Abstract

Photoacoustic computed tomography (PACT), a fast-developing modality for deep tissue imaging, images the spatial distribution of optical absorption. PACT usually treats the absorption coefficient as a scalar. However, the absorption coefficients of many biological tissues exhibit an anisotropic property, known as dichroism or diattenuation, which depends on molecular conformation and structural alignment. Here, we present a novel imaging method called dichroism-sensitive PACT (DS-PACT), which measures both the amplitude of tissue’s dichroism and the orientation of the optic axis of uniaxial dichroic tissue. By modulating the polarization of linearly polarized light and measuring the alternating signals through lock-in detection, DS-PACT can boost dichroic signals from biological tissues. To validate the proposed approach, we experimentally demonstrated the performance of DS-PACT by imaging plastic polarizers and ex vivo bovine tendons deep inside scattering media. We successfully detected the orientation of the optic axis of uniaxial dichroic materials, even at a depth of 4.5 transport mean free paths. We anticipate that the proposed method will extend the capability of PACT to imaging tissue absorption anisotropy.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Deep tissue photoacoustic computed tomography with a fast and compact laser system

Depeng Wang, Yuehang Wang, Weiran Wang, Dandan Luo, Upendra Chitgupi, Jumin Geng, Yang Zhou, Lidai Wang, Jonathan F Lovell, and Jun Xia
Biomed. Opt. Express 8(1) 112-123 (2017)

Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography

Johannes F. de Boer, Thomas E. Milner, Martin J. C. van Gemert, and J. Stuart Nelson
Opt. Lett. 22(12) 934-936 (1997)

Photoacoustic computed tomography with lens-free focused fiber-laser ultrasound sensor

Xue Bai, Yumeng Qi, Yizhi Liang, Jun Ma, Long Jin, and Bai-ou Guan
Biomed. Opt. Express 10(5) 2504-2512 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. F. Penet, B. Krishnamachary, Z. Chen, J. Jin, and Z. M. Bhujwalla, “Molecular imaging of the tumor microenvironment for precision medicine and theranostics,” Adv. Cancer Res. 124, 235–256 (2014).
    [Crossref]
  2. M. Lakshman and A. Needles, “Screening and quantification of the tumor microenvironment with micro-ultrasound and photoacoustic imaging,” Nat. Methods 12, iii–v (2015).
    [Crossref]
  3. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
    [Crossref]
  4. J. Yao, L. Wang, J. Yang, K. Maslov, T. T. W. Wong, L. Li, C. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
    [Crossref]
  5. J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
    [Crossref]
  6. S. Hu, K. Maslov, P. Yan, J. Lee, and L. V. Wang, “Dichroism optical-resolution photoacoustic microscopy,” Proc. SPIE 8223, 82233T1 (2012).
    [Crossref]
  7. L. Li, J. Yao, and L. V. Wang, Photoacoustic Tomography Enhanced by Nanoparticles, Wiley Encyclopedia of Electrical and Electronics Engineering (Wiley, 2016).
  8. L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, and L. V. Wang, “Label-free photoacoustic tomography of whole mouse brain structures ex vivo,” Neurophotonics 3, 0350011 (2016).
  9. G. Li, L. Li, L. Zhu, J. Xia, and L. V. Wang, “Multiview Hilbert transformation for full-view photoacoustic computed tomography using a linear array,” J. Biomed. Opt. 20, 066010 (2015).
    [Crossref]
  10. P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophoton. 11, c201700024 (2017).
    [Crossref]
  11. L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).
    [Crossref]
  12. J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. A. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17, 0505061 (2012).
    [Crossref]
  13. G. Marriott, S. Mao, T. Sakata, J. Ran, D. K. Jackson, C. Petchprayoon, T. J. Gomez, E. Warp, O. Tulyathan, H. L. Aaron, E. Y. Isacoff, and Y. Yan, “Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells,” Proc. Natl. Acad. Sci. USA 105, 17789–17794 (2008).
    [Crossref]
  14. American National Standards Institute, “American National Standard for the safe use of lasers,” ANSI (American National Standards Institute, 2000).
  15. M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).
    [Crossref]
  16. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).
  17. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  18. M. Todorović, S. Jiao, L. V. Wang, and G. Stoica, “Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography,” Opt. Lett. 29, 2402–2404 (2004).
    [Crossref]
  19. R. N. Bracewell, The Fourier Transform and its Applications, 3rd ed. (McGraw-Hill, 2000).
  20. Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through scattering media by full-polarization digital optical phase conjugation,” Opt. Lett. 41, 1130–1133 (2016).
    [Crossref]
  21. V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7, 300–306 (2002).
    [Crossref]
  22. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, 2007).
  23. M. Lee and V. Vasioukhin, “Cell polarity and cancer-cell and tissue polarity as a non-canonical tumor suppressor,” J. Cell Sci. 121, 1141–1150 (2008).
    [Crossref]
  24. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
    [Crossref]

2017 (2)

P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophoton. 11, c201700024 (2017).
[Crossref]

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).
[Crossref]

2016 (3)

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through scattering media by full-polarization digital optical phase conjugation,” Opt. Lett. 41, 1130–1133 (2016).
[Crossref]

J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
[Crossref]

L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, and L. V. Wang, “Label-free photoacoustic tomography of whole mouse brain structures ex vivo,” Neurophotonics 3, 0350011 (2016).

2015 (3)

G. Li, L. Li, L. Zhu, J. Xia, and L. V. Wang, “Multiview Hilbert transformation for full-view photoacoustic computed tomography using a linear array,” J. Biomed. Opt. 20, 066010 (2015).
[Crossref]

M. Lakshman and A. Needles, “Screening and quantification of the tumor microenvironment with micro-ultrasound and photoacoustic imaging,” Nat. Methods 12, iii–v (2015).
[Crossref]

J. Yao, L. Wang, J. Yang, K. Maslov, T. T. W. Wong, L. Li, C. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

2014 (1)

M. F. Penet, B. Krishnamachary, Z. Chen, J. Jin, and Z. M. Bhujwalla, “Molecular imaging of the tumor microenvironment for precision medicine and theranostics,” Adv. Cancer Res. 124, 235–256 (2014).
[Crossref]

2012 (3)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref]

S. Hu, K. Maslov, P. Yan, J. Lee, and L. V. Wang, “Dichroism optical-resolution photoacoustic microscopy,” Proc. SPIE 8223, 82233T1 (2012).
[Crossref]

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. A. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17, 0505061 (2012).
[Crossref]

2008 (2)

G. Marriott, S. Mao, T. Sakata, J. Ran, D. K. Jackson, C. Petchprayoon, T. J. Gomez, E. Warp, O. Tulyathan, H. L. Aaron, E. Y. Isacoff, and Y. Yan, “Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells,” Proc. Natl. Acad. Sci. USA 105, 17789–17794 (2008).
[Crossref]

M. Lee and V. Vasioukhin, “Cell polarity and cancer-cell and tissue polarity as a non-canonical tumor suppressor,” J. Cell Sci. 121, 1141–1150 (2008).
[Crossref]

2005 (1)

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).
[Crossref]

2004 (1)

2002 (1)

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7, 300–306 (2002).
[Crossref]

1999 (1)

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[Crossref]

Aaron, H. L.

G. Marriott, S. Mao, T. Sakata, J. Ran, D. K. Jackson, C. Petchprayoon, T. J. Gomez, E. Warp, O. Tulyathan, H. L. Aaron, E. Y. Isacoff, and Y. Yan, “Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells,” Proc. Natl. Acad. Sci. USA 105, 17789–17794 (2008).
[Crossref]

Anastasio, M. A.

L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, and L. V. Wang, “Label-free photoacoustic tomography of whole mouse brain structures ex vivo,” Neurophotonics 3, 0350011 (2016).

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. A. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17, 0505061 (2012).
[Crossref]

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).
[Crossref]

Backman, V.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[Crossref]

Badizadegan, K.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[Crossref]

Bhujwalla, Z. M.

M. F. Penet, B. Krishnamachary, Z. Chen, J. Jin, and Z. M. Bhujwalla, “Molecular imaging of the tumor microenvironment for precision medicine and theranostics,” Adv. Cancer Res. 124, 235–256 (2014).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Bracewell, R. N.

R. N. Bracewell, The Fourier Transform and its Applications, 3rd ed. (McGraw-Hill, 2000).

Chatni, M. R.

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. A. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17, 0505061 (2012).
[Crossref]

Chen, W.

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).
[Crossref]

Chen, Z.

M. F. Penet, B. Krishnamachary, Z. Chen, J. Jin, and Z. M. Bhujwalla, “Molecular imaging of the tumor microenvironment for precision medicine and theranostics,” Adv. Cancer Res. 124, 235–256 (2014).
[Crossref]

Dasari, R. R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[Crossref]

Feld, M. S.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[Crossref]

Garcia-Uribe, A.

L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, and L. V. Wang, “Label-free photoacoustic tomography of whole mouse brain structures ex vivo,” Neurophotonics 3, 0350011 (2016).

Gomez, T. J.

G. Marriott, S. Mao, T. Sakata, J. Ran, D. K. Jackson, C. Petchprayoon, T. J. Gomez, E. Warp, O. Tulyathan, H. L. Aaron, E. Y. Isacoff, and Y. Yan, “Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells,” Proc. Natl. Acad. Sci. USA 105, 17789–17794 (2008).
[Crossref]

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, 2007).

Guo, Z.

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. A. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17, 0505061 (2012).
[Crossref]

Gurjar, R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[Crossref]

He, Y.

P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophoton. 11, c201700024 (2017).
[Crossref]

Hu, P.

P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophoton. 11, c201700024 (2017).
[Crossref]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref]

S. Hu, K. Maslov, P. Yan, J. Lee, and L. V. Wang, “Dichroism optical-resolution photoacoustic microscopy,” Proc. SPIE 8223, 82233T1 (2012).
[Crossref]

Huang, C.

J. Yao, L. Wang, J. Yang, K. Maslov, T. T. W. Wong, L. Li, C. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Isacoff, E. Y.

G. Marriott, S. Mao, T. Sakata, J. Ran, D. K. Jackson, C. Petchprayoon, T. J. Gomez, E. Warp, O. Tulyathan, H. L. Aaron, E. Y. Isacoff, and Y. Yan, “Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells,” Proc. Natl. Acad. Sci. USA 105, 17789–17794 (2008).
[Crossref]

Itzkan, I.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[Crossref]

Jackson, D. K.

G. Marriott, S. Mao, T. Sakata, J. Ran, D. K. Jackson, C. Petchprayoon, T. J. Gomez, E. Warp, O. Tulyathan, H. L. Aaron, E. Y. Isacoff, and Y. Yan, “Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells,” Proc. Natl. Acad. Sci. USA 105, 17789–17794 (2008).
[Crossref]

Jiao, S.

Jin, J.

M. F. Penet, B. Krishnamachary, Z. Chen, J. Jin, and Z. M. Bhujwalla, “Molecular imaging of the tumor microenvironment for precision medicine and theranostics,” Adv. Cancer Res. 124, 235–256 (2014).
[Crossref]

Kaberniuk, A. A.

J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
[Crossref]

Krishnamachary, B.

M. F. Penet, B. Krishnamachary, Z. Chen, J. Jin, and Z. M. Bhujwalla, “Molecular imaging of the tumor microenvironment for precision medicine and theranostics,” Adv. Cancer Res. 124, 235–256 (2014).
[Crossref]

Ku, G.

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).
[Crossref]

Lakshman, M.

M. Lakshman and A. Needles, “Screening and quantification of the tumor microenvironment with micro-ultrasound and photoacoustic imaging,” Nat. Methods 12, iii–v (2015).
[Crossref]

Lee, J.

S. Hu, K. Maslov, P. Yan, J. Lee, and L. V. Wang, “Dichroism optical-resolution photoacoustic microscopy,” Proc. SPIE 8223, 82233T1 (2012).
[Crossref]

Lee, M.

M. Lee and V. Vasioukhin, “Cell polarity and cancer-cell and tissue polarity as a non-canonical tumor suppressor,” J. Cell Sci. 121, 1141–1150 (2008).
[Crossref]

Li, G.

J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
[Crossref]

L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, and L. V. Wang, “Label-free photoacoustic tomography of whole mouse brain structures ex vivo,” Neurophotonics 3, 0350011 (2016).

G. Li, L. Li, L. Zhu, J. Xia, and L. V. Wang, “Multiview Hilbert transformation for full-view photoacoustic computed tomography using a linear array,” J. Biomed. Opt. 20, 066010 (2015).
[Crossref]

Li, L.

P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophoton. 11, c201700024 (2017).
[Crossref]

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).
[Crossref]

L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, and L. V. Wang, “Label-free photoacoustic tomography of whole mouse brain structures ex vivo,” Neurophotonics 3, 0350011 (2016).

J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
[Crossref]

J. Yao, L. Wang, J. Yang, K. Maslov, T. T. W. Wong, L. Li, C. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

G. Li, L. Li, L. Zhu, J. Xia, and L. V. Wang, “Multiview Hilbert transformation for full-view photoacoustic computed tomography using a linear array,” J. Biomed. Opt. 20, 066010 (2015).
[Crossref]

L. Li, J. Yao, and L. V. Wang, Photoacoustic Tomography Enhanced by Nanoparticles, Wiley Encyclopedia of Electrical and Electronics Engineering (Wiley, 2016).

Lin, L.

P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophoton. 11, c201700024 (2017).
[Crossref]

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).
[Crossref]

Liu, Y.

Ma, C.

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).
[Crossref]

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through scattering media by full-polarization digital optical phase conjugation,” Opt. Lett. 41, 1130–1133 (2016).
[Crossref]

Maitland, D. J.

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7, 300–306 (2002).
[Crossref]

Mao, S.

G. Marriott, S. Mao, T. Sakata, J. Ran, D. K. Jackson, C. Petchprayoon, T. J. Gomez, E. Warp, O. Tulyathan, H. L. Aaron, E. Y. Isacoff, and Y. Yan, “Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells,” Proc. Natl. Acad. Sci. USA 105, 17789–17794 (2008).
[Crossref]

Marriott, G.

G. Marriott, S. Mao, T. Sakata, J. Ran, D. K. Jackson, C. Petchprayoon, T. J. Gomez, E. Warp, O. Tulyathan, H. L. Aaron, E. Y. Isacoff, and Y. Yan, “Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells,” Proc. Natl. Acad. Sci. USA 105, 17789–17794 (2008).
[Crossref]

Maslov, K.

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).
[Crossref]

J. Yao, L. Wang, J. Yang, K. Maslov, T. T. W. Wong, L. Li, C. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

S. Hu, K. Maslov, P. Yan, J. Lee, and L. V. Wang, “Dichroism optical-resolution photoacoustic microscopy,” Proc. SPIE 8223, 82233T1 (2012).
[Crossref]

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. A. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17, 0505061 (2012).
[Crossref]

Needles, A.

M. Lakshman and A. Needles, “Screening and quantification of the tumor microenvironment with micro-ultrasound and photoacoustic imaging,” Nat. Methods 12, iii–v (2015).
[Crossref]

Pan, X.

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).
[Crossref]

Penet, M. F.

M. F. Penet, B. Krishnamachary, Z. Chen, J. Jin, and Z. M. Bhujwalla, “Molecular imaging of the tumor microenvironment for precision medicine and theranostics,” Adv. Cancer Res. 124, 235–256 (2014).
[Crossref]

Perelman, L. T.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[Crossref]

Petchprayoon, C.

G. Marriott, S. Mao, T. Sakata, J. Ran, D. K. Jackson, C. Petchprayoon, T. J. Gomez, E. Warp, O. Tulyathan, H. L. Aaron, E. Y. Isacoff, and Y. Yan, “Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells,” Proc. Natl. Acad. Sci. USA 105, 17789–17794 (2008).
[Crossref]

Ran, J.

G. Marriott, S. Mao, T. Sakata, J. Ran, D. K. Jackson, C. Petchprayoon, T. J. Gomez, E. Warp, O. Tulyathan, H. L. Aaron, E. Y. Isacoff, and Y. Yan, “Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells,” Proc. Natl. Acad. Sci. USA 105, 17789–17794 (2008).
[Crossref]

Sakata, T.

G. Marriott, S. Mao, T. Sakata, J. Ran, D. K. Jackson, C. Petchprayoon, T. J. Gomez, E. Warp, O. Tulyathan, H. L. Aaron, E. Y. Isacoff, and Y. Yan, “Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells,” Proc. Natl. Acad. Sci. USA 105, 17789–17794 (2008).
[Crossref]

Sankaran, V.

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7, 300–306 (2002).
[Crossref]

Shcherbakova, D. M.

J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
[Crossref]

Shen, Y.

Sheng, Q.

L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, and L. V. Wang, “Label-free photoacoustic tomography of whole mouse brain structures ex vivo,” Neurophotonics 3, 0350011 (2016).

Shi, J.

P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophoton. 11, c201700024 (2017).
[Crossref]

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).
[Crossref]

Stoica, G.

Todorovic, M.

Tulyathan, O.

G. Marriott, S. Mao, T. Sakata, J. Ran, D. K. Jackson, C. Petchprayoon, T. J. Gomez, E. Warp, O. Tulyathan, H. L. Aaron, E. Y. Isacoff, and Y. Yan, “Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells,” Proc. Natl. Acad. Sci. USA 105, 17789–17794 (2008).
[Crossref]

Vasioukhin, V.

M. Lee and V. Vasioukhin, “Cell polarity and cancer-cell and tissue polarity as a non-canonical tumor suppressor,” J. Cell Sci. 121, 1141–1150 (2008).
[Crossref]

Verkhusha, V. V.

J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
[Crossref]

Walsh, J. T.

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7, 300–306 (2002).
[Crossref]

Wang, K.

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. A. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17, 0505061 (2012).
[Crossref]

Wang, L.

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).
[Crossref]

J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
[Crossref]

J. Yao, L. Wang, J. Yang, K. Maslov, T. T. W. Wong, L. Li, C. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Wang, L. V.

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).
[Crossref]

P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophoton. 11, c201700024 (2017).
[Crossref]

L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, and L. V. Wang, “Label-free photoacoustic tomography of whole mouse brain structures ex vivo,” Neurophotonics 3, 0350011 (2016).

J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
[Crossref]

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through scattering media by full-polarization digital optical phase conjugation,” Opt. Lett. 41, 1130–1133 (2016).
[Crossref]

J. Yao, L. Wang, J. Yang, K. Maslov, T. T. W. Wong, L. Li, C. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

G. Li, L. Li, L. Zhu, J. Xia, and L. V. Wang, “Multiview Hilbert transformation for full-view photoacoustic computed tomography using a linear array,” J. Biomed. Opt. 20, 066010 (2015).
[Crossref]

S. Hu, K. Maslov, P. Yan, J. Lee, and L. V. Wang, “Dichroism optical-resolution photoacoustic microscopy,” Proc. SPIE 8223, 82233T1 (2012).
[Crossref]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref]

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. A. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17, 0505061 (2012).
[Crossref]

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).
[Crossref]

M. Todorović, S. Jiao, L. V. Wang, and G. Stoica, “Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography,” Opt. Lett. 29, 2402–2404 (2004).
[Crossref]

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

L. Li, J. Yao, and L. V. Wang, Photoacoustic Tomography Enhanced by Nanoparticles, Wiley Encyclopedia of Electrical and Electronics Engineering (Wiley, 2016).

Warp, E.

G. Marriott, S. Mao, T. Sakata, J. Ran, D. K. Jackson, C. Petchprayoon, T. J. Gomez, E. Warp, O. Tulyathan, H. L. Aaron, E. Y. Isacoff, and Y. Yan, “Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells,” Proc. Natl. Acad. Sci. USA 105, 17789–17794 (2008).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Wong, T. T. W.

J. Yao, L. Wang, J. Yang, K. Maslov, T. T. W. Wong, L. Li, C. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Wu, H.

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Xia, J.

L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, and L. V. Wang, “Label-free photoacoustic tomography of whole mouse brain structures ex vivo,” Neurophotonics 3, 0350011 (2016).

G. Li, L. Li, L. Zhu, J. Xia, and L. V. Wang, “Multiview Hilbert transformation for full-view photoacoustic computed tomography using a linear array,” J. Biomed. Opt. 20, 066010 (2015).
[Crossref]

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. A. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17, 0505061 (2012).
[Crossref]

Yan, P.

S. Hu, K. Maslov, P. Yan, J. Lee, and L. V. Wang, “Dichroism optical-resolution photoacoustic microscopy,” Proc. SPIE 8223, 82233T1 (2012).
[Crossref]

Yan, Y.

G. Marriott, S. Mao, T. Sakata, J. Ran, D. K. Jackson, C. Petchprayoon, T. J. Gomez, E. Warp, O. Tulyathan, H. L. Aaron, E. Y. Isacoff, and Y. Yan, “Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells,” Proc. Natl. Acad. Sci. USA 105, 17789–17794 (2008).
[Crossref]

Yang, J.

J. Yao, L. Wang, J. Yang, K. Maslov, T. T. W. Wong, L. Li, C. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Yao, J.

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).
[Crossref]

J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
[Crossref]

J. Yao, L. Wang, J. Yang, K. Maslov, T. T. W. Wong, L. Li, C. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

L. Li, J. Yao, and L. V. Wang, Photoacoustic Tomography Enhanced by Nanoparticles, Wiley Encyclopedia of Electrical and Electronics Engineering (Wiley, 2016).

Zhang, J.

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).
[Crossref]

Zhang, P.

P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophoton. 11, c201700024 (2017).
[Crossref]

Zhang, R.

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).
[Crossref]

J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
[Crossref]

Zhou, Y.

P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophoton. 11, c201700024 (2017).
[Crossref]

Zhu, L.

P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophoton. 11, c201700024 (2017).
[Crossref]

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).
[Crossref]

G. Li, L. Li, L. Zhu, J. Xia, and L. V. Wang, “Multiview Hilbert transformation for full-view photoacoustic computed tomography using a linear array,” J. Biomed. Opt. 20, 066010 (2015).
[Crossref]

Zou, J.

J. Yao, L. Wang, J. Yang, K. Maslov, T. T. W. Wong, L. Li, C. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Zou, Y.

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).
[Crossref]

Adv. Cancer Res. (1)

M. F. Penet, B. Krishnamachary, Z. Chen, J. Jin, and Z. M. Bhujwalla, “Molecular imaging of the tumor microenvironment for precision medicine and theranostics,” Adv. Cancer Res. 124, 235–256 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[Crossref]

IEEE Trans. Med. Imaging (1)

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).
[Crossref]

J. Biomed. Opt. (3)

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. A. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17, 0505061 (2012).
[Crossref]

G. Li, L. Li, L. Zhu, J. Xia, and L. V. Wang, “Multiview Hilbert transformation for full-view photoacoustic computed tomography using a linear array,” J. Biomed. Opt. 20, 066010 (2015).
[Crossref]

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7, 300–306 (2002).
[Crossref]

J. Biophoton. (1)

P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophoton. 11, c201700024 (2017).
[Crossref]

J. Cell Sci. (1)

M. Lee and V. Vasioukhin, “Cell polarity and cancer-cell and tissue polarity as a non-canonical tumor suppressor,” J. Cell Sci. 121, 1141–1150 (2008).
[Crossref]

Nat. Biomed. Eng. (1)

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).
[Crossref]

Nat. Methods (3)

M. Lakshman and A. Needles, “Screening and quantification of the tumor microenvironment with micro-ultrasound and photoacoustic imaging,” Nat. Methods 12, iii–v (2015).
[Crossref]

J. Yao, L. Wang, J. Yang, K. Maslov, T. T. W. Wong, L. Li, C. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

J. Yao, A. A. Kaberniuk, L. Li, D. M. Shcherbakova, R. Zhang, L. Wang, G. Li, V. V. Verkhusha, and L. V. Wang, “Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe,” Nat. Methods 13, 67–73 (2016).
[Crossref]

Neurophotonics (1)

L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, and L. V. Wang, “Label-free photoacoustic tomography of whole mouse brain structures ex vivo,” Neurophotonics 3, 0350011 (2016).

Opt. Lett. (2)

Proc. Natl. Acad. Sci. USA (1)

G. Marriott, S. Mao, T. Sakata, J. Ran, D. K. Jackson, C. Petchprayoon, T. J. Gomez, E. Warp, O. Tulyathan, H. L. Aaron, E. Y. Isacoff, and Y. Yan, “Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells,” Proc. Natl. Acad. Sci. USA 105, 17789–17794 (2008).
[Crossref]

Proc. SPIE (1)

S. Hu, K. Maslov, P. Yan, J. Lee, and L. V. Wang, “Dichroism optical-resolution photoacoustic microscopy,” Proc. SPIE 8223, 82233T1 (2012).
[Crossref]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref]

Other (6)

L. Li, J. Yao, and L. V. Wang, Photoacoustic Tomography Enhanced by Nanoparticles, Wiley Encyclopedia of Electrical and Electronics Engineering (Wiley, 2016).

American National Standards Institute, “American National Standard for the safe use of lasers,” ANSI (American National Standards Institute, 2000).

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

R. N. Bracewell, The Fourier Transform and its Applications, 3rd ed. (McGraw-Hill, 2000).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, 2007).

Supplementary Material (2)

NameDescription
» Supplement 1       Figure S1. DS-PACT of five linear polarizers, including orientation angle maps at multiple depths.
» Visualization 1       Modulated PA amplitudes of a dichroic material and a non-dichroic material.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Experimental setup of DS-PACT. The polarization of linearly polarized light is modulated by a half-wave plate, which is driven by a stepper motor. The light is then expanded by a concave lens. HWP, half-wave plate; CL, concave lens; DAQ, data acquisition system.
Fig. 2.
Fig. 2. Schematic of image reconstruction. (a) A sequence of conventional PACT images is acquired at a frame rate of 0.625 Hz, rotating the polarization of the incident light at 11.25°/s. (b) Normalized PA amplitude as a function of time at one representative spatial point. PA(t) is normalized with respect to its average. (c) Fourier spectrum of PA(t). The peak located at 0.0625 Hz corresponds to the alternating PA signals due to the modulated polarization. (d) DS-PACT image reconstructed by the amplitude of the lock-in term in Eq. (4). (e) Color-coded orientation angle map of the sample, which is reconstructed from the phase of the lock-in term in Eq. (4).
Fig. 3.
Fig. 3. DS-PACT of linear polarizers and silicone rubber. (a) Photograph of the sample without any scattering medium. LP, linear polarizer; SR, silicone rubber. (b) Conventional PACT image averaged over 900 frames. (c) Amplitude ratio of the linear polarizers to the silicone rubber in the conventional PACT image and in the DS-PACT image. (d) Normalized PA amplitudes of the linear polarizers and silicone rubber. (e) DS-PACT image reconstructed by the amplitude of the lock-in term in Eq. (4). (f) Orientation angle map of the linear polarizers, in which two pieces of silicone rubber are not shown.
Fig. 4.
Fig. 4. DS-PACT of the linear polarizers. (a) Photograph of the sample without any scattering medium. The sample contains five linear polarizers placed at different orientations. (b) Modulation depth of the PA amplitude acquired as a function of thickness D of the scattering medium, up to 20 mm. The red solid line indicates the exponential fit to the measured data. The black dashed line represents the noise level. (c) Conventional PACT images. (d) Amplitude images using DS-PACT. (e) Orientation angle maps of the linear polarizers. Supplement 1 shows images at more depths.
Fig. 5.
Fig. 5. DS-PACT of bovine tendons. (a) Photograph of the sample without any scattering medium. The sample contains two pieces of bovine tendon, which are placed perpendicular to each other. (b) Modulation depth of the PA amplitude acquired with increasing thickness D of the scattering medium, up to 15 mm. The red solid line indicates the exponential fit to the measured data. The black dashed line represents the noise level. (c) Conventional PACT images. (d) Amplitude images using DS-PACT. (e) Orientation angle maps of the two pieces of bovine tendon.
Fig. 6.
Fig. 6. Demonstration of DS-PACT with a linear array ultrasound transducer (LAUT). (a) Schematic of the phantom. LP, linear polarizer. SR, silicone rubber. (b) Fourier spectra of the linear polarizers and the silicone rubber. Each spectrum is normalized to its first harmonic and offset by 1 with respect to one another. The spectrum of LP2 shows a peak at the second harmonic frequency. (c) Conventional PACT image averaged over 7200 frames. (d) DS-PACT image reconstructed from the amplitude at 2fM. (e) DS-PACT image reconstructed from the amplitude at 4fM. (f) Orientation angle map.
Fig. 7.
Fig. 7. (a) Speckle contrasts of the scattered light after passing through scattering media with varying thicknesses. The red circles represent the data points, connected by the red solid line. The black dashed line indicates that the scattered light is depolarized to the noise level when the speckle contrast reaches 1/2. (b) Degree of polarization as a function of thickness. The blue circles represent the data points, connected by the blue solid line.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

PA(r,ϕ)μa(r,ϕ)F(r,ϕ).
μa(r,ϕ)=μa,o(r)n3(r,ϕ)no3(r)cos2(ϕθ(r))+μa,e(r)n3(r,ϕ)ne3(r)sin2(ϕθ(r)).
μa(r,ϕ)μa,o(r)cos2(ϕθ(r))+μa,e(r)sin2(ϕθ(r)),=μa,o(r)+μa,e(r)2+μa,o(r)μa,e(r)2cos2(ϕθ(r)),=μ¯a(r)[1+Δμa(r)2μ¯a(r)cos2(ϕθ(r))],
PA(r,t)μ¯a(r)F(r)[1+Δμa(r)2μ¯a(r)cos2(2πfMtθ(r))].
[PA(r,ϕ)]ND[μa(r)]NDF(r,ϕ),
F(r,ϕ)=F¯(r)[1αcos2(2πfMtθ(r))],
[PA(r,ϕ)]D[μa(r,ϕ)]DF(r,ϕ)μ¯a(r)F¯(r)[1+Δμa(r)2μ¯a(r)cos2(2πfMtθ(r))]μ¯a(r)F¯(r)αcos2(2πfMtθ(r))F¯(r)Δμa(r)α2cos2(2πfMtθ(r))cos2(2πfMtθ(r)).
C=1+P22,

Metrics