phase correlator using periodically poled LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 13, 376–378 (2001).
[Crossref]

2000 (4)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[Crossref]

R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled photons produced by ultrashort pulses,” Phys. Rev. A 62, 053810 (2000).
[Crossref]

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite Hilbert space and entropy control,” Phys. Rev. Lett. 84, 5304–5307 (2000).
[Crossref]

Z. Zheng and A. Weiner, “Spectral phase correlation of coded femtosecond pulses by second-harmonic generation in thick nonlinear crystals,” Opt. Lett. 25, 984–986 (2000).
[Crossref]

1998 (1)

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10  km apart,” Phys. Rev. Lett. 81, 3563–3566 (1998).
[Crossref]

1997 (3)

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug-and-play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

W. Grice and I. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[Crossref]

T. Keller and M. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[Crossref]

1994 (1)

C. Bennett, R. Scott, and B. Kolner, “Temporal magnification and reversal of 100  Gb/s optical data with an up-conversion time microscope,” Appl. Phys. Lett. 65, 2513–2515 (1994).
[Crossref]

1993 (1)

H. Huang and J. H. Eberly, “Correlations and one-quantum pulse shapes in photon pair generation,” J. Mod. Opt. 40, 915–930 (1993).
[Crossref]

1992 (1)

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68, 2153–2156 (1992).
[Crossref]

1990 (2)

J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[Crossref]

P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15, 1476–1478 (1990).
[Crossref]

1989 (3)

B. H. Kolner and M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett. 14, 630–632 (1989).
[Crossref]

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
[Crossref]

W. K. Wootters and B. D. Fields, “Optimal state-determination by mutually unbiased measurements,” Ann. Phys. 191, 363–381 (1989).
[Crossref]

1987 (1)

C. Hong, Z.-Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Abe, E.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref]

Acin, A.

R. T. Thew, A. Acin, H. Zbinden, and N. Gisin, “Bell-type test of energy-time entangled qutrits,” Phys. Rev. Lett. 93, 010503 (2004).
[Crossref]

Agha, I.

Agnew, M.

J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, “Coherent ultrafast measurement of time-bin encoded photons,” Phys. Rev. Lett. 111, 153602 (2013).
[Crossref]

M. Agnew, J. Leach, M. McLaren, F. S. Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84, 062101 (2011).
[Crossref]

Aguilar, G.

M. Grimau Puigibert, G. Aguilar, Q. Zhou, F. Marsili, M. Shaw, V. Verma, S. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
[Crossref]

Aguilar, G. H.

R. Valivarthi, Q. Zhou, G. H. Aguilar, V. B. Verma, F. Marsili, M. D. Shaw, S. W. Nam, D. Oblak, and W. Tittel, “Quantum teleportation across a metropolitan fibre network,” Nat. Photonics 10, 676–680 (2016).
[Crossref]

Albota, M.

O. Kuzucu, M. Fiorentino, M. Albota, F. N. C. Wong, and F. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 083601 (2005).
[Crossref]

Albota, M. A.

Albrecht, R.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Alibart, O.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Allgaier, M.

M. Allgaier, V. Ansari, C. Eigner, V. Quiring, R. Ricken, J. M. Donohue, T. Czerniuk, M. Aßmann, M. Bayer, B. Brecht, and C. Silberhorn, “Streak camera imaging of single photons at telecom wavelength,” Appl. Phys. Lett. 112, 031110 (2018).
[Crossref]

V. Ansari, G. Harder, M. Allgaier, B. Brecht, and C. Silberhorn, “Temporal-mode measurement tomography of a quantum pulse gate,” Phys. Rev. A 96, 063817 (2017).
[Crossref]

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref]

V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” arXiv 1607.03001 (2018).

Allman, M. S.

Ansari, V.

M. Allgaier, V. Ansari, C. Eigner, V. Quiring, R. Ricken, J. M. Donohue, T. Czerniuk, M. Aßmann, M. Bayer, B. Brecht, and C. Silberhorn, “Streak camera imaging of single photons at telecom wavelength,” Appl. Phys. Lett. 112, 031110 (2018).
[Crossref]

V. Ansari, E. Roccia, M. Santandrea, M. Doostdar, C. Eigner, L. Padberg, I. Gianani, M. Sbroscia, J. M. Donohue, L. Mancino, M. Barbieri, and C. Silberhorn, “Heralded generation of high-purity ultrashort single photons in programmable temporal shapes,” Opt. Express 26, 2764–2774 (2018).
[Crossref]

V. Ansari, G. Harder, M. Allgaier, B. Brecht, and C. Silberhorn, “Temporal-mode measurement tomography of a quantum pulse gate,” Phys. Rev. A 96, 063817 (2017).
[Crossref]

G. Harder, V. Ansari, T. J. Bartley, B. Brecht, and C. Silberhorn, “Harnessing temporal modes for multi-photon quantum information processing based on integrated optics,” Philos. Trans. A Math. Phys. Eng. Sci. 375, 20160244 (2017).
[Crossref]

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref]

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21, 13975–13985 (2013).
[Crossref]

V. Ansari, B. Brecht, G. Harder, and C. Silberhorn, “Probing spectral-temporal correlations with a versatile integrated source of parametric down-conversion states,” arXiv:1404.7725 (2014).

V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” arXiv 1607.03001 (2018).

Arend, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Armstrong, S. C.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Arrazola, J. M.

J. M. Arrazola, O. Gittsovich, and N. Lütkenhaus, “Accessible nonlinear entanglement witnesses,” Phys. Rev. A 85, 062327 (2012).
[Crossref]

Asobe, M.

Aßmann, M.

M. Allgaier, V. Ansari, C. Eigner, V. Quiring, R. Ricken, J. M. Donohue, T. Czerniuk, M. Aßmann, M. Bayer, B. Brecht, and C. Silberhorn, “Streak camera imaging of single photons at telecom wavelength,” Appl. Phys. Lett. 112, 031110 (2018).
[Crossref]

Ates, S.

I. Agha, S. Ates, L. Sapienza, and K. Srinivasan, “Spectral broadening and shaping of nanosecond pulses: toward shaping of single photons from quantum emitters,” Opt. Lett. 39, 5677–5680 (2014).
[Crossref]

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref]

Averchenko, V.

V. Averchenko, D. Sych, G. Schunk, U. Vogl, C. Marquardt, and G. Leuchs, “Temporal shaping of single photons enabled by entanglement,” Phys. Rev. A 96, 043822 (2017).
[Crossref]

V. Averchenko, C. Jacquard, V. Thiel, C. Fabre, and N. Treps, “Multimode theory of single-photon subtraction,” New J. Phys. 18, 083042 (2016).
[Crossref]

Averchenko, V. A.

V. A. Averchenko, V. Thiel, and N. Treps, “Non-linear photon subtraction from a multimode quantum field,” Phys. Rev. A 89, 063808 (2014).
[Crossref]

Azaña, J.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

Badolato, A.

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref]

Baek, B.

Baldi, P.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Banaszek, K.

W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006).
[Crossref]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inf. Comput. 3, 480–502 (2003).

Bandyopadhyay, S.

S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury, and F. Vatan, “A new proof for the existence of mutually unbiased bases,” Algorithmica 34, 512–528 (2002).
[Crossref]

Barbieri, M.

Barrow, P.

F. Graffitti, P. Barrow, M. Proietti, D. Kundys, and A. Fedrizzi, “Independent high-purity photons created in domain-engineered crystals,” arXiv:1712.07140 (2017).

Bartley, T. J.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95, 061803 (2017).
[Crossref]

G. Harder, V. Ansari, T. J. Bartley, B. Brecht, and C. Silberhorn, “Harnessing temporal modes for multi-photon quantum information processing based on integrated optics,” Philos. Trans. A Math. Phys. Eng. Sci. 375, 20160244 (2017).
[Crossref]

G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits, and C. Silberhorn, “Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics,” Phys. Rev. Lett. 116, 143601 (2016).
[Crossref]

Baune, C.

C. Baune, J. Gniesmer, A. Schönbeck, C. E. Vollmer, J. Fiurášek, and R. Schnabel, “Strongly squeezed states at 532  nm based on frequency up-conversion,” Opt. Express 23, 16035–16041 (2015).
[Crossref]

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532  nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref]

Bayer, M.

M. Allgaier, V. Ansari, C. Eigner, V. Quiring, R. Ricken, J. M. Donohue, T. Czerniuk, M. Aßmann, M. Bayer, B. Brecht, and C. Silberhorn, “Streak camera imaging of single photons at telecom wavelength,” Appl. Phys. Lett. 112, 031110 (2018).
[Crossref]

Becher, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Beijersbergen, M. W.

G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[Crossref]

Ben Dixon, P.

Benichi, H.

K. Wakui, Y. Eto, H. Benichi, S. Izumi, T. Yanagida, K. Ema, T. Numata, D. Fukuda, M. Takeoka, and M. Sasaki, “Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength,” Sci. Rep. 4, 4535 (2014).
[Crossref]

Bennett, C.

C. Bennett, R. Scott, and B. Kolner, “Temporal magnification and reversal of 100  Gb/s optical data with an up-conversion time microscope,” Appl. Phys. Lett. 65, 2513–2515 (1994).
[Crossref]

Bennink, R. S.

Berkhout, G. C.

G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[Crossref]

Bessire, B.

S. Schwarz, B. Bessire, and A. Stefanov, “Experimental violation of a d-dimensional Bell inequality using energy-time entangled photons,” Int. J. Quantum Inf. 12, 1560026 (2014).
[Crossref]

Bienfang, J. C.

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536–542 (2015).
[Crossref]

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Bloomer, R.

M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
[Crossref]

Bo, C.

Boes, A.

Boston, A.

Boyd, R. W.

S. Lemieux, M. Manceau, P. R. Sharapova, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Engineering the frequency spectrum of bright squeezed vacuum via group velocity dispersion in an SU(1, 1) interferometer,” Phys. Rev. Lett. 117, 183601 (2016).
[Crossref]

M. Agnew, J. Leach, M. McLaren, F. S. Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84, 062101 (2011).
[Crossref]

Boykin, P. O.

S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury, and F. Vatan, “A new proof for the existence of mutually unbiased bases,” Algorithmica 34, 512–528 (2002).
[Crossref]

Branczyk, A. M.

F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
[Crossref]

A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
[Crossref]

A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19, 55–65 (2011).
[Crossref]

Branning, D.

R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled photons produced by ultrashort pulses,” Phys. Rev. A 62, 053810 (2000).
[Crossref]

Brecht, B.

M. Allgaier, V. Ansari, C. Eigner, V. Quiring, R. Ricken, J. M. Donohue, T. Czerniuk, M. Aßmann, M. Bayer, B. Brecht, and C. Silberhorn, “Streak camera imaging of single photons at telecom wavelength,” Appl. Phys. Lett. 112, 031110 (2018).
[Crossref]

G. Harder, V. Ansari, T. J. Bartley, B. Brecht, and C. Silberhorn, “Harnessing temporal modes for multi-photon quantum information processing based on integrated optics,” Philos. Trans. A Math. Phys. Eng. Sci. 375, 20160244 (2017).
[Crossref]

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

V. Ansari, G. Harder, M. Allgaier, B. Brecht, and C. Silberhorn, “Temporal-mode measurement tomography of a quantum pulse gate,” Phys. Rev. A 96, 063817 (2017).
[Crossref]

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref]

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).
[Crossref]

B. Brecht, A. Eckstein, R. Ricken, V. Quiring, H. Suche, L. Sansoni, and C. Silberhorn, “Demonstration of coherent time-frequency Schmidt mode selection using dispersion-engineered frequency conversion,” Phys. Rev. A 90, 030302 (2014).
[Crossref]

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21, 13975–13985 (2013).
[Crossref]

A. Christ, B. Brecht, W. Mauerer, and C. Silberhorn, “Theory of quantum frequency conversion and type-II parametric down-conversion in the high-gain regime,” New J. Phys. 15, 053038 (2013).
[Crossref]

B. Brecht, A. Eckstein, and C. Silberhorn, “Controlling the correlations in frequency upconversion in PPLN and PPKTP waveguides,” Phys. Status Solidi C 8, 1235–1238 (2011).
[Crossref]

A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Opt. Express 19, 13770–13778 (2011).
[Crossref]

J. H. Munns, S. Park, B. Brecht, and I. A. Walmsley, “Temporal amplitude & phase: algorithmic reconstruction via time-domain interferometry (teAPARTI),” in Frontiers in Optics (Optical Society of America, 2017), paper JW3A-34.

V. Ansari, B. Brecht, G. Harder, and C. Silberhorn, “Probing spectral-temporal correlations with a versatile integrated source of parametric down-conversion states,” arXiv:1404.7725 (2014).

V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” arXiv 1607.03001 (2018).

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10  km apart,” Phys. Rev. Lett. 81, 3563–3566 (1998).
[Crossref]

Bustard, P. J.

P. J. Bustard, D. G. England, K. Heshami, C. Kupchak, and B. J. Sussman, “Quantum frequency conversion with ultra-broadband tuning in a Raman memory,” Phys. Rev. A 95, 053816 (2017).
[Crossref]

K. A. G. Fisher, D. G. England, J.-P. W. MacLean, P. J. Bustard, K. J. Resch, and B. J. Sussman, “Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory,” Nat. Commun. 7, 11200 (2016).
[Crossref]

Cai, Y.

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb Gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref]

Calkins, B.

Caspani, L.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

Cassemiro, K. N.

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

Cere, A.

A. Valencia, A. Cere, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
[Crossref]

Chalopin, B.

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref]

Chapman, R. J.

Z. Huang, L. Maccone, A. Karim, C. Macchiavello, R. J. Chapman, and A. Peruzzo, “High-dimensional entanglement certification,” Sci. Rep. 6, 27637 (2016).
[Crossref]

Chekhova, M. V.

S. Lemieux, M. Manceau, P. R. Sharapova, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Engineering the frequency spectrum of bright squeezed vacuum via group velocity dispersion in an SU(1, 1) interferometer,” Phys. Rev. Lett. 117, 183601 (2016).
[Crossref]

Chen, C.

Chen, M.

M. Chen, N. C. Menicucci, and O. Pfister, “Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb,” Phys. Rev. Lett. 112, 120505 (2014).
[Crossref]

Cheng, Y.-H.

Chou, M.

Z. Zheng, A. Weiner, K. Parameswaran, M. Chou, and M. Fejer, “Low-power spectral phase correlator using periodically poled LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 13, 376–378 (2001).
[Crossref]

Christ, A.

A. Christ, B. Brecht, W. Mauerer, and C. Silberhorn, “Theory of quantum frequency conversion and type-II parametric down-conversion in the high-gain regime,” New J. Phys. 15, 053038 (2013).
[Crossref]

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref]

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

Chrzanowski, H. M.

Chu, S. T.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

Cincio, L.

A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
[Crossref]

Cino, A.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

Clemmen, S.

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref]

Corney, J. F.

D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum optical waveform conversion,” Phys. Rev. Lett. 106, 130501 (2011).
[Crossref]

Cortés, L. R.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

Corzo, N. V.

Courtial, J.

G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[Crossref]

Cova, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Curtz, N.

Cussey, J.

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[Crossref]

Czerniuk, T.

M. Allgaier, V. Ansari, C. Eigner, V. Quiring, R. Ricken, J. M. Donohue, T. Czerniuk, M. Aßmann, M. Bayer, B. Brecht, and C. Silberhorn, “Streak camera imaging of single photons at telecom wavelength,” Appl. Phys. Lett. 112, 031110 (2018).
[Crossref]

Dayan, B.

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

de Araújo, R. M.

J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2014).
[Crossref]

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref]

De Greve, K.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref]

De Martini, F.

G. Giorgi, P. Mataloni, and F. De Martini, “Frequency hopping in quantum interferometry: efficient up-down conversion for qubits and ebits,” Phys. Rev. Lett. 90, 027902 (2003).
[Crossref]

de Riedmatten, H.

N. Maring, P. Farrera, K. Kutluer, M. Mazzera, G. Heinze, and H. de Riedmatten, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref]

G. Heinze, H. de Riedmatten, K. Kutluer, M. Mazzera, N. Maring, and P. Farrera, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref]

I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

De Valcarcel, G. J.

G. J. De Valcarcel, G. Patera, N. Treps, and C. Fabre, “Multimode squeezing of frequency combs,” Phys. Rev. A 74, 061801 (2006).
[Crossref]

de Valcárcel, G. J.

G. Patera, C. Navarrete-Benlloch, G. J. de Valcárcel, and C. Fabre, “Quantum coherent control of highly multipartite continuous-variable entangled states by tailoring parametric interactions,” Eur. Phys. J. D 66, 1–14 (2012).
[Crossref]

Dezfooliyan, A.

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112, 133602 (2014).
[Crossref]

Diamanti, E.

Ding, Y.

Dirmeier, T.

Donohue, J. M.

V. Ansari, E. Roccia, M. Santandrea, M. Doostdar, C. Eigner, L. Padberg, I. Gianani, M. Sbroscia, J. M. Donohue, L. Mancino, M. Barbieri, and C. Silberhorn, “Heralded generation of high-purity ultrashort single photons in programmable temporal shapes,” Opt. Express 26, 2764–2774 (2018).
[Crossref]

M. Allgaier, V. Ansari, C. Eigner, V. Quiring, R. Ricken, J. M. Donohue, T. Czerniuk, M. Aßmann, M. Bayer, B. Brecht, and C. Silberhorn, “Streak camera imaging of single photons at telecom wavelength,” Appl. Phys. Lett. 112, 031110 (2018).
[Crossref]

J.-P. W. MacLean, J. M. Donohue, and K. J. Resch, “Direct characterization of ultrafast energy-time entangled photon pairs,” Phys. Rev. Lett. 120, 053601 (2018).
[Crossref]

J. M. Donohue, M. Mastrovich, and K. J. Resch, “Spectrally engineering photonic entanglement with a time lens,” Phys. Rev. Lett. 117, 1–15 (2016).
[Crossref]

J. M. Donohue, M. D. Mazurek, and K. J. Resch, “Theory of high-efficiency sum-frequency generation for single-photon waveform conversion,” Phys. Rev. A 91, 1–11 (2015).
[Crossref]

J. M. Donohue, J. Lavoie, and K. J. Resch, “Ultrafast time-division demultiplexing of polarization-entangled photons,” Phys. Rev. Lett. 113, 163602 (2014).
[Crossref]

J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, “Coherent ultrafast measurement of time-bin encoded photons,” Phys. Rev. Lett. 111, 153602 (2013).
[Crossref]

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7, 363–366 (2013).
[Crossref]

V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” arXiv 1607.03001 (2018).

Doostdar, M.

Dorenbos, S.

Dosseva, A.

A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
[Crossref]

Dufour, A.

Y.-S. Ra, C. Jacquard, A. Dufour, C. Fabre, and N. Treps, “Tomography of a mode-tunable coherent single-photon subtractor,” Phys. Rev. X 7, 031012 (2017).
[Crossref]

Eberle, T.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532  nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref]

Eberly, J. H.

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite Hilbert space and entropy control,” Phys. Rev. Lett. 84, 5304–5307 (2000).
[Crossref]

H. Huang and J. H. Eberly, “Correlations and one-quantum pulse shapes in photon pair generation,” J. Mod. Opt. 40, 915–930 (1993).
[Crossref]

Eckstein, A.

B. Brecht, A. Eckstein, R. Ricken, V. Quiring, H. Suche, L. Sansoni, and C. Silberhorn, “Demonstration of coherent time-frequency Schmidt mode selection using dispersion-engineered frequency conversion,” Phys. Rev. A 90, 030302 (2014).
[Crossref]

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Opt. Express 19, 13770–13778 (2011).
[Crossref]

B. Brecht, A. Eckstein, and C. Silberhorn, “Controlling the correlations in frequency upconversion in PPLN and PPKTP waveguides,” Phys. Status Solidi C 8, 1235–1238 (2011).
[Crossref]

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref]

Eigner, C.

M. Allgaier, V. Ansari, C. Eigner, V. Quiring, R. Ricken, J. M. Donohue, T. Czerniuk, M. Aßmann, M. Bayer, B. Brecht, and C. Silberhorn, “Streak camera imaging of single photons at telecom wavelength,” Appl. Phys. Lett. 112, 031110 (2018).
[Crossref]

V. Ansari, E. Roccia, M. Santandrea, M. Doostdar, C. Eigner, L. Padberg, I. Gianani, M. Sbroscia, J. M. Donohue, L. Mancino, M. Barbieri, and C. Silberhorn, “Heralded generation of high-purity ultrashort single photons in programmable temporal shapes,” Opt. Express 26, 2764–2774 (2018).
[Crossref]

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref]

Ema, K.

K. Wakui, Y. Eto, H. Benichi, S. Izumi, T. Yanagida, K. Ema, T. Numata, D. Fukuda, M. Takeoka, and M. Sasaki, “Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength,” Sci. Rep. 4, 4535 (2014).
[Crossref]

Emplit, P.

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[Crossref]

England, D. G.

P. J. Bustard, D. G. England, K. Heshami, C. Kupchak, and B. J. Sussman, “Quantum frequency conversion with ultra-broadband tuning in a Raman memory,” Phys. Rev. A 95, 053816 (2017).
[Crossref]

K. A. G. Fisher, D. G. England, J.-P. W. MacLean, P. J. Bustard, K. J. Resch, and B. J. Sussman, “Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory,” Nat. Commun. 7, 11200 (2016).
[Crossref]

Englund, D.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Erdmann, R.

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled photons produced by ultrashort pulses,” Phys. Rev. A 62, 053810 (2000).
[Crossref]

Erker, P.

P. Erker, M. Krenn, and M. Huber, “Quantifying high dimensional entanglement with two mutually unbiased bases,” Quantum 1, 22 (2017).
[Crossref]

Eto, Y.

K. Wakui, Y. Eto, H. Benichi, S. Izumi, T. Yanagida, K. Ema, T. Numata, D. Fukuda, M. Takeoka, and M. Sasaki, “Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength,” Sci. Rep. 4, 4535 (2014).
[Crossref]

Fabre, C.

Y.-S. Ra, C. Jacquard, A. Dufour, C. Fabre, and N. Treps, “Tomography of a mode-tunable coherent single-photon subtractor,” Phys. Rev. X 7, 031012 (2017).
[Crossref]

V. Averchenko, C. Jacquard, V. Thiel, C. Fabre, and N. Treps, “Multimode theory of single-photon subtraction,” New J. Phys. 18, 083042 (2016).
[Crossref]

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb Gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref]

Z. Zheng, O. Mishina, N. Treps, and C. Fabre, “Atomic quantum memory for multimode frequency combs,” Phys. Rev. A 91, 031802 (2015).
[Crossref]

J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2014).
[Crossref]

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref]

G. Patera, C. Navarrete-Benlloch, G. J. de Valcárcel, and C. Fabre, “Quantum coherent control of highly multipartite continuous-variable entangled states by tailoring parametric interactions,” Eur. Phys. J. D 66, 1–14 (2012).
[Crossref]

G. J. De Valcarcel, G. Patera, N. Treps, and C. Fabre, “Multimode squeezing of frequency combs,” Phys. Rev. A 74, 061801 (2006).
[Crossref]

Farrera, P.

G. Heinze, H. de Riedmatten, K. Kutluer, M. Mazzera, N. Maring, and P. Farrera, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref]

N. Maring, P. Farrera, K. Kutluer, M. Mazzera, G. Heinze, and H. de Riedmatten, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref]

Farsi, A.

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref]

Fedorov, M.

Y. M. Mikhailova, P. Volkov, and M. Fedorov, “Biphoton wave packets in parametric down-conversion: spectral and temporal structure and degree of entanglement,” Phys. Rev. A 78, 062327 (2008).
[Crossref]

Fedrizzi, A.

F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
[Crossref]

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7, 363–366 (2013).
[Crossref]

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
[Crossref]

A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19, 55–65 (2011).
[Crossref]

F. Graffitti, P. Barrow, M. Proietti, D. Kundys, and A. Fedrizzi, “Independent high-purity photons created in domain-engineered crystals,” arXiv:1712.07140 (2017).

Feizpour, A.

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

Fejer, M.

Fejer, M. M.

M. Silver, P. Manurkar, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Spectrally multiplexed upconversion detection with C-band pump and signal wavelengths,” IEEE Photon. Technol. Lett. 29, 1097–1100 (2017).
[Crossref]

P. Manurkar, N. Jain, M. Silver, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Multidimensional mode-separable frequency conversion for high-speed quantum communication,” Optica 3, 1300–1307 (2016).
[Crossref]

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112, 133602 (2014).
[Crossref]

P. S. Kuo, J. S. Pelc, O. Slattery, Y.-S. Kim, M. M. Fejer, and X. Tang, “Reducing noise in single-photon-level frequency conversion,” Opt. Lett. 38, 1310–1312 (2013).
[Crossref]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref]

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550  nm: performance and noise analysis,” Opt. Express 19, 21445–21456 (2011).
[Crossref]

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8, 180–198 (2007).
[Crossref]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
[Crossref]

Feng, J.

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref]

Fickler, R.

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. USA 111, 6243–6247 (2014).
[Crossref]

Fields, B. D.

W. K. Wootters and B. D. Fields, “Optimal state-determination by mutually unbiased measurements,” Ann. Phys. 191, 363–381 (1989).
[Crossref]

Fiorentino, M.

O. Kuzucu, M. Fiorentino, M. Albota, F. N. C. Wong, and F. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 083601 (2005).
[Crossref]

Fisher, K. A. G.

K. A. G. Fisher, D. G. England, J.-P. W. MacLean, P. J. Bustard, K. J. Resch, and B. J. Sussman, “Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory,” Nat. Commun. 7, 11200 (2016).
[Crossref]

Fiurášek, J.

C. Baune, J. Gniesmer, A. Schönbeck, C. E. Vollmer, J. Fiurášek, and R. Schnabel, “Strongly squeezed states at 532  nm based on frequency up-conversion,” Opt. Express 23, 16035–16041 (2015).
[Crossref]

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532  nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref]

Forchel, A.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref]

Foster, M. A.

Franson, J. D.

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
[Crossref]

Frey, R.

Friesem, A. A.

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

Fujiwara, M.

Fukuda, D.

K. Wakui, Y. Eto, H. Benichi, S. Izumi, T. Yanagida, K. Ema, T. Numata, D. Fukuda, M. Takeoka, and M. Sasaki, “Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength,” Sci. Rep. 4, 4535 (2014).
[Crossref]

Furusawa, A.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Gaeta, A. L.

Geraghty, D. F.

Gerke, S.

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb Gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref]

Gerrits, T.

G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits, and C. Silberhorn, “Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics,” Phys. Rev. Lett. 116, 143601 (2016).
[Crossref]

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express 19, 24434–24447 (2011).
[Crossref]

Ghalbouni, J.

Gianani, I.

Giorgi, G.

G. Giorgi, P. Mataloni, and F. De Martini, “Frequency hopping in quantum interferometry: efficient up-down conversion for qubits and ebits,” Phys. Rev. Lett. 90, 027902 (2003).
[Crossref]

Giovannetti, V.

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchronization,” Nature 412, 417–419 (2001).
[Crossref]

Gisin, N.

N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18, 22099–22104 (2010).
[Crossref]

M. Legré, R. Thew, H. Zbinden, and N. Gisin, “High resolution optical time domain reflectometer based on 1.55  μm up-conversion photon-counting module,” Opt. Express 15, 8237–8242 (2007).
[Crossref]

R. T. Thew, S. Tanzilli, L. Krainer, S. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

R. T. Thew, A. Acin, H. Zbinden, and N. Gisin, “Bell-type test of energy-time entangled qutrits,” Phys. Rev. Lett. 93, 010503 (2004).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10  km apart,” Phys. Rev. Lett. 81, 3563–3566 (1998).
[Crossref]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug-and-play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

Gittsovich, O.

J. M. Arrazola, O. Gittsovich, and N. Lütkenhaus, “Accessible nonlinear entanglement witnesses,” Phys. Rev. A 85, 062327 (2012).
[Crossref]

Glancy, S.

Gniesmer, J.

Goldschmidt, E. A.

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

Gong, Y.-X.

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536–542 (2015).
[Crossref]

Graffitti, F.

F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
[Crossref]

F. Graffitti, P. Barrow, M. Proietti, D. Kundys, and A. Fedrizzi, “Independent high-purity photons created in domain-engineered crystals,” arXiv:1712.07140 (2017).

Grice, W.

R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled photons produced by ultrashort pulses,” Phys. Rev. A 62, 053810 (2000).
[Crossref]

W. Grice and I. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[Crossref]

Grice, W. P.

T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express 19, 24434–24447 (2011).
[Crossref]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

Grimau Puigibert, M.

M. Grimau Puigibert, G. Aguilar, Q. Zhou, F. Marsili, M. Shaw, V. Verma, S. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
[Crossref]

Gu, M.

N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal quantum computation with continuous-variable cluster states,” Phys. Rev. Lett. 97, 110501 (2006).
[Crossref]

Gulinatti, A.

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref]

Hadfield, R. H.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref]

T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express 19, 24434–24447 (2011).
[Crossref]

Hafezi, M.

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

Halder, M.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Han, S.

Händchen, V.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532  nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref]

Harder, G.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref]

V. Ansari, G. Harder, M. Allgaier, B. Brecht, and C. Silberhorn, “Temporal-mode measurement tomography of a quantum pulse gate,” Phys. Rev. A 96, 063817 (2017).
[Crossref]

G. Harder, V. Ansari, T. J. Bartley, B. Brecht, and C. Silberhorn, “Harnessing temporal modes for multi-photon quantum information processing based on integrated optics,” Philos. Trans. A Math. Phys. Eng. Sci. 375, 20160244 (2017).
[Crossref]

G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits, and C. Silberhorn, “Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics,” Phys. Rev. Lett. 116, 143601 (2016).
[Crossref]

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21, 13975–13985 (2013).
[Crossref]

V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” arXiv 1607.03001 (2018).

V. Ansari, B. Brecht, G. Harder, and C. Silberhorn, “Probing spectral-temporal correlations with a versatile integrated source of parametric down-conversion states,” arXiv:1404.7725 (2014).

Heinze, G.

G. Heinze, H. de Riedmatten, K. Kutluer, M. Mazzera, N. Maring, and P. Farrera, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref]

N. Maring, P. Farrera, K. Kutluer, M. Mazzera, G. Heinze, and H. de Riedmatten, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref]

Helt, L. G.

Hepp, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Heritage, J. P.

J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[Crossref]

Hermosa, N.

F. Steinlechner, N. Hermosa, V. Pruneri, and J. P. Torres, “Frequency conversion of structured light,” Sci. Rep. 6, 21390 (2016).
[Crossref]

Herrmann, H.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95, 061803 (2017).
[Crossref]

Herzog, T.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug-and-play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

Heshami, K.

P. J. Bustard, D. G. England, K. Heshami, C. Kupchak, and B. J. Sussman, “Quantum frequency conversion with ultra-broadband tuning in a Raman memory,” Phys. Rev. A 95, 053816 (2017).
[Crossref]

Ho, J.

Höfling, S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref]

Hong, C.

C. Hong, Z.-Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Honjo, T.

Horansky, R. D.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Huang, H.

H. Huang and J. H. Eberly, “Correlations and one-quantum pulse shapes in photon pair generation,” J. Mod. Opt. 40, 915–930 (1993).
[Crossref]

Huang, J.

Huang, Y.-P.

Huang, Z.

Z. Huang, L. Maccone, A. Karim, C. Macchiavello, R. J. Chapman, and A. Peruzzo, “High-dimensional entanglement certification,” Sci. Rep. 6, 27637 (2016).
[Crossref]

Huber, M.

P. Erker, M. Krenn, and M. Huber, “Quantifying high dimensional entanglement with two mutually unbiased bases,” Quantum 1, 22 (2017).
[Crossref]

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. USA 111, 6243–6247 (2014).
[Crossref]

Hum, D.

Hum, D. S.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8, 180–198 (2007).
[Crossref]

Huttner, B.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug-and-play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

Huy, K. P.

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[Crossref]

Ikuta, R.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong-Ou-Mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

R. Ikuta, T. Kobayashi, S. Yasui, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Frequency down-conversion of 637  nm light to the telecommunication band for non-classical light emitted from NV centers in diamond,” Opt. Express 22, 11205–11214 (2014).
[Crossref]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref]

Ikuta, T.

T. Ikuta and H. Takesue, “Four-dimensional entanglement distribution over 100  km,” Sci. Rep. 8, 817 (2018).
[Crossref]

Imany, P.

Imoto, N.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong-Ou-Mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

R. Ikuta, T. Kobayashi, S. Yasui, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Frequency down-conversion of 637  nm light to the telecommunication band for non-classical light emitted from NV centers in diamond,” Opt. Express 22, 11205–11214 (2014).
[Crossref]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref]

Inoue, K.

Izumi, S.

K. Wakui, Y. Eto, H. Benichi, S. Izumi, T. Yanagida, K. Ema, T. Numata, D. Fukuda, M. Takeoka, and M. Sasaki, “Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength,” Sci. Rep. 4, 4535 (2014).
[Crossref]

Jachura, M.

M. Karpiński, M. Jachura, L. J. Wright, and B. J. Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photonics 11, 53–57 (2016).
[Crossref]

Jacquard, C.

Y.-S. Ra, C. Jacquard, A. Dufour, C. Fabre, and N. Treps, “Tomography of a mode-tunable coherent single-photon subtractor,” Phys. Rev. X 7, 031012 (2017).
[Crossref]

V. Averchenko, C. Jacquard, V. Thiel, C. Fabre, and N. Treps, “Multimode theory of single-photon subtraction,” New J. Phys. 18, 083042 (2016).
[Crossref]

Jain, N.

Jaksch, D.

J. Nunn, I. Walmsley, M. Raymer, K. Surmacz, F. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wave packets into an atomic memory,” Phys. Rev. A 75, 011401 (2007).
[Crossref]

Jaramillo-Villegas, J. A.

Jennewein, T.

Jetter, M.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Jian, P.

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref]

Jiang, S.

J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2014).
[Crossref]

Jin, R.-B.

Kaczmarek, K. T.

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

Kaji, T.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Kamada, H.

Kamp, M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref]

Kanter, G. S.

Karim, A.

Z. Huang, L. Maccone, A. Karim, C. Macchiavello, R. J. Chapman, and A. Peruzzo, “High-dimensional entanglement certification,” Sci. Rep. 6, 27637 (2016).
[Crossref]

Karpinski, M.

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref]

M. Karpiński, M. Jachura, L. J. Wright, and B. J. Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photonics 11, 53–57 (2016).
[Crossref]

Kärtner, F.

O. Kuzucu, M. Fiorentino, M. Albota, F. N. C. Wong, and F. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 083601 (2005).
[Crossref]

Kato, H.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref]

Keller, T.

T. Keller and M. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[Crossref]

Keßler, C. A.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Kettler, J.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Kielpinski, D.

D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum optical waveform conversion,” Phys. Rev. Lett. 106, 130501 (2011).
[Crossref]

Kim, N. Y.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref]

Kim, Y.-S.

Kitano, T.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref]

Klapwijk, T.

Knill, E.

Koashi, M.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong-Ou-Mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

R. Ikuta, T. Kobayashi, S. Yasui, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Frequency down-conversion of 637  nm light to the telecommunication band for non-classical light emitted from NV centers in diamond,” Opt. Express 22, 11205–11214 (2014).
[Crossref]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref]

Kobayashi, T.

Kolenderski, P.

Kolner, B.

C. Bennett, R. Scott, and B. Kolner, “Temporal magnification and reversal of 100  Gb/s optical data with an up-conversion time microscope,” Appl. Phys. Lett. 65, 2513–2515 (1994).
[Crossref]

Kolner, B. H.

Kolobov, M. I.

Kowligy, A. S.

Krainer, L.

R. T. Thew, S. Tanzilli, L. Krainer, S. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Krenn, M.

P. Erker, M. Krenn, and M. Huber, “Quantifying high dimensional entanglement with two mutually unbiased bases,” Quantum 1, 22 (2017).
[Crossref]

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. USA 111, 6243–6247 (2014).
[Crossref]

Kues, M.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

Kumar, P.

Kundys, D.

F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
[Crossref]

F. Graffitti, P. Barrow, M. Proietti, D. Kundys, and A. Fedrizzi, “Independent high-purity photons created in domain-engineered crystals,” arXiv:1712.07140 (2017).

Kuo, P. S.

Kupchak, C.

P. J. Bustard, D. G. England, K. Heshami, C. Kupchak, and B. J. Sussman, “Quantum frequency conversion with ultra-broadband tuning in a Raman memory,” Phys. Rev. A 95, 053816 (2017).
[Crossref]

Kurimura, S.

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett. 101, 153602 (2008).
[Crossref]

Kurz, J. R.

Kusaka, Y.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref]

Kutluer, K.

N. Maring, P. Farrera, K. Kutluer, M. Mazzera, G. Heinze, and H. de Riedmatten, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref]

G. Heinze, H. de Riedmatten, K. Kutluer, M. Mazzera, N. Maring, and P. Farrera, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref]

Kuzucu, O.

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett. 101, 153602 (2008).
[Crossref]

O. Kuzucu, M. Fiorentino, M. Albota, F. N. C. Wong, and F. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 083601 (2005).
[Crossref]

Kwiat, P. G.

A. P. VanDevender and P. G. Kwiat, “Quantum transduction via frequency upconversion,” J. Opt. Soc. Am. B 24, 295–299 (2007).
[Crossref]

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).
[Crossref]

Laiho, K.

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

Langford, N. K.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
[Crossref]

Langrock, C.

M. Silver, P. Manurkar, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Spectrally multiplexed upconversion detection with C-band pump and signal wavelengths,” IEEE Photon. Technol. Lett. 29, 1097–1100 (2017).
[Crossref]

P. Manurkar, N. Jain, M. Silver, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Multidimensional mode-separable frequency conversion for high-speed quantum communication,” Optica 3, 1300–1307 (2016).
[Crossref]

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112, 133602 (2014).
[Crossref]

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550  nm: performance and noise analysis,” Opt. Express 19, 21445–21456 (2011).
[Crossref]

J. Huang, X. Xie, C. Langrock, R. Roussev, D. Hum, and M. Fejer, “Amplitude modulation and apodization of quasi-phase-matched interactions,” Opt. Lett. 31, 604–606 (2006).
[Crossref]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
[Crossref]

R. V. Roussev, C. Langrock, J. R. Kurz, and M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29, 1518–1520 (2004).
[Crossref]

Lapkiewicz, R.

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. USA 111, 6243–6247 (2014).
[Crossref]

Lavery, M. P.

G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[Crossref]

Lavoie, J.

J. M. Donohue, J. Lavoie, and K. J. Resch, “Ultrafast time-division demultiplexing of polarization-entangled photons,” Phys. Rev. Lett. 113, 163602 (2014).
[Crossref]

J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, “Coherent ultrafast measurement of time-bin encoded photons,” Phys. Rev. Lett. 111, 153602 (2013).
[Crossref]

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7, 363–366 (2013).
[Crossref]

Law, C. K.

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite Hilbert space and entropy control,” Phys. Rev. Lett. 84, 5304–5307 (2000).
[Crossref]

Leach, J.

M. Agnew, J. Leach, M. McLaren, F. S. Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84, 062101 (2011).
[Crossref]

Leaird, D. E.

H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird, A. M. Weiner, and P. Lougovski, “Electro-optic frequency beamsplitters and tritters for high-fidelity photonic quantum information processing,” Phys. Rev. Lett. 120, 030502 (2018).
[Crossref]

J. A. Jaramillo-Villegas, P. Imany, O. D. Odele, D. E. Leaird, Z.-Y. Ou, M. Qi, and A. M. Weiner, “Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb,” Optica 4, 655–658 (2017).
[Crossref]

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112, 133602 (2014).
[Crossref]

Ledingham, P. M.

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

Lee, C.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Legré, M.

M. Legré, R. Thew, H. Zbinden, and N. Gisin, “High resolution optical time domain reflectometer based on 1.55  μm up-conversion photon-counting module,” Opt. Express 15, 8237–8242 (2007).
[Crossref]

I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

Lemieux, S.

S. Lemieux, M. Manceau, P. R. Sharapova, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Engineering the frequency spectrum of bright squeezed vacuum via group velocity dispersion in an SU(1, 1) interferometer,” Phys. Rev. Lett. 117, 183601 (2016).
[Crossref]

Lenhard, A.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Leuchs, G.

V. Averchenko, D. Sych, G. Schunk, U. Vogl, C. Marquardt, and G. Leuchs, “Temporal shaping of single photons enabled by entanglement,” Phys. Rev. A 96, 043822 (2017).
[Crossref]

S. Lemieux, M. Manceau, P. R. Sharapova, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Engineering the frequency spectrum of bright squeezed vacuum via group velocity dispersion in an SU(1, 1) interferometer,” Phys. Rev. Lett. 117, 183601 (2016).
[Crossref]

Li, Y.

W. Liu, N. Wang, Z. Li, and Y. Li, “Quantum frequency up-conversion of continuous variable entangled states,” Appl. Phys. Lett. 107, 231109 (2015).
[Crossref]

Li, Z.

W. Liu, N. Wang, Z. Li, and Y. Li, “Quantum frequency up-conversion of continuous variable entangled states,” Appl. Phys. Lett. 107, 231109 (2015).
[Crossref]

Liang, J.

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536–542 (2015).
[Crossref]

Lipson, M.

Lita, A.

Lita, A. E.

G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits, and C. Silberhorn, “Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics,” Phys. Rev. Lett. 116, 143601 (2016).
[Crossref]

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Little, B. E.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

Liu, W.

W. Liu, N. Wang, Z. Li, and Y. Li, “Quantum frequency up-conversion of continuous variable entangled states,” Appl. Phys. Lett. 107, 231109 (2015).
[Crossref]

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchronization,” Nature 412, 417–419 (2001).
[Crossref]

Lougovski, P.

H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird, A. M. Weiner, and P. Lougovski, “Electro-optic frequency beamsplitters and tritters for high-fidelity photonic quantum information processing,” Phys. Rev. Lett. 120, 030502 (2018).
[Crossref]

J. M. Lukens and P. Lougovski, “Frequency-encoded photonic qubits for scalable quantum information processing,” Optica 4, 8–16 (2017).
[Crossref]

Lu, H.-H.

H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird, A. M. Weiner, and P. Lougovski, “Electro-optic frequency beamsplitters and tritters for high-fidelity photonic quantum information processing,” Phys. Rev. Lett. 120, 030502 (2018).
[Crossref]

Lukens, J. M.

H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird, A. M. Weiner, and P. Lougovski, “Electro-optic frequency beamsplitters and tritters for high-fidelity photonic quantum information processing,” Phys. Rev. Lett. 120, 030502 (2018).
[Crossref]

J. M. Lukens and P. Lougovski, “Frequency-encoded photonic qubits for scalable quantum information processing,” Optica 4, 8–16 (2017).
[Crossref]

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112, 133602 (2014).
[Crossref]

Lundeen, J. S.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

Luo, K.-H.

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7, 024021 (2017).
[Crossref]

Lütkenhaus, N.

J. M. Arrazola, O. Gittsovich, and N. Lütkenhaus, “Accessible nonlinear entanglement witnesses,” Phys. Rev. A 85, 062327 (2012).
[Crossref]

Lutz, T.

Lvovsky, A. I.

W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006).
[Crossref]

Ma, L.

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550  nm: performance and noise analysis,” Opt. Express 19, 21445–21456 (2011).
[Crossref]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[Crossref]

Macchiavello, C.

Z. Huang, L. Maccone, A. Karim, C. Macchiavello, R. J. Chapman, and A. Peruzzo, “High-dimensional entanglement certification,” Sci. Rep. 6, 27637 (2016).
[Crossref]

Maccone, L.

Z. Huang, L. Maccone, A. Karim, C. Macchiavello, R. J. Chapman, and A. Peruzzo, “High-dimensional entanglement certification,” Sci. Rep. 6, 27637 (2016).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchronization,” Nature 412, 417–419 (2001).
[Crossref]

MacLean, J.-P. W.

J.-P. W. MacLean, J. M. Donohue, and K. J. Resch, “Direct characterization of ultrafast energy-time entangled photon pairs,” Phys. Rev. Lett. 120, 053601 (2018).
[Crossref]

K. A. G. Fisher, D. G. England, J.-P. W. MacLean, P. J. Bustard, K. J. Resch, and B. J. Sussman, “Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory,” Nat. Commun. 7, 11200 (2016).
[Crossref]

Maier, S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref]

Manceau, M.

S. Lemieux, M. Manceau, P. R. Sharapova, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Engineering the frequency spectrum of bright squeezed vacuum via group velocity dispersion in an SU(1, 1) interferometer,” Phys. Rev. Lett. 117, 183601 (2016).
[Crossref]

Mancino, L.

Mandel, L.

C. Hong, Z.-Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Manurkar, P.

Marcikic, I.

I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

Maring, N.

N. Maring, P. Farrera, K. Kutluer, M. Mazzera, G. Heinze, and H. de Riedmatten, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref]

G. Heinze, H. de Riedmatten, K. Kutluer, M. Mazzera, N. Maring, and P. Farrera, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref]

Marquardt, C.

V. Averchenko, D. Sych, G. Schunk, U. Vogl, C. Marquardt, and G. Leuchs, “Temporal shaping of single photons enabled by entanglement,” Phys. Rev. A 96, 043822 (2017).
[Crossref]

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21, 13975–13985 (2013).
[Crossref]

Marsili, F.

M. Grimau Puigibert, G. Aguilar, Q. Zhou, F. Marsili, M. Shaw, V. Verma, S. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
[Crossref]

R. Valivarthi, Q. Zhou, G. H. Aguilar, V. B. Verma, F. Marsili, M. D. Shaw, S. W. Nam, D. Oblak, and W. Tittel, “Quantum teleportation across a metropolitan fibre network,” Nat. Photonics 10, 676–680 (2016).
[Crossref]

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Massar, S.

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[Crossref]

Mastrovich, M.

J. M. Donohue, M. Mastrovich, and K. J. Resch, “Spectrally engineering photonic entanglement with a time lens,” Phys. Rev. Lett. 117, 1–15 (2016).
[Crossref]

Mataloni, P.

G. Giorgi, P. Mataloni, and F. De Martini, “Frequency hopping in quantum interferometry: efficient up-down conversion for qubits and ebits,” Phys. Rev. Lett. 90, 027902 (2003).
[Crossref]

Matsuda, N.

N. Matsuda, “Deterministic reshaping of single-photon spectra using cross-phase modulation,” Sci. Adv. 2, e1501223 (2016).
[Crossref]

Mauerer, W.

A. Christ, B. Brecht, W. Mauerer, and C. Silberhorn, “Theory of quantum frequency conversion and type-II parametric down-conversion in the high-gain regime,” New J. Phys. 15, 053038 (2013).
[Crossref]

Mazurek, M. D.

J. M. Donohue, M. D. Mazurek, and K. J. Resch, “Theory of high-efficiency sum-frequency generation for single-photon waveform conversion,” Phys. Rev. A 91, 1–11 (2015).
[Crossref]

Mazzera, M.

N. Maring, P. Farrera, K. Kutluer, M. Mazzera, G. Heinze, and H. de Riedmatten, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref]

G. Heinze, H. de Riedmatten, K. Kutluer, M. Mazzera, N. Maring, and P. Farrera, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref]

McGuinness, H.

M. Raymer, S. van Enk, C. McKinstrie, and H. McGuinness, “Interference of two photons of different color,” Opt. Commun. 283, 747–752 (2010).
[Crossref]

McGuinness, H. J.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref]

McKinstrie, C.

M. Raymer, S. van Enk, C. McKinstrie, and H. McGuinness, “Interference of two photons of different color,” Opt. Commun. 283, 747–752 (2010).
[Crossref]

McKinstrie, C. J.

D. V. Reddy, M. G. Raymer, and C. J. McKinstrie, “Sorting photon wave packets using temporal-mode interferometry based on multiple-stage quantum frequency conversion,” Phys. Rev. A 91, 012323 (2015).
[Crossref]

D. V. Reddy, M. G. Raymer, and C. J. McKinstrie, “Efficient sorting of quantum-optical wave packets by temporal-mode interferometry,” Opt. Lett. 39, 2924–2927 (2014).
[Crossref]

D. V. Reddy, M. G. Raymer, C. J. McKinstrie, L. Mejling, and K. Rottwitt, “Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides,” Opt. Express 21, 13840–13863 (2013).
[Crossref]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref]

McLaren, M.

M. Agnew, J. Leach, M. McLaren, F. S. Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84, 062101 (2011).
[Crossref]

McMahon, P. L.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref]

Mejling, L.

Menicucci, N. C.

M. Chen, N. C. Menicucci, and O. Pfister, “Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb,” Phys. Rev. Lett. 112, 120505 (2014).
[Crossref]

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal quantum computation with continuous-variable cluster states,” Phys. Rev. Lett. 97, 110501 (2006).
[Crossref]

Merolla, J.-M.

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[Crossref]

Meyer-Scott, E.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95, 061803 (2017).
[Crossref]

Michler, P.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Migdall, A. L.

Mikhailova, Y. M.

Y. M. Mikhailova, P. Volkov, and M. Fedorov, “Biphoton wave packets in parametric down-conversion: spectral and temporal structure and degree of entanglement,” Phys. Rev. A 78, 062327 (2008).
[Crossref]

Miki, S.

Mirin, R. P.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express 19, 24434–24447 (2011).
[Crossref]

Mishina, O.

Z. Zheng, O. Mishina, N. Treps, and C. Fabre, “Atomic quantum memory for multimode frequency combs,” Phys. Rev. A 91, 031802 (2015).
[Crossref]

Mitchell, A.

Mittal, S.

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

Miwa, Y.

M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
[Crossref]

Miyazawa, H.

Molina-Terriza, G.

A. Valencia, A. Cere, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
[Crossref]

Montaut, N.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95, 061803 (2017).
[Crossref]

Morandotti, R.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

Mosley, P. J.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

Moss, D. J.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

Muller, A.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug-and-play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

Munns, J. H.

J. H. Munns, S. Park, B. Brecht, and I. A. Walmsley, “Temporal amplitude & phase: algorithmic reconstruction via time-domain interferometry (teAPARTI),” in Frontiers in Optics (Optical Society of America, 2017), paper JW3A-34.

Munns, J. H. D.

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

Nam, S.

M. Grimau Puigibert, G. Aguilar, Q. Zhou, F. Marsili, M. Shaw, V. Verma, S. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
[Crossref]

Nam, S. W.

M. M. Weston, H. M. Chrzanowski, S. Wollmann, A. Boston, J. Ho, L. K. Shalm, V. B. Verma, M. S. Allman, S. W. Nam, R. B. Patel, S. Slussarenko, and G. J. Pryde, “Efficient and pure femtosecond-pulse-length source of polarization-entangled photons,” Opt. Express 24, 10869–10879 (2016).
[Crossref]

R. Valivarthi, Q. Zhou, G. H. Aguilar, V. B. Verma, F. Marsili, M. D. Shaw, S. W. Nam, D. Oblak, and W. Tittel, “Quantum teleportation across a metropolitan fibre network,” Nat. Photonics 10, 676–680 (2016).
[Crossref]

G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits, and C. Silberhorn, “Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics,” Phys. Rev. Lett. 116, 143601 (2016).
[Crossref]

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express 19, 24434–24447 (2011).
[Crossref]

Nasr, M. B.

M. B. Nasr, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

Natarajan, C. M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref]

Navarrete-Benlloch, C.

G. Patera, C. Navarrete-Benlloch, G. J. de Valcárcel, and C. Fabre, “Quantum coherent control of highly multipartite continuous-variable entangled states by tailoring parametric interactions,” Eur. Phys. J. D 66, 1–14 (2012).
[Crossref]

Nazarathy, M.

Nguyen, A. T.

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[Crossref]

Nielsen, M. A.

N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal quantum computation with continuous-variable cluster states,” Phys. Rev. Lett. 97, 110501 (2006).
[Crossref]

Nishida, Y.

Niu, M. Y.

Nowierski, S. J.

S. J. Nowierski, N. N. Oza, P. Kumar, and G. S. Kanter, “Tomographic reconstruction of time-bin-entangled qudits,” Phys. Rev. A 94, 042328 (2016).
[Crossref]

Numata, T.

K. Wakui, Y. Eto, H. Benichi, S. Izumi, T. Yanagida, K. Ema, T. Numata, D. Fukuda, M. Takeoka, and M. Sasaki, “Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength,” Sci. Rep. 4, 4535 (2014).
[Crossref]

Nunn, J.

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

J. Nunn, I. Walmsley, M. Raymer, K. Surmacz, F. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wave packets into an atomic memory,” Phys. Rev. A 75, 011401 (2007).
[Crossref]

O’Donnell, K. A.

K. A. O’Donnell and A. B. U’Ren, “Time-resolved up-conversion of entangled photon pairs,” Phys. Rev. Lett. 103, 123602 (2009).
[Crossref]

Oblak, D.

M. Grimau Puigibert, G. Aguilar, Q. Zhou, F. Marsili, M. Shaw, V. Verma, S. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
[Crossref]

R. Valivarthi, Q. Zhou, G. H. Aguilar, V. B. Verma, F. Marsili, M. D. Shaw, S. W. Nam, D. Oblak, and W. Tittel, “Quantum teleportation across a metropolitan fibre network,” Nat. Photonics 10, 676–680 (2016).
[Crossref]

Odele, O. D.

H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird, A. M. Weiner, and P. Lougovski, “Electro-optic frequency beamsplitters and tritters for high-fidelity photonic quantum information processing,” Phys. Rev. Lett. 120, 030502 (2018).
[Crossref]

J. A. Jaramillo-Villegas, P. Imany, O. D. Odele, D. E. Leaird, Z.-Y. Ou, M. Qi, and A. M. Weiner, “Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb,” Optica 4, 655–658 (2017).
[Crossref]

Olislager, L.

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[Crossref]

Orre, V. V.

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

Ou, Z.

Ou, Z.-Y.

Oza, N. N.

S. J. Nowierski, N. N. Oza, P. Kumar, and G. S. Kanter, “Tomographic reconstruction of time-bin-entangled qudits,” Phys. Rev. A 94, 042328 (2016).
[Crossref]

Padberg, L.

Padgett, M. J.

G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[Crossref]

Parameswaran, K.

Z. Zheng, A. Weiner, K. Parameswaran, M. Chou, and M. Fejer, “Low-power spectral phase correlator using periodically poled LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 13, 376–378 (2001).
[Crossref]

Park, S.

J. H. Munns, S. Park, B. Brecht, and I. A. Walmsley, “Temporal amplitude & phase: algorithmic reconstruction via time-domain interferometry (teAPARTI),” in Frontiers in Optics (Optical Society of America, 2017), paper JW3A-34.

Patel, R. B.

Patera, G.

J. Shi, G. Patera, M. I. Kolobov, and S. Han, “Quantum temporal imaging by four-wave mixing,” Opt. Lett. 42, 3121–3124 (2017).
[Crossref]

G. Patera and M. I. Kolobov, “Temporal imaging with squeezed light,” Opt. Lett. 40, 1125–1128 (2015).
[Crossref]

G. Patera, C. Navarrete-Benlloch, G. J. de Valcárcel, and C. Fabre, “Quantum coherent control of highly multipartite continuous-variable entangled states by tailoring parametric interactions,” Eur. Phys. J. D 66, 1–14 (2012).
[Crossref]

G. J. De Valcarcel, G. Patera, N. Treps, and C. Fabre, “Multimode squeezing of frequency combs,” Phys. Rev. A 74, 061801 (2006).
[Crossref]

Pe’er, A.

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

Pelc, J. S.

P. S. Kuo, J. S. Pelc, O. Slattery, Y.-S. Kim, M. M. Fejer, and X. Tang, “Reducing noise in single-photon-level frequency conversion,” Opt. Lett. 38, 1310–1312 (2013).
[Crossref]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref]

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550  nm: performance and noise analysis,” Opt. Express 19, 21445–21456 (2011).
[Crossref]

Peruzzo, A.

Z. Huang, L. Maccone, A. Karim, C. Macchiavello, R. J. Chapman, and A. Peruzzo, “High-dimensional entanglement certification,” Sci. Rep. 6, 27637 (2016).
[Crossref]

Peters, N. A.

H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird, A. M. Weiner, and P. Lougovski, “Electro-optic frequency beamsplitters and tritters for high-fidelity photonic quantum information processing,” Phys. Rev. Lett. 120, 030502 (2018).
[Crossref]

Pfister, O.

M. Chen, N. C. Menicucci, and O. Pfister, “Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb,” Phys. Rev. Lett. 112, 120505 (2014).
[Crossref]

M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
[Crossref]

Phillips, C. R.

Pinel, O.

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref]

Poem, E.

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

Polyakov, S. V.

Poppe, A.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
[Crossref]

Proietti, M.

F. Graffitti, P. Barrow, M. Proietti, D. Kundys, and A. Fedrizzi, “Independent high-purity photons created in domain-engineered crystals,” arXiv:1712.07140 (2017).

Pruneri, V.

F. Steinlechner, N. Hermosa, V. Pruneri, and J. P. Torres, “Frequency conversion of structured light,” Sci. Rep. 6, 21390 (2016).
[Crossref]

Pryde, G. J.

Pysher, M.

M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
[Crossref]

Qi, M.

Qiu, C.

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

Quesada, N.

N. Quesada and J. E. Sipe, “High efficiency in mode-selective frequency conversion,” Opt. Lett. 41, 364–367 (2016).
[Crossref]

N. Quesada and J. E. Sipe, “Time-ordering effects in the generation of entangled photons using nonlinear optical processes,” Phys. Rev. Lett. 114, 093903 (2015).
[Crossref]

N. Quesada and J. E. Sipe, “Effects of time ordering in quantum nonlinear optics,” Phys. Rev. A 90, 1–13 (2014).
[Crossref]

Quiring, V.

M. Allgaier, V. Ansari, C. Eigner, V. Quiring, R. Ricken, J. M. Donohue, T. Czerniuk, M. Aßmann, M. Bayer, B. Brecht, and C. Silberhorn, “Streak camera imaging of single photons at telecom wavelength,” Appl. Phys. Lett. 112, 031110 (2018).
[Crossref]

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref]

B. Brecht, A. Eckstein, R. Ricken, V. Quiring, H. Suche, L. Sansoni, and C. Silberhorn, “Demonstration of coherent time-frequency Schmidt mode selection using dispersion-engineered frequency conversion,” Phys. Rev. A 90, 030302 (2014).
[Crossref]

Ra, Y.-S.

Y.-S. Ra, C. Jacquard, A. Dufour, C. Fabre, and N. Treps, “Tomography of a mode-tunable coherent single-photon subtractor,” Phys. Rev. X 7, 031012 (2017).
[Crossref]

Radic, S.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref]

Radzewicz, C.

W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006).
[Crossref]

Rakher, M. T.

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[Crossref]

Ralph, T. C.

A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19, 55–65 (2011).
[Crossref]

N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal quantum computation with continuous-variable cluster states,” Phys. Rev. Lett. 97, 110501 (2006).
[Crossref]

Ramelow, S.

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref]

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. USA 111, 6243–6247 (2014).
[Crossref]

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
[Crossref]

Raymer, M.

M. Raymer, S. van Enk, C. McKinstrie, and H. McGuinness, “Interference of two photons of different color,” Opt. Commun. 283, 747–752 (2010).
[Crossref]

J. Nunn, I. Walmsley, M. Raymer, K. Surmacz, F. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wave packets into an atomic memory,” Phys. Rev. A 75, 011401 (2007).
[Crossref]

Raymer, M. G.

D. V. Reddy and M. G. Raymer, “High-selectivity quantum pulse gating of photonic temporal modes using all-optical Ramsey interferometry,” Optica 5, 423–428(2018).

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

D. V. Reddy and M. G. Raymer, “Engineering temporal-mode-selective frequency conversion in nonlinear optical waveguides: from theory to experiment,” Opt. Express 25, 12952–12966 (2017).
[Crossref]

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).
[Crossref]

D. V. Reddy, M. G. Raymer, and C. J. McKinstrie, “Sorting photon wave packets using temporal-mode interferometry based on multiple-stage quantum frequency conversion,” Phys. Rev. A 91, 012323 (2015).
[Crossref]

D. V. Reddy, M. G. Raymer, and C. J. McKinstrie, “Efficient sorting of quantum-optical wave packets by temporal-mode interferometry,” Opt. Lett. 39, 2924–2927 (2014).
[Crossref]

D. V. Reddy, M. G. Raymer, C. J. McKinstrie, L. Mejling, and K. Rottwitt, “Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides,” Opt. Express 21, 13840–13863 (2013).
[Crossref]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

D. V. Reddy and M. G. Raymer, “Photonic temporal-mode multiplexing by quantum frequency conversion in a dichroic-finesse cavity,” arXiv:1708.01705 (2017).

Rech, I.

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref]

R. T. Thew, S. Tanzilli, L. Krainer, S. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Reddy, D. V.

D. V. Reddy and M. G. Raymer, “High-selectivity quantum pulse gating of photonic temporal modes using all-optical Ramsey interferometry,” Optica 5, 423–428(2018).

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

D. V. Reddy and M. G. Raymer, “Engineering temporal-mode-selective frequency conversion in nonlinear optical waveguides: from theory to experiment,” Opt. Express 25, 12952–12966 (2017).
[Crossref]

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).
[Crossref]

D. V. Reddy, M. G. Raymer, and C. J. McKinstrie, “Sorting photon wave packets using temporal-mode interferometry based on multiple-stage quantum frequency conversion,” Phys. Rev. A 91, 012323 (2015).
[Crossref]

D. V. Reddy, M. G. Raymer, and C. J. McKinstrie, “Efficient sorting of quantum-optical wave packets by temporal-mode interferometry,” Opt. Lett. 39, 2924–2927 (2014).
[Crossref]

D. V. Reddy, M. G. Raymer, C. J. McKinstrie, L. Mejling, and K. Rottwitt, “Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides,” Opt. Express 21, 13840–13863 (2013).
[Crossref]

D. V. Reddy and M. G. Raymer, “Photonic temporal-mode multiplexing by quantum frequency conversion in a dichroic-finesse cavity,” arXiv:1708.01705 (2017).

Reid, D. T.

F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
[Crossref]

Reimer, C.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

Resch, K. J.

J.-P. W. MacLean, J. M. Donohue, and K. J. Resch, “Direct characterization of ultrafast energy-time entangled photon pairs,” Phys. Rev. Lett. 120, 053601 (2018).
[Crossref]

J. M. Donohue, M. Mastrovich, and K. J. Resch, “Spectrally engineering photonic entanglement with a time lens,” Phys. Rev. Lett. 117, 1–15 (2016).
[Crossref]

K. A. G. Fisher, D. G. England, J.-P. W. MacLean, P. J. Bustard, K. J. Resch, and B. J. Sussman, “Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory,” Nat. Commun. 7, 11200 (2016).
[Crossref]

J. M. Donohue, M. D. Mazurek, and K. J. Resch, “Theory of high-efficiency sum-frequency generation for single-photon waveform conversion,” Phys. Rev. A 91, 1–11 (2015).
[Crossref]

J. M. Donohue, J. Lavoie, and K. J. Resch, “Ultrafast time-division demultiplexing of polarization-entangled photons,” Phys. Rev. Lett. 113, 163602 (2014).
[Crossref]

J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, “Coherent ultrafast measurement of time-bin encoded photons,” Phys. Rev. Lett. 111, 153602 (2013).
[Crossref]

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7, 363–366 (2013).
[Crossref]

Restelli, A.

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536–542 (2015).
[Crossref]

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Ricken, R.

M. Allgaier, V. Ansari, C. Eigner, V. Quiring, R. Ricken, J. M. Donohue, T. Czerniuk, M. Aßmann, M. Bayer, B. Brecht, and C. Silberhorn, “Streak camera imaging of single photons at telecom wavelength,” Appl. Phys. Lett. 112, 031110 (2018).
[Crossref]

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref]

B. Brecht, A. Eckstein, R. Ricken, V. Quiring, H. Suche, L. Sansoni, and C. Silberhorn, “Demonstration of coherent time-frequency Schmidt mode selection using dispersion-engineered frequency conversion,” Phys. Rev. A 90, 030302 (2014).
[Crossref]

Roccia, E.

Rochas, A.

R. T. Thew, S. Tanzilli, L. Krainer, S. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Roslund, J.

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb Gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref]

J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2014).
[Crossref]

V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” arXiv 1607.03001 (2018).

Rottwitt, K.

Roussev, R.

Roussev, R. V.

Roux, F. S.

M. Agnew, J. Leach, M. McLaren, F. S. Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84, 062101 (2011).
[Crossref]

Roychowdhury, V.

S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury, and F. Vatan, “A new proof for the existence of mutually unbiased bases,” Algorithmica 34, 512–528 (2002).
[Crossref]

Roztocki, P.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

Rubin, M.

T. Keller and M. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[Crossref]

Rütz, H.

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7, 024021 (2017).
[Crossref]

Saleh, B. E.

M. B. Nasr, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

Salehi, J. A.

J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[Crossref]

Salem, R.

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33, 1047–1049 (2008).
[Crossref]

Samblowski, A.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532  nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref]

Sansoni, L.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref]

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95, 061803 (2017).
[Crossref]

B. Brecht, A. Eckstein, R. Ricken, V. Quiring, H. Suche, L. Sansoni, and C. Silberhorn, “Demonstration of coherent time-frequency Schmidt mode selection using dispersion-engineered frequency conversion,” Phys. Rev. A 90, 030302 (2014).
[Crossref]

V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” arXiv 1607.03001 (2018).

Santandrea, M.

Sapienza, L.

Sasaki, M.

Saunders, D. J.

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

Sbroscia, M.

Schnabel, R.

C. Baune, J. Gniesmer, A. Schönbeck, C. E. Vollmer, J. Fiurášek, and R. Schnabel, “Strongly squeezed states at 532  nm based on frequency up-conversion,” Opt. Express 23, 16035–16041 (2015).
[Crossref]

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532  nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref]

Schneider, C.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref]

Schönbeck, A.

Schulz, W.-M.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Schunk, G.

V. Averchenko, D. Sych, G. Schunk, U. Vogl, C. Marquardt, and G. Leuchs, “Temporal shaping of single photons enabled by entanglement,” Phys. Rev. A 96, 043822 (2017).
[Crossref]

Schwarz, S.

S. Schwarz, B. Bessire, and A. Stefanov, “Experimental violation of a d-dimensional Bell inequality using energy-time entangled photons,” Int. J. Quantum Inf. 12, 1560026 (2014).
[Crossref]

Sciara, S.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

Scott, R.

C. Bennett, R. Scott, and B. Kolner, “Temporal magnification and reversal of 100  Gb/s optical data with an up-conversion time microscope,” Appl. Phys. Lett. 65, 2513–2515 (1994).
[Crossref]

Scott, R. P.

Sergienko, A. V.

M. B. Nasr, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

Shahrokhshahi, R.

M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
[Crossref]

Shahverdi, A.

A. Shahverdi, Y. M. Sua, L. Tumeh, and Y.-P. Huang, “Quantum parametric mode sorting: beating the time-frequency filtering,” Sci. Rep. 7, 6495 (2017).
[Crossref]

Shalm, L. K.

Shapiro, J. H.

C. Chen, C. Bo, M. Y. Niu, F. Xu, Z. Zhang, J. H. Shapiro, and F. N. C. Wong, “Efficient generation and characterization of spectrally factorable biphotons,” Opt. Express 25, 7300–7312 (2017).
[Crossref]

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536–542 (2015).
[Crossref]

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

P. Ben Dixon, J. H. Shapiro, and F. N. C. Wong, “Spectral engineering by Gaussian phase-matching for quantum photonics,” Opt. Express 21, 5879–5890 (2013).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[Crossref]

Sharapova, P. R.

S. Lemieux, M. Manceau, P. R. Sharapova, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Engineering the frequency spectrum of bright squeezed vacuum via group velocity dispersion in an SU(1, 1) interferometer,” Phys. Rev. Lett. 117, 183601 (2016).
[Crossref]

Shaw, M.

M. Grimau Puigibert, G. Aguilar, Q. Zhou, F. Marsili, M. Shaw, V. Verma, S. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
[Crossref]

Shaw, M. D.

R. Valivarthi, Q. Zhou, G. H. Aguilar, V. B. Verma, F. Marsili, M. D. Shaw, S. W. Nam, D. Oblak, and W. Tittel, “Quantum teleportation across a metropolitan fibre network,” Nat. Photonics 10, 676–680 (2016).
[Crossref]

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Shi, J.

Shi, X.

A. Valencia, A. Cere, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
[Crossref]

Shimizu, R.

Shrestha, S.

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536–542 (2015).
[Crossref]

Silberberg, Y.

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

Silberhorn, C.

M. Allgaier, V. Ansari, C. Eigner, V. Quiring, R. Ricken, J. M. Donohue, T. Czerniuk, M. Aßmann, M. Bayer, B. Brecht, and C. Silberhorn, “Streak camera imaging of single photons at telecom wavelength,” Appl. Phys. Lett. 112, 031110 (2018).
[Crossref]

V. Ansari, E. Roccia, M. Santandrea, M. Doostdar, C. Eigner, L. Padberg, I. Gianani, M. Sbroscia, J. M. Donohue, L. Mancino, M. Barbieri, and C. Silberhorn, “Heralded generation of high-purity ultrashort single photons in programmable temporal shapes,” Opt. Express 26, 2764–2774 (2018).
[Crossref]

V. Ansari, G. Harder, M. Allgaier, B. Brecht, and C. Silberhorn, “Temporal-mode measurement tomography of a quantum pulse gate,” Phys. Rev. A 96, 063817 (2017).
[Crossref]

G. Harder, V. Ansari, T. J. Bartley, B. Brecht, and C. Silberhorn, “Harnessing temporal modes for multi-photon quantum information processing based on integrated optics,” Philos. Trans. A Math. Phys. Eng. Sci. 375, 20160244 (2017).
[Crossref]

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95, 061803 (2017).
[Crossref]

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7, 024021 (2017).
[Crossref]

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref]

G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits, and C. Silberhorn, “Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics,” Phys. Rev. Lett. 116, 143601 (2016).
[Crossref]

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).
[Crossref]

B. Brecht, A. Eckstein, R. Ricken, V. Quiring, H. Suche, L. Sansoni, and C. Silberhorn, “Demonstration of coherent time-frequency Schmidt mode selection using dispersion-engineered frequency conversion,” Phys. Rev. A 90, 030302 (2014).
[Crossref]

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21, 13975–13985 (2013).
[Crossref]

A. Christ, B. Brecht, W. Mauerer, and C. Silberhorn, “Theory of quantum frequency conversion and type-II parametric down-conversion in the high-gain regime,” New J. Phys. 15, 053038 (2013).
[Crossref]

B. Brecht, A. Eckstein, and C. Silberhorn, “Controlling the correlations in frequency upconversion in PPLN and PPKTP waveguides,” Phys. Status Solidi C 8, 1235–1238 (2011).
[Crossref]

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref]

A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Opt. Express 19, 13770–13778 (2011).
[Crossref]

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

V. Ansari, B. Brecht, G. Harder, and C. Silberhorn, “Probing spectral-temporal correlations with a versatile integrated source of parametric down-conversion states,” arXiv:1404.7725 (2014).

V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” arXiv 1607.03001 (2018).

Silver, M.

Simon, C.

Sipe, J. E.

N. Quesada and J. E. Sipe, “High efficiency in mode-selective frequency conversion,” Opt. Lett. 41, 364–367 (2016).
[Crossref]

N. Quesada and J. E. Sipe, “Time-ordering effects in the generation of entangled photons using nonlinear optical processes,” Phys. Rev. Lett. 114, 093903 (2015).
[Crossref]

N. Quesada and J. E. Sipe, “Effects of time ordering in quantum nonlinear optics,” Phys. Rev. A 90, 1–13 (2014).
[Crossref]

Slattery, O.

Slussarenko, S.

Smith, B. J.

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref]

M. Karpiński, M. Jachura, L. J. Wright, and B. J. Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photonics 11, 53–57 (2016).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

Söller, C.

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref]

Solomon, G. S.

Sornphiphatphong, C.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Sperling, J.

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb Gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref]

Srinivasan, K.

I. Agha, S. Ates, L. Sapienza, and K. Srinivasan, “Spectral broadening and shaping of nanosecond pulses: toward shaping of single photons from quantum emitters,” Opt. Lett. 39, 5677–5680 (2014).
[Crossref]

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[Crossref]

Stace, T. M.

Steel, M. J.

Stefanov, A.

S. Schwarz, B. Bessire, and A. Stefanov, “Experimental violation of a d-dimensional Bell inequality using energy-time entangled photons,” Int. J. Quantum Inf. 12, 1560026 (2014).
[Crossref]

Steinlechner, F.

F. Steinlechner, N. Hermosa, V. Pruneri, and J. P. Torres, “Frequency conversion of structured light,” Sci. Rep. 6, 21390 (2016).
[Crossref]

Stevens, M. J.

Sua, Y. M.

A. Shahverdi, Y. M. Sua, L. Tumeh, and Y.-P. Huang, “Quantum parametric mode sorting: beating the time-frequency filtering,” Sci. Rep. 7, 6495 (2017).
[Crossref]

Suche, H.

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7, 024021 (2017).
[Crossref]

B. Brecht, A. Eckstein, R. Ricken, V. Quiring, H. Suche, L. Sansoni, and C. Silberhorn, “Demonstration of coherent time-frequency Schmidt mode selection using dispersion-engineered frequency conversion,” Phys. Rev. A 90, 030302 (2014).
[Crossref]

Surmacz, K.

J. Nunn, I. Walmsley, M. Raymer, K. Surmacz, F. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wave packets into an atomic memory,” Phys. Rev. A 75, 011401 (2007).
[Crossref]

Sussman, B. J.

P. J. Bustard, D. G. England, K. Heshami, C. Kupchak, and B. J. Sussman, “Quantum frequency conversion with ultra-broadband tuning in a Raman memory,” Phys. Rev. A 95, 053816 (2017).
[Crossref]

K. A. G. Fisher, D. G. England, J.-P. W. MacLean, P. J. Bustard, K. J. Resch, and B. J. Sussman, “Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory,” Nat. Commun. 7, 11200 (2016).
[Crossref]

Suzuki, H.

Suzuki, S.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Sych, D.

V. Averchenko, D. Sych, G. Schunk, U. Vogl, C. Marquardt, and G. Leuchs, “Temporal shaping of single photons enabled by entanglement,” Phys. Rev. A 96, 043822 (2017).
[Crossref]

Tadanaga, O.

Takeoka, M.

K. Wakui, Y. Eto, H. Benichi, S. Izumi, T. Yanagida, K. Ema, T. Numata, D. Fukuda, M. Takeoka, and M. Sasaki, “Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength,” Sci. Rep. 4, 4535 (2014).
[Crossref]

Takesue, H.

Tambasco, J.-L.

Tang, X.

Tanzilli, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Teich, M. C.

M. B. Nasr, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

Terai, H.

Thew, R.

Thew, R. T.

R. T. Thew, S. Tanzilli, L. Krainer, S. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

R. T. Thew, A. Acin, H. Zbinden, and N. Gisin, “Bell-type test of energy-time entangled qutrits,” Phys. Rev. Lett. 93, 010503 (2004).
[Crossref]

Thiel, V.

V. Averchenko, C. Jacquard, V. Thiel, C. Fabre, and N. Treps, “Multimode theory of single-photon subtraction,” New J. Phys. 18, 083042 (2016).
[Crossref]

V. A. Averchenko, V. Thiel, and N. Treps, “Non-linear photon subtraction from a multimode quantum field,” Phys. Rev. A 89, 063808 (2014).
[Crossref]

Thomas, S.

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

Thomay, T.

Tiedau, J.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95, 061803 (2017).
[Crossref]

Tikhonova, O. V.

S. Lemieux, M. Manceau, P. R. Sharapova, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Engineering the frequency spectrum of bright squeezed vacuum via group velocity dispersion in an SU(1, 1) interferometer,” Phys. Rev. Lett. 117, 183601 (2016).
[Crossref]

Tittel, W.

M. Grimau Puigibert, G. Aguilar, Q. Zhou, F. Marsili, M. Shaw, V. Verma, S. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
[Crossref]

R. Valivarthi, Q. Zhou, G. H. Aguilar, V. B. Verma, F. Marsili, M. D. Shaw, S. W. Nam, D. Oblak, and W. Tittel, “Quantum teleportation across a metropolitan fibre network,” Nat. Photonics 10, 676–680 (2016).
[Crossref]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10  km apart,” Phys. Rev. Lett. 81, 3563–3566 (1998).
[Crossref]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug-and-play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

Torres, J. P.

F. Steinlechner, N. Hermosa, V. Pruneri, and J. P. Torres, “Frequency conversion of structured light,” Sci. Rep. 6, 21390 (2016).
[Crossref]

A. Valencia, A. Cere, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
[Crossref]

Tovstonog, S.

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett. 101, 153602 (2008).
[Crossref]

Treps, N.

Y.-S. Ra, C. Jacquard, A. Dufour, C. Fabre, and N. Treps, “Tomography of a mode-tunable coherent single-photon subtractor,” Phys. Rev. X 7, 031012 (2017).
[Crossref]

V. Averchenko, C. Jacquard, V. Thiel, C. Fabre, and N. Treps, “Multimode theory of single-photon subtraction,” New J. Phys. 18, 083042 (2016).
[Crossref]

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb Gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref]

Z. Zheng, O. Mishina, N. Treps, and C. Fabre, “Atomic quantum memory for multimode frequency combs,” Phys. Rev. A 91, 031802 (2015).
[Crossref]

V. A. Averchenko, V. Thiel, and N. Treps, “Non-linear photon subtraction from a multimode quantum field,” Phys. Rev. A 89, 063808 (2014).
[Crossref]

J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2014).
[Crossref]

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref]

G. J. De Valcarcel, G. Patera, N. Treps, and C. Fabre, “Multimode squeezing of frequency combs,” Phys. Rev. A 74, 061801 (2006).
[Crossref]

V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” arXiv 1607.03001 (2018).

Tumeh, L.

A. Shahverdi, Y. M. Sua, L. Tumeh, and Y.-P. Huang, “Quantum parametric mode sorting: beating the time-frequency filtering,” Sci. Rep. 7, 6495 (2017).
[Crossref]

Turner, A. C.

U’Ren, A. B.

K. A. O’Donnell and A. B. U’Ren, “Time-resolved up-conversion of entangled photon pairs,” Phys. Rev. Lett. 103, 123602 (2009).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inf. Comput. 3, 480–502 (2003).

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

Ukai, R.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Valencia, A.

A. Valencia, A. Cere, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
[Crossref]

Valivarthi, R.

R. Valivarthi, Q. Zhou, G. H. Aguilar, V. B. Verma, F. Marsili, M. D. Shaw, S. W. Nam, D. Oblak, and W. Tittel, “Quantum teleportation across a metropolitan fibre network,” Nat. Photonics 10, 676–680 (2016).
[Crossref]

van Enk, S.

M. Raymer, S. van Enk, C. McKinstrie, and H. McGuinness, “Interference of two photons of different color,” Opt. Commun. 283, 747–752 (2010).
[Crossref]

van Loock, P.

N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal quantum computation with continuous-variable cluster states,” Phys. Rev. Lett. 97, 110501 (2006).
[Crossref]

VanDevender, A. P.

A. P. VanDevender and P. G. Kwiat, “Quantum transduction via frequency upconversion,” J. Opt. Soc. Am. B 24, 295–299 (2007).
[Crossref]

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).
[Crossref]

Vatan, F.

S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury, and F. Vatan, “A new proof for the existence of mutually unbiased bases,” Algorithmica 34, 512–528 (2002).
[Crossref]

Velev, V. G.

Verma, V.

M. Grimau Puigibert, G. Aguilar, Q. Zhou, F. Marsili, M. Shaw, V. Verma, S. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
[Crossref]

Verma, V. B.

M. M. Weston, H. M. Chrzanowski, S. Wollmann, A. Boston, J. Ho, L. K. Shalm, V. B. Verma, M. S. Allman, S. W. Nam, R. B. Patel, S. Slussarenko, and G. J. Pryde, “Efficient and pure femtosecond-pulse-length source of polarization-entangled photons,” Opt. Express 24, 10869–10879 (2016).
[Crossref]

R. Valivarthi, Q. Zhou, G. H. Aguilar, V. B. Verma, F. Marsili, M. D. Shaw, S. W. Nam, D. Oblak, and W. Tittel, “Quantum teleportation across a metropolitan fibre network,” Nat. Photonics 10, 676–680 (2016).
[Crossref]

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Vogel, W.

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb Gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref]

Vogl, U.

V. Averchenko, D. Sych, G. Schunk, U. Vogl, C. Marquardt, and G. Leuchs, “Temporal shaping of single photons enabled by entanglement,” Phys. Rev. A 96, 043822 (2017).
[Crossref]

Volkov, P.

Y. M. Mikhailova, P. Volkov, and M. Fedorov, “Biphoton wave packets in parametric down-conversion: spectral and temporal structure and degree of entanglement,” Phys. Rev. A 78, 062327 (2008).
[Crossref]

Vollmer, C. E.

C. Baune, J. Gniesmer, A. Schönbeck, C. E. Vollmer, J. Fiurášek, and R. Schnabel, “Strongly squeezed states at 532  nm based on frequency up-conversion,” Opt. Express 23, 16035–16041 (2015).
[Crossref]

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532  nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref]

Wakui, K.

R.-B. Jin, R. Shimizu, K. Wakui, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength,” Opt. Express 22, 11498–11507 (2014).
[Crossref]

K. Wakui, Y. Eto, H. Benichi, S. Izumi, T. Yanagida, K. Ema, T. Numata, D. Fukuda, M. Takeoka, and M. Sasaki, “Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength,” Sci. Rep. 4, 4535 (2014).
[Crossref]

Waldermann, F.

J. Nunn, I. Walmsley, M. Raymer, K. Surmacz, F. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wave packets into an atomic memory,” Phys. Rev. A 75, 011401 (2007).
[Crossref]

Walmsley, I.

J. Nunn, I. Walmsley, M. Raymer, K. Surmacz, F. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wave packets into an atomic memory,” Phys. Rev. A 75, 011401 (2007).
[Crossref]

W. Grice and I. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[Crossref]

Walmsley, I. A.

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inf. Comput. 3, 480–502 (2003).

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled photons produced by ultrashort pulses,” Phys. Rev. A 62, 053810 (2000).
[Crossref]

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite Hilbert space and entropy control,” Phys. Rev. Lett. 84, 5304–5307 (2000).
[Crossref]

J. H. Munns, S. Park, B. Brecht, and I. A. Walmsley, “Temporal amplitude & phase: algorithmic reconstruction via time-domain interferometry (teAPARTI),” in Frontiers in Optics (Optical Society of America, 2017), paper JW3A-34.

Wang, L.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Wang, N.

W. Liu, N. Wang, Z. Li, and Y. Li, “Quantum frequency up-conversion of continuous variable entangled states,” Appl. Phys. Lett. 107, 231109 (2015).
[Crossref]

Wang, Z.

Wasilewski, W.

W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006).
[Crossref]

Wasylczyk, P.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

Weedbrook, C.

N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal quantum computation with continuous-variable cluster states,” Phys. Rev. Lett. 97, 110501 (2006).
[Crossref]

Weiner, A.

Z. Zheng, A. Weiner, K. Parameswaran, M. Chou, and M. Fejer, “Low-power spectral phase correlator using periodically poled LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 13, 376–378 (2001).
[Crossref]

Z. Zheng and A. Weiner, “Spectral phase correlation of coded femtosecond pulses by second-harmonic generation in thick nonlinear crystals,” Opt. Lett. 25, 984–986 (2000).
[Crossref]

Weiner, A. M.

H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird, A. M. Weiner, and P. Lougovski, “Electro-optic frequency beamsplitters and tritters for high-fidelity photonic quantum information processing,” Phys. Rev. Lett. 120, 030502 (2018).
[Crossref]

J. A. Jaramillo-Villegas, P. Imany, O. D. Odele, D. E. Leaird, Z.-Y. Ou, M. Qi, and A. M. Weiner, “Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb,” Optica 4, 655–658 (2017).
[Crossref]

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112, 133602 (2014).
[Crossref]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[Crossref]

J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[Crossref]

Weston, M. M.

Wetzel, B.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

White, A. G.

Wiseman, H. M.

D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum optical waveform conversion,” Phys. Rev. Lett. 106, 130501 (2011).
[Crossref]

Wollmann, S.

Wong, C. W.

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536–542 (2015).
[Crossref]

Wong, F. N.

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536–542 (2015).
[Crossref]

M. A. Albota and F. N. Wong, “Efficient single-photon counting at 1.55  μm by means of frequency upconversion,” Opt. Lett. 29, 1449–1451 (2004).
[Crossref]

Wong, F. N. C.

C. Chen, C. Bo, M. Y. Niu, F. Xu, Z. Zhang, J. H. Shapiro, and F. N. C. Wong, “Efficient generation and characterization of spectrally factorable biphotons,” Opt. Express 25, 7300–7312 (2017).
[Crossref]

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

P. Ben Dixon, J. H. Shapiro, and F. N. C. Wong, “Spectral engineering by Gaussian phase-matching for quantum photonics,” Opt. Express 21, 5879–5890 (2013).
[Crossref]

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett. 101, 153602 (2008).
[Crossref]

O. Kuzucu, M. Fiorentino, M. Albota, F. N. C. Wong, and F. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 083601 (2005).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[Crossref]

Wootters, W. K.

W. K. Wootters and B. D. Fields, “Optimal state-determination by mutually unbiased measurements,” Ann. Phys. 191, 363–381 (1989).
[Crossref]

Wornell, G. W.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Wright, L. G.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7, 363–366 (2013).
[Crossref]

Wright, L. J.

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref]

M. Karpiński, M. Jachura, L. J. Wright, and B. J. Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photonics 11, 53–57 (2016).
[Crossref]

Xie, X.

Xie, Z.

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536–542 (2015).
[Crossref]

Xu, F.

Xu, X.

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536–542 (2015).
[Crossref]

Yamamoto, T.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong-Ou-Mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

R. Ikuta, T. Kobayashi, S. Yasui, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Frequency down-conversion of 637  nm light to the telecommunication band for non-classical light emitted from NV centers in diamond,” Opt. Express 22, 11205–11214 (2014).
[Crossref]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref]

Yamamoto, Y.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
[Crossref]

Yamashita, T.

Yanagida, T.

K. Wakui, Y. Eto, H. Benichi, S. Izumi, T. Yanagida, K. Ema, T. Numata, D. Fukuda, M. Takeoka, and M. Sasaki, “Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength,” Sci. Rep. 4, 4535 (2014).
[Crossref]

Yasui, S.

Yokoyama, S.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Yonezawa, H.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Yoo, S. J. B.

Yoshikawa, J.-I.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Yu, L.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref]

Zaquine, I.

Zaske, S.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Zbinden, H.

N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18, 22099–22104 (2010).
[Crossref]

M. Legré, R. Thew, H. Zbinden, and N. Gisin, “High resolution optical time domain reflectometer based on 1.55  μm up-conversion photon-counting module,” Opt. Express 15, 8237–8242 (2007).
[Crossref]

R. T. Thew, S. Tanzilli, L. Krainer, S. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

R. T. Thew, A. Acin, H. Zbinden, and N. Gisin, “Bell-type test of energy-time entangled qutrits,” Phys. Rev. Lett. 93, 010503 (2004).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10  km apart,” Phys. Rev. Lett. 81, 3563–3566 (1998).
[Crossref]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug-and-play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

Zeilinger, A.

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. USA 111, 6243–6247 (2014).
[Crossref]

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
[Crossref]

Zeller, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Zhang, Q.

Zhang, Y.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

Zhang, Z.

C. Chen, C. Bo, M. Y. Niu, F. Xu, Z. Zhang, J. H. Shapiro, and F. N. C. Wong, “Efficient generation and characterization of spectrally factorable biphotons,” Opt. Express 25, 7300–7312 (2017).
[Crossref]

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Zheng, Z.

Z. Zheng, O. Mishina, N. Treps, and C. Fabre, “Atomic quantum memory for multimode frequency combs,” Phys. Rev. A 91, 031802 (2015).
[Crossref]

Z. Zheng, A. Weiner, K. Parameswaran, M. Chou, and M. Fejer, “Low-power spectral phase correlator using periodically poled LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 13, 376–378 (2001).
[Crossref]

Z. Zheng and A. Weiner, “Spectral phase correlation of coded femtosecond pulses by second-harmonic generation in thick nonlinear crystals,” Opt. Lett. 25, 984–986 (2000).
[Crossref]

Zhong, T.

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536–542 (2015).
[Crossref]

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Zhou, H.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Zhou, Q.

M. Grimau Puigibert, G. Aguilar, Q. Zhou, F. Marsili, M. Shaw, V. Verma, S. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
[Crossref]

R. Valivarthi, Q. Zhou, G. H. Aguilar, V. B. Verma, F. Marsili, M. D. Shaw, S. W. Nam, D. Oblak, and W. Tittel, “Quantum teleportation across a metropolitan fibre network,” Nat. Photonics 10, 676–680 (2016).
[Crossref]

Zijlstra, T.

Zwiller, V.

Algorithmica (1)

S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury, and F. Vatan, “A new proof for the existence of mutually unbiased bases,” Algorithmica 34, 512–528 (2002).
[Crossref]

Ann. Phys. (1)

W. K. Wootters and B. D. Fields, “Optimal state-determination by mutually unbiased measurements,” Ann. Phys. 191, 363–381 (1989).
[Crossref]

Appl. Phys. Lett. (4)

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug-and-play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

M. Allgaier, V. Ansari, C. Eigner, V. Quiring, R. Ricken, J. M. Donohue, T. Czerniuk, M. Aßmann, M. Bayer, B. Brecht, and C. Silberhorn, “Streak camera imaging of single photons at telecom wavelength,” Appl. Phys. Lett. 112, 031110 (2018).
[Crossref]

C. Bennett, R. Scott, and B. Kolner, “Temporal magnification and reversal of 100  Gb/s optical data with an up-conversion time microscope,” Appl. Phys. Lett. 65, 2513–2515 (1994).
[Crossref]

W. Liu, N. Wang, Z. Li, and Y. Li, “Quantum frequency up-conversion of continuous variable entangled states,” Appl. Phys. Lett. 107, 231109 (2015).
[Crossref]

C. R. Phys. (1)

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8, 180–198 (2007).
[Crossref]

Eur. Phys. J. D (1)

G. Patera, C. Navarrete-Benlloch, G. J. de Valcárcel, and C. Fabre, “Quantum coherent control of highly multipartite continuous-variable entangled states by tailoring parametric interactions,” Eur. Phys. J. D 66, 1–14 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (2)

Z. Zheng, A. Weiner, K. Parameswaran, M. Chou, and M. Fejer, “Low-power spectral phase correlator using periodically poled LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 13, 376–378 (2001).
[Crossref]

M. Silver, P. Manurkar, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Spectrally multiplexed upconversion detection with C-band pump and signal wavelengths,” IEEE Photon. Technol. Lett. 29, 1097–1100 (2017).
[Crossref]

Int. J. Quantum Inf. (1)

S. Schwarz, B. Bessire, and A. Stefanov, “Experimental violation of a d-dimensional Bell inequality using energy-time entangled photons,” Int. J. Quantum Inf. 12, 1560026 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[Crossref]

J. Mod. Opt. (2)

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).
[Crossref]

H. Huang and J. H. Eberly, “Correlations and one-quantum pulse shapes in photon pair generation,” J. Mod. Opt. 40, 915–930 (1993).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

Nat. Commun. (3)

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref]

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref]

K. A. G. Fisher, D. G. England, J.-P. W. MacLean, P. J. Bustard, K. J. Resch, and B. J. Sussman, “Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory,” Nat. Commun. 7, 11200 (2016).
[Crossref]

Nat. Photonics (8)

M. Karpiński, M. Jachura, L. J. Wright, and B. J. Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photonics 11, 53–57 (2016).
[Crossref]

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7, 363–366 (2013).
[Crossref]

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536–542 (2015).
[Crossref]

R. Valivarthi, Q. Zhou, G. H. Aguilar, V. B. Verma, F. Marsili, M. D. Shaw, S. W. Nam, D. Oblak, and W. Tittel, “Quantum teleportation across a metropolitan fibre network,” Nat. Photonics 10, 676–680 (2016).
[Crossref]

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong-Ou-Mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[Crossref]

J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2014).
[Crossref]

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Nature (6)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchronization,” Nature 412, 417–419 (2001).
[Crossref]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref]

N. Maring, P. Farrera, K. Kutluer, M. Mazzera, G. Heinze, and H. de Riedmatten, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref]

G. Heinze, H. de Riedmatten, K. Kutluer, M. Mazzera, N. Maring, and P. Farrera, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref]

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref]

New J. Phys. (5)

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

V. Averchenko, C. Jacquard, V. Thiel, C. Fabre, and N. Treps, “Multimode theory of single-photon subtraction,” New J. Phys. 18, 083042 (2016).
[Crossref]

R. T. Thew, S. Tanzilli, L. Krainer, S. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

A. Christ, B. Brecht, W. Mauerer, and C. Silberhorn, “Theory of quantum frequency conversion and type-II parametric down-conversion in the high-gain regime,” New J. Phys. 15, 053038 (2013).
[Crossref]

Opt. Commun. (1)

M. Raymer, S. van Enk, C. McKinstrie, and H. McGuinness, “Interference of two photons of different color,” Opt. Commun. 283, 747–752 (2010).
[Crossref]

Opt. Express (20)

P. Ben Dixon, J. H. Shapiro, and F. N. C. Wong, “Spectral engineering by Gaussian phase-matching for quantum photonics,” Opt. Express 21, 5879–5890 (2013).
[Crossref]

N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18, 22099–22104 (2010).
[Crossref]

A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19, 55–65 (2011).
[Crossref]

A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Opt. Express 19, 13770–13778 (2011).
[Crossref]

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550  nm: performance and noise analysis,” Opt. Express 19, 21445–21456 (2011).
[Crossref]

T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express 19, 24434–24447 (2011).
[Crossref]

R. Ikuta, T. Kobayashi, S. Yasui, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Frequency down-conversion of 637  nm light to the telecommunication band for non-classical light emitted from NV centers in diamond,” Opt. Express 22, 11205–11214 (2014).
[Crossref]

R.-B. Jin, R. Shimizu, K. Wakui, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength,” Opt. Express 22, 11498–11507 (2014).
[Crossref]

D. V. Reddy, M. G. Raymer, C. J. McKinstrie, L. Mejling, and K. Rottwitt, “Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides,” Opt. Express 21, 13840–13863 (2013).
[Crossref]

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21, 13975–13985 (2013).
[Crossref]

A. S. Kowligy, P. Manurkar, N. V. Corzo, V. G. Velev, M. Silver, R. P. Scott, S. J. B. Yoo, P. Kumar, G. S. Kanter, and Y.-P. Huang, “Quantum optical arbitrary waveform manipulation and measurement in real time,” Opt. Express 22, 27942–27957 (2014).
[Crossref]

M. Legré, R. Thew, H. Zbinden, and N. Gisin, “High resolution optical time domain reflectometer based on 1.55  μm up-conversion photon-counting module,” Opt. Express 15, 8237–8242 (2007).
[Crossref]

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100  km using frequency up-conversion detectors,” Opt. Express 15, 13957–13964 (2007).
[Crossref]

M. M. Weston, H. M. Chrzanowski, S. Wollmann, A. Boston, J. Ho, L. K. Shalm, V. B. Verma, M. S. Allman, S. W. Nam, R. B. Patel, S. Slussarenko, and G. J. Pryde, “Efficient and pure femtosecond-pulse-length source of polarization-entangled photons,” Opt. Express 24, 10869–10879 (2016).
[Crossref]

J.-L. Tambasco, A. Boes, L. G. Helt, M. J. Steel, and A. Mitchell, “Domain engineering algorithm for practical and effective photon sources,” Opt. Express 24, 19616–19626 (2016).
[Crossref]

C. Baune, J. Gniesmer, A. Schönbeck, C. E. Vollmer, J. Fiurášek, and R. Schnabel, “Strongly squeezed states at 532  nm based on frequency up-conversion,” Opt. Express 23, 16035–16041 (2015).
[Crossref]

Y.-H. Cheng, T. Thomay, G. S. Solomon, A. L. Migdall, and S. V. Polyakov, “Statistically background-free, phase-preserving parametric up-conversion with faint light,” Opt. Express 23, 18671–18678 (2015).
[Crossref]

C. Chen, C. Bo, M. Y. Niu, F. Xu, Z. Zhang, J. H. Shapiro, and F. N. C. Wong, “Efficient generation and characterization of spectrally factorable biphotons,” Opt. Express 25, 7300–7312 (2017).
[Crossref]

D. V. Reddy and M. G. Raymer, “Engineering temporal-mode-selective frequency conversion in nonlinear optical waveguides: from theory to experiment,” Opt. Express 25, 12952–12966 (2017).
[Crossref]

V. Ansari, E. Roccia, M. Santandrea, M. Doostdar, C. Eigner, L. Padberg, I. Gianani, M. Sbroscia, J. M. Donohue, L. Mancino, M. Barbieri, and C. Silberhorn, “Heralded generation of high-purity ultrashort single photons in programmable temporal shapes,” Opt. Express 26, 2764–2774 (2018).
[Crossref]

Opt. Lett. (20)

J. Shi, G. Patera, M. I. Kolobov, and S. Han, “Quantum temporal imaging by four-wave mixing,” Opt. Lett. 42, 3121–3124 (2017).
[Crossref]

N. Quesada and J. E. Sipe, “High efficiency in mode-selective frequency conversion,” Opt. Lett. 41, 364–367 (2016).
[Crossref]

P. Manurkar, N. Jain, P. Kumar, and G. S. Kanter, “Programmable optical waveform reshaping on a picosecond timescale,” Opt. Lett. 42, 951–954 (2017).
[Crossref]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33, 1047–1049 (2008).
[Crossref]

Y. Ding and Z. Ou, “Frequency downconversion for a quantum network,” Opt. Lett. 35, 2591–2593 (2010).
[Crossref]

B. H. Kolner and M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett. 14, 630–632 (1989).
[Crossref]

P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15, 1476–1478 (1990).
[Crossref]

Z. Zheng and A. Weiner, “Spectral phase correlation of coded femtosecond pulses by second-harmonic generation in thick nonlinear crystals,” Opt. Lett. 25, 984–986 (2000).
[Crossref]

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure,” Opt. Lett. 28, 558–560 (2003).
[Crossref]

M. A. Albota and F. N. Wong, “Efficient single-photon counting at 1.55  μm by means of frequency upconversion,” Opt. Lett. 29, 1449–1451 (2004).
[Crossref]

R. V. Roussev, C. Langrock, J. R. Kurz, and M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29, 1518–1520 (2004).
[Crossref]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
[Crossref]

J. Huang, X. Xie, C. Langrock, R. Roussev, D. Hum, and M. Fejer, “Amplitude modulation and apodization of quasi-phase-matched interactions,” Opt. Lett. 31, 604–606 (2006).
[Crossref]

G. Patera and M. I. Kolobov, “Temporal imaging with squeezed light,” Opt. Lett. 40, 1125–1128 (2015).
[Crossref]

T. Lutz, P. Kolenderski, and T. Jennewein, “Demonstration of spectral correlation control in a source of polarization-entangled photon pairs at telecom wavelength,” Opt. Lett. 39, 1481–1484 (2014).
[Crossref]

D. V. Reddy, M. G. Raymer, and C. J. McKinstrie, “Efficient sorting of quantum-optical wave packets by temporal-mode interferometry,” Opt. Lett. 39, 2924–2927 (2014).
[Crossref]

I. Agha, S. Ates, L. Sapienza, and K. Srinivasan, “Spectral broadening and shaping of nanosecond pulses: toward shaping of single photons from quantum emitters,” Opt. Lett. 39, 5677–5680 (2014).
[Crossref]

J. Ghalbouni, I. Agha, R. Frey, E. Diamanti, and I. Zaquine, “Experimental wavelength-division-multiplexed photon-pair distribution,” Opt. Lett. 38, 34–36 (2013).
[Crossref]

Y.-P. Huang and P. Kumar, “Mode-resolved photon counting via cascaded quantum frequency conversion,” Opt. Lett. 38, 468–470 (2013).
[Crossref]

P. S. Kuo, J. S. Pelc, O. Slattery, Y.-S. Kim, M. M. Fejer, and X. Tang, “Reducing noise in single-photon-level frequency conversion,” Opt. Lett. 38, 1310–1312 (2013).
[Crossref]

Optica (4)

Philos. Trans. A Math. Phys. Eng. Sci. (1)

G. Harder, V. Ansari, T. J. Bartley, B. Brecht, and C. Silberhorn, “Harnessing temporal modes for multi-photon quantum information processing based on integrated optics,” Philos. Trans. A Math. Phys. Eng. Sci. 375, 20160244 (2017).
[Crossref]

Phys. Rev. A (29)

A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
[Crossref]

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95, 061803 (2017).
[Crossref]

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82, 013833 (2010).
[Crossref]

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
[Crossref]

W. Grice and I. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[Crossref]

D. V. Reddy, M. G. Raymer, and C. J. McKinstrie, “Sorting photon wave packets using temporal-mode interferometry based on multiple-stage quantum frequency conversion,” Phys. Rev. A 91, 012323 (2015).
[Crossref]

J. Nunn, I. Walmsley, M. Raymer, K. Surmacz, F. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wave packets into an atomic memory,” Phys. Rev. A 75, 011401 (2007).
[Crossref]

Z. Zheng, O. Mishina, N. Treps, and C. Fabre, “Atomic quantum memory for multimode frequency combs,” Phys. Rev. A 91, 031802 (2015).
[Crossref]

N. Quesada and J. E. Sipe, “Effects of time ordering in quantum nonlinear optics,” Phys. Rev. A 90, 1–13 (2014).
[Crossref]

B. Brecht, A. Eckstein, R. Ricken, V. Quiring, H. Suche, L. Sansoni, and C. Silberhorn, “Demonstration of coherent time-frequency Schmidt mode selection using dispersion-engineered frequency conversion,” Phys. Rev. A 90, 030302 (2014).
[Crossref]

W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006).
[Crossref]

Y. M. Mikhailova, P. Volkov, and M. Fedorov, “Biphoton wave packets in parametric down-conversion: spectral and temporal structure and degree of entanglement,” Phys. Rev. A 78, 062327 (2008).
[Crossref]

R. S. Bennink, “Optimal collinear Gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A 81, 053805 (2010).
[Crossref]

V. Averchenko, D. Sych, G. Schunk, U. Vogl, C. Marquardt, and G. Leuchs, “Temporal shaping of single photons enabled by entanglement,” Phys. Rev. A 96, 043822 (2017).
[Crossref]

T. Keller and M. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[Crossref]

R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled photons produced by ultrashort pulses,” Phys. Rev. A 62, 053810 (2000).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[Crossref]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

G. J. De Valcarcel, G. Patera, N. Treps, and C. Fabre, “Multimode squeezing of frequency combs,” Phys. Rev. A 74, 061801 (2006).
[Crossref]

V. Ansari, G. Harder, M. Allgaier, B. Brecht, and C. Silberhorn, “Temporal-mode measurement tomography of a quantum pulse gate,” Phys. Rev. A 96, 063817 (2017).
[Crossref]

V. A. Averchenko, V. Thiel, and N. Treps, “Non-linear photon subtraction from a multimode quantum field,” Phys. Rev. A 89, 063808 (2014).
[Crossref]

J. M. Donohue, M. D. Mazurek, and K. J. Resch, “Theory of high-efficiency sum-frequency generation for single-photon waveform conversion,” Phys. Rev. A 91, 1–11 (2015).
[Crossref]

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[Crossref]

M. Agnew, J. Leach, M. McLaren, F. S. Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84, 062101 (2011).
[Crossref]

J. M. Arrazola, O. Gittsovich, and N. Lütkenhaus, “Accessible nonlinear entanglement witnesses,” Phys. Rev. A 85, 062327 (2012).
[Crossref]

S. J. Nowierski, N. N. Oza, P. Kumar, and G. S. Kanter, “Tomographic reconstruction of time-bin-entangled qudits,” Phys. Rev. A 94, 042328 (2016).
[Crossref]

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

P. J. Bustard, D. G. England, K. Heshami, C. Kupchak, and B. J. Sussman, “Quantum frequency conversion with ultra-broadband tuning in a Raman memory,” Phys. Rev. A 95, 053816 (2017).
[Crossref]

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

Phys. Rev. Appl. (1)

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7, 024021 (2017).
[Crossref]

Phys. Rev. Lett. (39)

G. Giorgi, P. Mataloni, and F. De Martini, “Frequency hopping in quantum interferometry: efficient up-down conversion for qubits and ebits,” Phys. Rev. Lett. 90, 027902 (2003).
[Crossref]

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref]

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112, 133602 (2014).
[Crossref]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref]

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68, 2153–2156 (1992).
[Crossref]

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532  nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref]

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref]

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb Gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref]

M. Chen, N. C. Menicucci, and O. Pfister, “Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb,” Phys. Rev. Lett. 112, 120505 (2014).
[Crossref]

N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal quantum computation with continuous-variable cluster states,” Phys. Rev. Lett. 97, 110501 (2006).
[Crossref]

M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
[Crossref]

O. Kuzucu, M. Fiorentino, M. Albota, F. N. C. Wong, and F. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 083601 (2005).
[Crossref]

A. Valencia, A. Cere, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

C. Hong, Z.-Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett. 101, 153602 (2008).
[Crossref]

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref]

M. B. Nasr, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite Hilbert space and entropy control,” Phys. Rev. Lett. 84, 5304–5307 (2000).
[Crossref]

N. Quesada and J. E. Sipe, “Time-ordering effects in the generation of entangled photons using nonlinear optical processes,” Phys. Rev. Lett. 114, 093903 (2015).
[Crossref]

S. Lemieux, M. Manceau, P. R. Sharapova, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Engineering the frequency spectrum of bright squeezed vacuum via group velocity dispersion in an SU(1, 1) interferometer,” Phys. Rev. Lett. 117, 183601 (2016).
[Crossref]

G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits, and C. Silberhorn, “Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics,” Phys. Rev. Lett. 116, 143601 (2016).
[Crossref]

D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum optical waveform conversion,” Phys. Rev. Lett. 106, 130501 (2011).
[Crossref]

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10  km apart,” Phys. Rev. Lett. 81, 3563–3566 (1998).
[Crossref]

I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

J. M. Donohue, M. Mastrovich, and K. J. Resch, “Spectrally engineering photonic entanglement with a time lens,” Phys. Rev. Lett. 117, 1–15 (2016).
[Crossref]

J.-P. W. MacLean, J. M. Donohue, and K. J. Resch, “Direct characterization of ultrafast energy-time entangled photon pairs,” Phys. Rev. Lett. 120, 053601 (2018).
[Crossref]

J. M. Donohue, J. Lavoie, and K. J. Resch, “Ultrafast time-division demultiplexing of polarization-entangled photons,” Phys. Rev. Lett. 113, 163602 (2014).
[Crossref]

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
[Crossref]

R. T. Thew, A. Acin, H. Zbinden, and N. Gisin, “Bell-type test of energy-time entangled qutrits,” Phys. Rev. Lett. 93, 010503 (2004).
[Crossref]

J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, “Coherent ultrafast measurement of time-bin encoded photons,” Phys. Rev. Lett. 111, 153602 (2013).
[Crossref]

K. A. O’Donnell and A. B. U’Ren, “Time-resolved up-conversion of entangled photon pairs,” Phys. Rev. Lett. 103, 123602 (2009).
[Crossref]

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird, A. M. Weiner, and P. Lougovski, “Electro-optic frequency beamsplitters and tritters for high-fidelity photonic quantum information processing,” Phys. Rev. Lett. 120, 030502 (2018).
[Crossref]

M. Grimau Puigibert, G. Aguilar, Q. Zhou, F. Marsili, M. Shaw, V. Verma, S. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
[Crossref]

G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[Crossref]

Phys. Rev. X (2)

Y.-S. Ra, C. Jacquard, A. Dufour, C. Fabre, and N. Treps, “Tomography of a mode-tunable coherent single-photon subtractor,” Phys. Rev. X 7, 031012 (2017).
[Crossref]

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).
[Crossref]

Phys. Status Solidi C (1)

B. Brecht, A. Eckstein, and C. Silberhorn, “Controlling the correlations in frequency upconversion in PPLN and PPKTP waveguides,” Phys. Status Solidi C 8, 1235–1238 (2011).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. USA 111, 6243–6247 (2014).
[Crossref]

Quantum (1)

P. Erker, M. Krenn, and M. Huber, “Quantifying high dimensional entanglement with two mutually unbiased bases,” Quantum 1, 22 (2017).
[Crossref]

Quantum Inf. Comput. (1)

A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inf. Comput. 3, 480–502 (2003).

Quantum Sci. Technol. (1)

F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
[Crossref]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[Crossref]

Sci. Adv. (1)

N. Matsuda, “Deterministic reshaping of single-photon spectra using cross-phase modulation,” Sci. Adv. 2, e1501223 (2016).
[Crossref]

Sci. Rep. (5)

Z. Huang, L. Maccone, A. Karim, C. Macchiavello, R. J. Chapman, and A. Peruzzo, “High-dimensional entanglement certification,” Sci. Rep. 6, 27637 (2016).
[Crossref]

T. Ikuta and H. Takesue, “Four-dimensional entanglement distribution over 100  km,” Sci. Rep. 8, 817 (2018).
[Crossref]

F. Steinlechner, N. Hermosa, V. Pruneri, and J. P. Torres, “Frequency conversion of structured light,” Sci. Rep. 6, 21390 (2016).
[Crossref]

A. Shahverdi, Y. M. Sua, L. Tumeh, and Y.-P. Huang, “Quantum parametric mode sorting: beating the time-frequency filtering,” Sci. Rep. 7, 6495 (2017).
[Crossref]

K. Wakui, Y. Eto, H. Benichi, S. Izumi, T. Yanagida, K. Ema, T. Numata, D. Fukuda, M. Takeoka, and M. Sasaki, “Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength,” Sci. Rep. 4, 4535 (2014).
[Crossref]

Other (5)

V. Ansari, B. Brecht, G. Harder, and C. Silberhorn, “Probing spectral-temporal correlations with a versatile integrated source of parametric down-conversion states,” arXiv:1404.7725 (2014).

V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” arXiv 1607.03001 (2018).

F. Graffitti, P. Barrow, M. Proietti, D. Kundys, and A. Fedrizzi, “Independent high-purity photons created in domain-engineered crystals,” arXiv:1712.07140 (2017).

J. H. Munns, S. Park, B. Brecht, and I. A. Walmsley, “Temporal amplitude & phase: algorithmic reconstruction via time-domain interferometry (teAPARTI),” in Frontiers in Optics (Optical Society of America, 2017), paper JW3A-34.

D. V. Reddy and M. G. Raymer, “Photonic temporal-mode multiplexing by quantum frequency conversion in a dichroic-finesse cavity,” arXiv:1708.01705 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Temporal-mode encodings visualized in time-frequency space. Orthogonal temporal mode bases can be constructed through slicing bins in time or frequency, as in (a) and (b), or through intensity-overlapping but field-orthogonal pulsed temporal modes, such as the Hermite–Gauss modes in (c).
Fig. 2.
Fig. 2. Joint spectral amplitude, temporal modes, and Schmidt coefficients of a non-engineered PDC process. (a) Outline of a PDC process with the three involved fields. (b) The JSA and its marginal distributions which is the product of pump (dashed lines) and phase matching (solid lines) functions and, in this case, exhibits frequency anti-correlations between signal and idler frequencies. The Schmidt decomposition of this Gaussian JSA is given by Hermite–Gaussian functions, with the first three TM pairs shown in (c)–(e). (f) The first seven Schmidt coefficients λk. The decomposition of this example yields an effective mode number of K3.14.
Fig. 3.
Fig. 3. Three different group-velocity matching condition. The JSA of each case is plotted on the left side, with the respective group velocities uj of the pump, signal, and idler fields plotted on the right side. The group velocities (normalized over the speed of light in vacuum) are exemplary for TE- and TM-polarized light in a z-cut KTP crystal. (a) Typically without dispersion engineering, the long-wavelength signal and idler photons both have a larger group velocity than the pump (ξ>0). This leads to a negative phase-matching angle and consequently to a correlated JSA as shown on the left. In this example, ξ0.4. (b) In the case of aGVM (ξ0), one photon (here the signal) propagates at the same velocity as the pump. This yields a phase-matching function that is aligned with the signal or idler frequency axis. If the pump spectral bandwidth is larger than the phase-matching bandwidth, a separable JSA is generated. (c) For sGVM (ξ1), the group velocity of the pump lies between the group velocities of signal and idler. This leads to a +45° phase-matching angle and, given that the pump spectral bandwidth matches the phase-matching bandwidth, a separable JSA with potentially indistinguishable signal and idler.
Fig. 4.
Fig. 4. Joint spectral amplitudes (absolute value) with standard periodic poling and filters on the individual photons. (a) In an aGVM source, the idler can be filtered to remove the side lobes and herald pure signal photons. However, filtering on the signal arm cannot be used to remove the side lobes. (b) In sGVM sources, the JSA is symmetric. Filtering either signal or idler leaves the other with a purity of about 94%.
Fig. 5.
Fig. 5. Orchestrating Schmidt modes via group-velocity matching and pump pulse shaping. (a)–(c) JSAs for a PDC source with an aGVM setting. The weights of the first five Schmidt modes λk are shown under each JSA. The state remains single-mode regardless of the pump shape. The only significant Schmidt modes of signal A0 and idler B0 photons are shown at the bottom, where we plot TM amplitudes versus frequency. The idler photon shape is invariant to the pump, while the TM of the signal photon reflects the TM of the pump field. (e)–(g) A sGVM PDC can be used to control the exact number of excited TMs. For example, driving the source with a first-order Hermite–Gaussian pump pulse as in (e) results in exactly two TMs. This can be extended with higher orders of Hermite–Gaussian pulses as in (f), but the different Schmidt modes are not occupied with the same probability. A balanced Schmidt-mode distribution can be achieved when the source is pumped with time-bin superpositions, as in (g).
Fig. 6.
Fig. 6. Frequency conversion process and its transfer function. (a) Outline of a general frequency conversion process with pump, input and output fields. (b)–(d) Sum-frequency conversion transfer functions F(ωin,ωout) with its marginal distributions (left) and its first few Schmidt coefficients λk. (b) A non-engineered SFG with significant frequency correlations and a K3.7. (c) and (d) present a tailored SFG process with aGVM condition with pump functions α(ωoutωin) of Gaussian and first-order Hermite–Gauss, respectively, and a K1.01.
Fig. 7.
Fig. 7. Absolute value of the temporal (left) and spectral (right) transfer functions for broadband frequency conversion. The left column shows the mapping from input times tin to output times tout for increasing pump powers (top to bottom), corresponding to increasing conversion efficiencies. The relative pump energy P, selectivity S, and separability σ0 are printed on top-right corner of each row. This leads to simultaneous forward and backward conversion, which is reflected by the oscillations in the mapping function. The functions were calculated by numerically solving the Heisenberg equations for the input and output field operators. The right column shows the respective spectral mapping functions. It can be seen that the general shape of the function broadens and that additional correlations are introduced for stronger pump powers. These correlations do not show up in a perturbative approach.
Fig. 8.
Fig. 8. Group-velocity mismatch contrast ξ (such that 0 is perfectly matched) for processes in lithium niobate (LN) waveguides, potassium titanyl phosphate (KTP) waveguides, and bulk bismuth borate (BiBO), as the input signal is detuned from the optimal group-velocity matching. The grey dashed line corresponds to the type-II process in LN, where GVM is found for a 1550 nm signal, 875 nm pump, and 560 nm upconverted [99]. All other processes have degenerate signal and QPG pump for group-velocity matching, and IR (NIR) corresponds to 1550 nm (800 nm) signal and QPG pump. Signal detuning or noncollinear geometry is necessary in all cases except for type-II LN to overcome the second harmonic of the QPG pump.
Fig. 9.
Fig. 9. Generic experimental situation for a quantum pulse gate. A TM-encoded single photon or weak coherent state is prepared through PDC or through shaping a spectrally broad input pulse and attenuating with a neutral density (ND) filter. A strong QPG pump is prepared using similar pulse shaping methods, or through electro-optic modulation (EOM) of a strong cw laser to produce a frequency comb, which is modulated in a tooth-by-tooth fashion by a pulse shaper [100]. The two are mixed in a group-velocity-matched χ(2) waveguide, and the upconverted signal in the register mode is measured. For temporal-mode interferometry (TMI) [97], the QPG is split into two 50% efficient steps with phase shifts in between.
Fig. 10.
Fig. 10. Experimental spectral-intensity transfer functions for the first four Hermite–Gaussian temporal modes (top–bottom), as measured in the experimental apparatus of Ref. [165]. The QPG in question was built from a 17-mm-long PPLN waveguide phasematched for a type-II interaction (875 nm + 1540 nm to 555.7 nm), with the group-velocity matching necessary to produce highly separable SFG transfer functions.
Fig. 11.
Fig. 11. Spectral field amplitudes spanning a complete set of mutually-unbiased bases for Hermite-Gauss modes in two (top) and five (bottom) dimensions [165,137]. In order to completely access the Hilbert space, effective projections on all of these states must be realizable. The normalised spectral intensity is shown in grey and the red line corresponds to the spectral phase (on the interval 02π).

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

H^PDC=Bdωsdωif(ωs,ωi)a^(ωs)b^(ωi)+h.c.,
|ψPDC=Bdωsdωif(ωs,ωi)a^(ωs)b^(ωi)|vac,
f(ωs,ωi)=α(ωs+ωi)ϕ(ωs,ωi).
ϕ(ωs,ωi)=0Ldzχ(z)exp[ιΔk(ωs,ωi)z],
ϕ(ωs,ωi)=1Lsinc(Δk(ωs,ωi)L2)eιΔk(ωs,ωi)L2.
f(ωs,ωi)=kλkgk(s)(ωs)hk(i)(ωi),
A^k=dωsgk(s)(ωs)a^(ωs),
B^k=dωihk(i)(ωi)b^(ωi),
|ψPDC=kλkA^kB^k|0,
ρ^s=Tri(ρ^PDC)=kλk|AkAk|
Ps=tr(ρ^s2)=1K.
Δk(ωs,ωi)(us1up1)ωs+(ui1up1)ωi,
ξ=us1up1ui1up1.
f(ωs,ωi)α(ωs+ωi)ϕ(ωi).
f(ωs,ωi)α(ωs+ωi)ϕ(ωsωi).
|ψBell=12(|0s|1i+eıϕ|1s|0i),
a^(ωin)dωinGaa(ωin,ωin)a^(ωin)+dωoutGac(ωin,ωout)c^(ωout),
c^(ωout)dωinGca(ωout,ωin)a^(ωin)+dωoutGcc(ωin,ωout)c^(ωout).
H^int=θdωindωoutF(ωin,ωout)a^(ωin)c^(ωout)+h.c.,
F(ωin,ωout)=α(ωoutωin)ϕ(ωin,ωout).
H^int=θk=0λkA^kC^k+h.c.,
A^kcos(λkθ)A^k+sin(λkθ)C^k,
C^kcos(λkθ)C^ksin(λkθ)A^k.
Δk(ωin,ωout)(uin1up1)ωin(uout1up1)ωout.
F(ωin,ωout)α˜(ωin)ϕ˜(ωout).
H^QPG=θA^0C^0+h.c.,
A^0cos(θ)A^0+sin(θ)C^0,
C^0cos(θ)C^0sin(θ)A^0,
A^kA^kfor  k0,
C^kC^kfor  k0.
ξ=uin1up1uout1up1.
S=η0·η0k=0ηk1,
σj=ηjk=0dηk1.
E.R.j(dB)=10log10ηjmaxkjηk,

Metrics