C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 035002 (2017).
[Crossref]
K. K. Mehta and R. J. Ram, “Precise and diffraction-limited waveguide-to-free-space focusing gratings,” Sci. Rep. 7, 2019 (2017).
[Crossref]
L. Tombez, E. J. Zhang, J. S. Orcutt, S. Kamlapurkar, and W. M. J. Green, “Methane absorption spectroscopy on a silicon photonic chip,” Optica 4, 1322–1325 (2017).
[Crossref]
T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]
W. Loh, M. T. Hummon, H. F. Leopardi, T. M. Fortier, F. Quinlan, J. Kitching, S. B. Papp, and S. A. Diddams, “Microresonator Brillouin laser stabilization using a microfabricated rubidium cell,” Opt. Express 24, 14513–14524 (2016).
[Crossref]
Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2016).
[Crossref]
W. Liang, V. S. Ilchenko, D. Eliyahu, E. Dale, A. A. Savchenkov, D. Seidel, A. B. Matsko, and L. Maleki, “Compact stabilized semiconductor laser for frequency metrology,” Appl. Opt. 54, 3353–3359 (2015).
[Crossref]
M. Triches, M. Michieletto, J. Hald, J. K. Lyngsø, J. Lægsgaard, and O. Bang, “Optical frequency standard using acetylene-filled hollow-core photonic crystal fibers,” Opt. Express 23, 11227–11241 (2015).
[Crossref]
P. S. Light, J. D. Anstie, F. Benabid, and A. N. Luiten, “Hermetic optical-fiber iodine frequency standard,” Opt. Lett. 40, 2703–2706 (2015).
[Crossref]
T. Kobayashi, D. Akamatsu, K. Hosaka, H. Inaba, S. Okubo, T. Tanabe, M. Yasuda, A. Onae, and F.-L. Hong, “A compact iodine-laser operating at 531 nm with stability at the 10−12 level and using a coin-sized laser module,” Opt. Express 23, 20749–20759 (2015).
[Crossref]
R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]
N. D. Zameroski, G. D. Hager, C. J. Erickson, and J. H. Burke, “Pressure broadening and frequency shift of the 5S1/2 → 5D5/2 and 5S1/2 → 7S1/2 two photon transitions in 85Rb by the noble gases and N2,” J. Phys. B 47, 225205 (2014).
[Crossref]
L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref]
C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High-resolution optical spectroscopy in a hollow-core photonic crystal fiber,” Phys. Rev. A 85, 1–5 (2012).
[Crossref]
J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]
A. Lurie, P. S. Light, J. Anstie, T. M. Stace, P. C. Abbott, F. Benabid, and A. N. Luiten, “Saturation spectroscopy of iodine in hollow-core optical fiber,” Opt. Express 20, 11906–11917 (2012).
[Crossref]
M. Takiguchi, Y. Yoshikawa, T. Yamamoto, K. Nakayama, and T. Kuga, “Saturated absorption spectroscopy of acetylene molecules with an optical nanofiber,” Opt. Lett. 36, 1254–1256 (2011).
[Crossref]
N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
[Crossref]
J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors–a review,” IEEE Sens. J. 11, 1749–1758 (2011).
[Crossref]
H. Schmidt and A. Hawkins, “Atomic spectroscopy and quantum optics in hollow-core waveguides,” Laser Photon. Rev. 4, 720–737 (2010).
[Crossref]
S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105, 1–4 (2010).
[Crossref]
X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
[Crossref]
A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81, 053825 (2010).
[Crossref]
K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[Crossref]
A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
[Crossref]
W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[Crossref]
D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]
C. Affolderbach and G. Mileti, “Tuneable, stabilised diode lasers for compact atomic frequency standards and precision wavelength references,” Opt. Lasers Eng. 43, 291–302 (2005).
[Crossref]
L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84, 2694–2696 (2004).
[Crossref]
S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]
P. Wang, A. Gallagher, and J. Cooper, “Selective reflection by Rb,” Phys. Rev. A 56, 1598–1606 (1997).
[Crossref]
M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the rubidium D1 and D2 lines (52S12 → 52P12, 52P32) by rare gases, H2, D2, N2, CH4 and CF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
[Crossref]
V. Vuletić, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[Crossref]
J. Simpson, J. Fraser and I. Greenwood, “An optically pumped nuclear magnetic resonance gyroscope,” IEEE Trans. Aerosp. 1, 1107–1110 (1963).
[Crossref]
J. Simpson, J. Fraser and I. Greenwood, “An optically pumped nuclear magnetic resonance gyroscope,” IEEE Trans. Aerosp. 1, 1107–1110 (1963).
[Crossref]
C. Affolderbach and G. Mileti, “Tuneable, stabilised diode lasers for compact atomic frequency standards and precision wavelength references,” Opt. Lasers Eng. 43, 291–302 (2005).
[Crossref]
T. Kobayashi, D. Akamatsu, K. Hosaka, H. Inaba, S. Okubo, T. Tanabe, M. Yasuda, A. Onae, and F.-L. Hong, “A compact iodine-laser operating at 531 nm with stability at the 10−12 level and using a coin-sized laser module,” Opt. Express 23, 20749–20759 (2015).
[Crossref]
S. Kim, D. A. Westly, B. J. Roxworthy, Q. Li, A. Yulaev, K. Srinivasan, and V. A. Aksyuk, “Photonic waveguide mode to free-space Gaussian beam extreme mode converter, ” arXiv: 1803.08124 (2018).
P. S. Light, J. D. Anstie, F. Benabid, and A. N. Luiten, “Hermetic optical-fiber iodine frequency standard,” Opt. Lett. 40, 2703–2706 (2015).
[Crossref]
A. Lurie, P. S. Light, J. Anstie, T. M. Stace, P. C. Abbott, F. Benabid, and A. N. Luiten, “Saturation spectroscopy of iodine in hollow-core optical fiber,” Opt. Express 20, 11906–11917 (2012).
[Crossref]
C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High-resolution optical spectroscopy in a hollow-core photonic crystal fiber,” Phys. Rev. A 85, 1–5 (2012).
[Crossref]
K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[Crossref]
A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
[Crossref]
A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81, 053825 (2010).
[Crossref]
T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]
Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2016).
[Crossref]
D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]
N. D. Zameroski, G. D. Hager, C. J. Erickson, and J. H. Burke, “Pressure broadening and frequency shift of the 5S1/2 → 5D5/2 and 5S1/2 → 7S1/2 two photon transitions in 85Rb by the noble gases and N2,” J. Phys. B 47, 225205 (2014).
[Crossref]
C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 035002 (2017).
[Crossref]
X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
[Crossref]
W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[Crossref]
P. Wang, A. Gallagher, and J. Cooper, “Selective reflection by Rb,” Phys. Rev. A 56, 1598–1606 (1997).
[Crossref]
K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[Crossref]
K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[Crossref]
W. Liang, V. S. Ilchenko, D. Eliyahu, E. Dale, A. A. Savchenkov, D. Seidel, A. B. Matsko, and L. Maleki, “Compact stabilized semiconductor laser for frequency metrology,” Appl. Opt. 54, 3353–3359 (2015).
[Crossref]
T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]
C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 035002 (2017).
[Crossref]
P. della Porta, C. Emil, and S. Hellier, “Alkali metal generation and gas evolution from alkali metal dispensers,” in Proceedings of the 9th IEEE Conference on Tube Techniques, (1968), p. 246.
L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref]
Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2016).
[Crossref]
W. Loh, M. T. Hummon, H. F. Leopardi, T. M. Fortier, F. Quinlan, J. Kitching, S. B. Papp, and S. A. Diddams, “Microresonator Brillouin laser stabilization using a microfabricated rubidium cell,” Opt. Express 24, 14513–14524 (2016).
[Crossref]
J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors–a review,” IEEE Sens. J. 11, 1749–1758 (2011).
[Crossref]
A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
[Crossref]
Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2016).
[Crossref]
A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
[Crossref]
W. Liang, V. S. Ilchenko, D. Eliyahu, E. Dale, A. A. Savchenkov, D. Seidel, A. B. Matsko, and L. Maleki, “Compact stabilized semiconductor laser for frequency metrology,” Appl. Opt. 54, 3353–3359 (2015).
[Crossref]
P. della Porta, C. Emil, and S. Hellier, “Alkali metal generation and gas evolution from alkali metal dispensers,” in Proceedings of the 9th IEEE Conference on Tube Techniques, (1968), p. 246.
N. D. Zameroski, G. D. Hager, C. J. Erickson, and J. H. Burke, “Pressure broadening and frequency shift of the 5S1/2 → 5D5/2 and 5S1/2 → 7S1/2 two photon transitions in 85Rb by the noble gases and N2,” J. Phys. B 47, 225205 (2014).
[Crossref]
N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
[Crossref]
W. Loh, M. T. Hummon, H. F. Leopardi, T. M. Fortier, F. Quinlan, J. Kitching, S. B. Papp, and S. A. Diddams, “Microresonator Brillouin laser stabilization using a microfabricated rubidium cell,” Opt. Express 24, 14513–14524 (2016).
[Crossref]
S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105, 1–4 (2010).
[Crossref]
J. Simpson, J. Fraser and I. Greenwood, “An optically pumped nuclear magnetic resonance gyroscope,” IEEE Trans. Aerosp. 1, 1107–1110 (1963).
[Crossref]
X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
[Crossref]
A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81, 053825 (2010).
[Crossref]
P. Wang, A. Gallagher, and J. Cooper, “Selective reflection by Rb,” Phys. Rev. A 56, 1598–1606 (1997).
[Crossref]
A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
[Crossref]
A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
[Crossref]
L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref]
J. Simpson, J. Fraser and I. Greenwood, “An optically pumped nuclear magnetic resonance gyroscope,” IEEE Trans. Aerosp. 1, 1107–1110 (1963).
[Crossref]
R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]
A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
[Crossref]
N. D. Zameroski, G. D. Hager, C. J. Erickson, and J. H. Burke, “Pressure broadening and frequency shift of the 5S1/2 → 5D5/2 and 5S1/2 → 7S1/2 two photon transitions in 85Rb by the noble gases and N2,” J. Phys. B 47, 225205 (2014).
[Crossref]
N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
[Crossref]
V. Vuletić, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[Crossref]
H. Schmidt and A. Hawkins, “Atomic spectroscopy and quantum optics in hollow-core waveguides,” Laser Photon. Rev. 4, 720–737 (2010).
[Crossref]
W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[Crossref]
P. della Porta, C. Emil, and S. Hellier, “Alkali metal generation and gas evolution from alkali metal dispensers,” in Proceedings of the 9th IEEE Conference on Tube Techniques, (1968), p. 246.
S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105, 1–4 (2010).
[Crossref]
S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]
L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84, 2694–2696 (2004).
[Crossref]
T. Kobayashi, D. Akamatsu, K. Hosaka, H. Inaba, S. Okubo, T. Tanabe, M. Yasuda, A. Onae, and F.-L. Hong, “A compact iodine-laser operating at 531 nm with stability at the 10−12 level and using a coin-sized laser module,” Opt. Express 23, 20749–20759 (2015).
[Crossref]
T. Kobayashi, D. Akamatsu, K. Hosaka, H. Inaba, S. Okubo, T. Tanabe, M. Yasuda, A. Onae, and F.-L. Hong, “A compact iodine-laser operating at 531 nm with stability at the 10−12 level and using a coin-sized laser module,” Opt. Express 23, 20749–20759 (2015).
[Crossref]
N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
[Crossref]
T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]
W. Loh, M. T. Hummon, H. F. Leopardi, T. M. Fortier, F. Quinlan, J. Kitching, S. B. Papp, and S. A. Diddams, “Microresonator Brillouin laser stabilization using a microfabricated rubidium cell,” Opt. Express 24, 14513–14524 (2016).
[Crossref]
W. Liang, V. S. Ilchenko, D. Eliyahu, E. Dale, A. A. Savchenkov, D. Seidel, A. B. Matsko, and L. Maleki, “Compact stabilized semiconductor laser for frequency metrology,” Appl. Opt. 54, 3353–3359 (2015).
[Crossref]
Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2016).
[Crossref]
T. Kobayashi, D. Akamatsu, K. Hosaka, H. Inaba, S. Okubo, T. Tanabe, M. Yasuda, A. Onae, and F.-L. Hong, “A compact iodine-laser operating at 531 nm with stability at the 10−12 level and using a coin-sized laser module,” Opt. Express 23, 20749–20759 (2015).
[Crossref]
K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[Crossref]
S. Kim, D. A. Westly, B. J. Roxworthy, Q. Li, A. Yulaev, K. Srinivasan, and V. A. Aksyuk, “Photonic waveguide mode to free-space Gaussian beam extreme mode converter, ” arXiv: 1803.08124 (2018).
W. Loh, M. T. Hummon, H. F. Leopardi, T. M. Fortier, F. Quinlan, J. Kitching, S. B. Papp, and S. A. Diddams, “Microresonator Brillouin laser stabilization using a microfabricated rubidium cell,” Opt. Express 24, 14513–14524 (2016).
[Crossref]
J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors–a review,” IEEE Sens. J. 11, 1749–1758 (2011).
[Crossref]
S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]
L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84, 2694–2696 (2004).
[Crossref]
K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[Crossref]
J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors–a review,” IEEE Sens. J. 11, 1749–1758 (2011).
[Crossref]
S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]
L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84, 2694–2696 (2004).
[Crossref]
T. Kobayashi, D. Akamatsu, K. Hosaka, H. Inaba, S. Okubo, T. Tanabe, M. Yasuda, A. Onae, and F.-L. Hong, “A compact iodine-laser operating at 531 nm with stability at the 10−12 level and using a coin-sized laser module,” Opt. Express 23, 20749–20759 (2015).
[Crossref]
T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]
R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]
J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]
S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105, 1–4 (2010).
[Crossref]
W. Loh, M. T. Hummon, H. F. Leopardi, T. M. Fortier, F. Quinlan, J. Kitching, S. B. Papp, and S. A. Diddams, “Microresonator Brillouin laser stabilization using a microfabricated rubidium cell,” Opt. Express 24, 14513–14524 (2016).
[Crossref]
L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref]
X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
[Crossref]
Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2016).
[Crossref]
S. Kim, D. A. Westly, B. J. Roxworthy, Q. Li, A. Yulaev, K. Srinivasan, and V. A. Aksyuk, “Photonic waveguide mode to free-space Gaussian beam extreme mode converter, ” arXiv: 1803.08124 (2018).
W. Liang, V. S. Ilchenko, D. Eliyahu, E. Dale, A. A. Savchenkov, D. Seidel, A. B. Matsko, and L. Maleki, “Compact stabilized semiconductor laser for frequency metrology,” Appl. Opt. 54, 3353–3359 (2015).
[Crossref]
L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84, 2694–2696 (2004).
[Crossref]
S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]
P. S. Light, J. D. Anstie, F. Benabid, and A. N. Luiten, “Hermetic optical-fiber iodine frequency standard,” Opt. Lett. 40, 2703–2706 (2015).
[Crossref]
A. Lurie, P. S. Light, J. Anstie, T. M. Stace, P. C. Abbott, F. Benabid, and A. N. Luiten, “Saturation spectroscopy of iodine in hollow-core optical fiber,” Opt. Express 20, 11906–11917 (2012).
[Crossref]
C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High-resolution optical spectroscopy in a hollow-core photonic crystal fiber,” Phys. Rev. A 85, 1–5 (2012).
[Crossref]
K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[Crossref]
K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[Crossref]
T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]
X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
[Crossref]
W. Loh, M. T. Hummon, H. F. Leopardi, T. M. Fortier, F. Quinlan, J. Kitching, S. B. Papp, and S. A. Diddams, “Microresonator Brillouin laser stabilization using a microfabricated rubidium cell,” Opt. Express 24, 14513–14524 (2016).
[Crossref]
A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81, 053825 (2010).
[Crossref]
R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]
J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]
P. S. Light, J. D. Anstie, F. Benabid, and A. N. Luiten, “Hermetic optical-fiber iodine frequency standard,” Opt. Lett. 40, 2703–2706 (2015).
[Crossref]
A. Lurie, P. S. Light, J. Anstie, T. M. Stace, P. C. Abbott, F. Benabid, and A. N. Luiten, “Saturation spectroscopy of iodine in hollow-core optical fiber,” Opt. Express 20, 11906–11917 (2012).
[Crossref]
C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High-resolution optical spectroscopy in a hollow-core photonic crystal fiber,” Phys. Rev. A 85, 1–5 (2012).
[Crossref]
A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
[Crossref]
W. Liang, V. S. Ilchenko, D. Eliyahu, E. Dale, A. A. Savchenkov, D. Seidel, A. B. Matsko, and L. Maleki, “Compact stabilized semiconductor laser for frequency metrology,” Appl. Opt. 54, 3353–3359 (2015).
[Crossref]
W. Liang, V. S. Ilchenko, D. Eliyahu, E. Dale, A. A. Savchenkov, D. Seidel, A. B. Matsko, and L. Maleki, “Compact stabilized semiconductor laser for frequency metrology,” Appl. Opt. 54, 3353–3359 (2015).
[Crossref]
K. K. Mehta and R. J. Ram, “Precise and diffraction-limited waveguide-to-free-space focusing gratings,” Sci. Rep. 7, 2019 (2017).
[Crossref]
C. Affolderbach and G. Mileti, “Tuneable, stabilised diode lasers for compact atomic frequency standards and precision wavelength references,” Opt. Lasers Eng. 43, 291–302 (2005).
[Crossref]
A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
[Crossref]
S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]
L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84, 2694–2696 (2004).
[Crossref]
K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[Crossref]
A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
[Crossref]
T. Kobayashi, D. Akamatsu, K. Hosaka, H. Inaba, S. Okubo, T. Tanabe, M. Yasuda, A. Onae, and F.-L. Hong, “A compact iodine-laser operating at 531 nm with stability at the 10−12 level and using a coin-sized laser module,” Opt. Express 23, 20749–20759 (2015).
[Crossref]
T. Kobayashi, D. Akamatsu, K. Hosaka, H. Inaba, S. Okubo, T. Tanabe, M. Yasuda, A. Onae, and F.-L. Hong, “A compact iodine-laser operating at 531 nm with stability at the 10−12 level and using a coin-sized laser module,” Opt. Express 23, 20749–20759 (2015).
[Crossref]
Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2016).
[Crossref]
W. Loh, M. T. Hummon, H. F. Leopardi, T. M. Fortier, F. Quinlan, J. Kitching, S. B. Papp, and S. A. Diddams, “Microresonator Brillouin laser stabilization using a microfabricated rubidium cell,” Opt. Express 24, 14513–14524 (2016).
[Crossref]
R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]
M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the rubidium D1 and D2 lines (52S12 → 52P12, 52P32) by rare gases, H2, D2, N2, CH4 and CF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
[Crossref]
C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High-resolution optical spectroscopy in a hollow-core photonic crystal fiber,” Phys. Rev. A 85, 1–5 (2012).
[Crossref]
R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]
J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]
S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105, 1–4 (2010).
[Crossref]
W. Loh, M. T. Hummon, H. F. Leopardi, T. M. Fortier, F. Quinlan, J. Kitching, S. B. Papp, and S. A. Diddams, “Microresonator Brillouin laser stabilization using a microfabricated rubidium cell,” Opt. Express 24, 14513–14524 (2016).
[Crossref]
K. K. Mehta and R. J. Ram, “Precise and diffraction-limited waveguide-to-free-space focusing gratings,” Sci. Rep. 7, 2019 (2017).
[Crossref]
C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 035002 (2017).
[Crossref]
R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]
L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84, 2694–2696 (2004).
[Crossref]
D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]
M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the rubidium D1 and D2 lines (52S12 → 52P12, 52P32) by rare gases, H2, D2, N2, CH4 and CF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
[Crossref]
S. Kim, D. A. Westly, B. J. Roxworthy, Q. Li, A. Yulaev, K. Srinivasan, and V. A. Aksyuk, “Photonic waveguide mode to free-space Gaussian beam extreme mode converter, ” arXiv: 1803.08124 (2018).
N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
[Crossref]
T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]
V. Vuletić, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[Crossref]
W. Liang, V. S. Ilchenko, D. Eliyahu, E. Dale, A. A. Savchenkov, D. Seidel, A. B. Matsko, and L. Maleki, “Compact stabilized semiconductor laser for frequency metrology,” Appl. Opt. 54, 3353–3359 (2015).
[Crossref]
H. Schmidt and A. Hawkins, “Atomic spectroscopy and quantum optics in hollow-core waveguides,” Laser Photon. Rev. 4, 720–737 (2010).
[Crossref]
W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[Crossref]
J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]
S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]
J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]
W. Liang, V. S. Ilchenko, D. Eliyahu, E. Dale, A. A. Savchenkov, D. Seidel, A. B. Matsko, and L. Maleki, “Compact stabilized semiconductor laser for frequency metrology,” Appl. Opt. 54, 3353–3359 (2015).
[Crossref]
J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]
S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]
J. Simpson, J. Fraser and I. Greenwood, “An optically pumped nuclear magnetic resonance gyroscope,” IEEE Trans. Aerosp. 1, 1107–1110 (1963).
[Crossref]
A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81, 053825 (2010).
[Crossref]
T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]
Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2016).
[Crossref]
S. Kim, D. A. Westly, B. J. Roxworthy, Q. Li, A. Yulaev, K. Srinivasan, and V. A. Aksyuk, “Photonic waveguide mode to free-space Gaussian beam extreme mode converter, ” arXiv: 1803.08124 (2018).
T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]
A. Lurie, P. S. Light, J. Anstie, T. M. Stace, P. C. Abbott, F. Benabid, and A. N. Luiten, “Saturation spectroscopy of iodine in hollow-core optical fiber,” Opt. Express 20, 11906–11917 (2012).
[Crossref]
C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High-resolution optical spectroscopy in a hollow-core photonic crystal fiber,” Phys. Rev. A 85, 1–5 (2012).
[Crossref]
T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]
L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref]
Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2016).
[Crossref]
T. Kobayashi, D. Akamatsu, K. Hosaka, H. Inaba, S. Okubo, T. Tanabe, M. Yasuda, A. Onae, and F.-L. Hong, “A compact iodine-laser operating at 531 nm with stability at the 10−12 level and using a coin-sized laser module,” Opt. Express 23, 20749–20759 (2015).
[Crossref]
K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[Crossref]
K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[Crossref]
X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
[Crossref]
A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81, 053825 (2010).
[Crossref]
V. Vuletić, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[Crossref]
P. Wang, A. Gallagher, and J. Cooper, “Selective reflection by Rb,” Phys. Rev. A 56, 1598–1606 (1997).
[Crossref]
K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[Crossref]
Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2016).
[Crossref]
S. Kim, D. A. Westly, B. J. Roxworthy, Q. Li, A. Yulaev, K. Srinivasan, and V. A. Aksyuk, “Photonic waveguide mode to free-space Gaussian beam extreme mode converter, ” arXiv: 1803.08124 (2018).
K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[Crossref]
W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[Crossref]
K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[Crossref]
W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[Crossref]
T. Kobayashi, D. Akamatsu, K. Hosaka, H. Inaba, S. Okubo, T. Tanabe, M. Yasuda, A. Onae, and F.-L. Hong, “A compact iodine-laser operating at 531 nm with stability at the 10−12 level and using a coin-sized laser module,” Opt. Express 23, 20749–20759 (2015).
[Crossref]
W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[Crossref]
S. Kim, D. A. Westly, B. J. Roxworthy, Q. Li, A. Yulaev, K. Srinivasan, and V. A. Aksyuk, “Photonic waveguide mode to free-space Gaussian beam extreme mode converter, ” arXiv: 1803.08124 (2018).
N. D. Zameroski, G. D. Hager, C. J. Erickson, and J. H. Burke, “Pressure broadening and frequency shift of the 5S1/2 → 5D5/2 and 5S1/2 → 7S1/2 two photon transitions in 85Rb by the noble gases and N2,” J. Phys. B 47, 225205 (2014).
[Crossref]
N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
[Crossref]
T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]
V. Vuletić, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[Crossref]
W. Liang, V. S. Ilchenko, D. Eliyahu, E. Dale, A. A. Savchenkov, D. Seidel, A. B. Matsko, and L. Maleki, “Compact stabilized semiconductor laser for frequency metrology,” Appl. Opt. 54, 3353–3359 (2015).
[Crossref]
R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]
S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]
L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84, 2694–2696 (2004).
[Crossref]
A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapour microcell for chip scale atomic frequency standard,” Electron. Lett. 43, 33–34 (2007).
[Crossref]
X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22, 1156–1158 (2010).
[Crossref]
J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors–a review,” IEEE Sens. J. 11, 1749–1758 (2011).
[Crossref]
J. Simpson, J. Fraser and I. Greenwood, “An optically pumped nuclear magnetic resonance gyroscope,” IEEE Trans. Aerosp. 1, 1107–1110 (1963).
[Crossref]
T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]
N. D. Zameroski, G. D. Hager, C. J. Erickson, and J. H. Burke, “Pressure broadening and frequency shift of the 5S1/2 → 5D5/2 and 5S1/2 → 7S1/2 two photon transitions in 85Rb by the noble gases and N2,” J. Phys. B 47, 225205 (2014).
[Crossref]
M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the rubidium D1 and D2 lines (52S12 → 52P12, 52P32) by rare gases, H2, D2, N2, CH4 and CF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
[Crossref]
N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
[Crossref]
H. Schmidt and A. Hawkins, “Atomic spectroscopy and quantum optics in hollow-core waveguides,” Laser Photon. Rev. 4, 720–737 (2010).
[Crossref]
L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref]
W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[Crossref]
D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]
J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]
V. Vuletić, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[Crossref]
K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[Crossref]
M. Triches, M. Michieletto, J. Hald, J. K. Lyngsø, J. Lægsgaard, and O. Bang, “Optical frequency standard using acetylene-filled hollow-core photonic crystal fibers,” Opt. Express 23, 11227–11241 (2015).
[Crossref]
A. Lurie, P. S. Light, J. Anstie, T. M. Stace, P. C. Abbott, F. Benabid, and A. N. Luiten, “Saturation spectroscopy of iodine in hollow-core optical fiber,” Opt. Express 20, 11906–11917 (2012).
[Crossref]
T. Kobayashi, D. Akamatsu, K. Hosaka, H. Inaba, S. Okubo, T. Tanabe, M. Yasuda, A. Onae, and F.-L. Hong, “A compact iodine-laser operating at 531 nm with stability at the 10−12 level and using a coin-sized laser module,” Opt. Express 23, 20749–20759 (2015).
[Crossref]
W. Loh, M. T. Hummon, H. F. Leopardi, T. M. Fortier, F. Quinlan, J. Kitching, S. B. Papp, and S. A. Diddams, “Microresonator Brillouin laser stabilization using a microfabricated rubidium cell,” Opt. Express 24, 14513–14524 (2016).
[Crossref]
C. Affolderbach and G. Mileti, “Tuneable, stabilised diode lasers for compact atomic frequency standards and precision wavelength references,” Opt. Lasers Eng. 43, 291–302 (2005).
[Crossref]
P. S. Light, J. D. Anstie, F. Benabid, and A. N. Luiten, “Hermetic optical-fiber iodine frequency standard,” Opt. Lett. 40, 2703–2706 (2015).
[Crossref]
M. Takiguchi, Y. Yoshikawa, T. Yamamoto, K. Nakayama, and T. Kuga, “Saturated absorption spectroscopy of acetylene molecules with an optical nanofiber,” Opt. Lett. 36, 1254–1256 (2011).
[Crossref]
J. Ye, S. Swartz, P. Jungner, and J. L. Hall, “Hyperfine structure and absolute frequency of the 87Rb 5P3/2 state,” Opt. Lett. 21, 1280–1282 (1996).
[Crossref]
A. Banerjee, D. Das, and V. Natarajan, “Precise frequency measurements of atomic transitions by use of a Rb-stabilized resonator,” Opt. Lett. 28, 1579–1581 (2003).
[Crossref]
Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2016).
[Crossref]
L. Tombez, E. J. Zhang, J. S. Orcutt, S. Kamlapurkar, and W. M. J. Green, “Methane absorption spectroscopy on a silicon photonic chip,” Optica 4, 1322–1325 (2017).
[Crossref]
P. Wang, A. Gallagher, and J. Cooper, “Selective reflection by Rb,” Phys. Rev. A 56, 1598–1606 (1997).
[Crossref]
A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81, 053825 (2010).
[Crossref]
C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High-resolution optical spectroscopy in a hollow-core photonic crystal fiber,” Phys. Rev. A 85, 1–5 (2012).
[Crossref]
S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105, 1–4 (2010).
[Crossref]
C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 035002 (2017).
[Crossref]
K. K. Mehta and R. J. Ram, “Precise and diffraction-limited waveguide-to-free-space focusing gratings,” Sci. Rep. 7, 2019 (2017).
[Crossref]
S. Kim, D. A. Westly, B. J. Roxworthy, Q. Li, A. Yulaev, K. Srinivasan, and V. A. Aksyuk, “Photonic waveguide mode to free-space Gaussian beam extreme mode converter, ” arXiv: 1803.08124 (2018).
P. della Porta, C. Emil, and S. Hellier, “Alkali metal generation and gas evolution from alkali metal dispensers,” in Proceedings of the 9th IEEE Conference on Tube Techniques, (1968), p. 246.