Abstract

Efficient on-chip molecule and bio-agent detection can be achieved by accessing strong molecular absorption lines in the mid-infrared, but it requires high output power broadband mid-IR sources. Here, we report supercontinuum generation in an air-clad Si0.6Ge0.4/Si waveguide that emits a broad spectrum spanning from 3.0 μm to 8.5 μm. These waveguides have anomalous dispersion and low propagation loss (<0.4  dB/cm) in the mid-IR, which leads to a supercontinuum output with a high average power of more than 10 mW on-chip. The realization of broadband mid-IR sources with high spectral brightness makes the SiGe-on-Si platform promising for a wide range of applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths

Marco A. G. Porcel, Florian Schepers, Jörn P. Epping, Tim Hellwig, Marcel Hoekman, René G. Heideman, Peter J. M. van der Slot, Chris J. Lee, Robert Schmidt, Rudolf Bratschitsch, Carsten Fallnich, and Klaus-J. Boller
Opt. Express 25(2) 1542-1554 (2017)

Mid-infrared sensing between 5.2 and 6.6 µm wavelengths using Ge-rich SiGe waveguides [Invited]

Qiankun Liu, Joan Manel Ramirez, Vladyslav Vakarin, Xavier Le Roux, Andrea Ballabio, Jacopo Frigerio, Daniel Chrastina, Giovanni Isella, David Bouville, Laurent Vivien, Carlos Alonso Ramos, and Delphine Marris-Morini
Opt. Mater. Express 8(5) 1305-1312 (2018)

Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a Thulium doped fiber laser pump source

Utsav D. Dave, Sarah Uvin, Bart Kuyken, Shankar Selvaraja, Francois Leo, and Gunther Roelkens
Opt. Express 21(26) 32032-32039 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
    [Crossref]
  2. L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3, 247–268 (2014).
    [Crossref]
  3. B. Mizaikoff, “Waveguide-enhanced mid-infrared chem/bio sensors,” Chem. Soc. Rev. 42, 8683–8699 (2013).
    [Crossref]
  4. Y.-C. Chang, “Design, fabrication and characterization of mid-infrared strip waveguide for laser spectroscopy in liquid environments” Ph.D. thesis (EPFL, 2012).
  5. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
    [Crossref]
  6. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
    [Crossref]
  7. H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
    [Crossref]
  8. R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
    [Crossref]
  9. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  10. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8–10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
    [Crossref]
  11. T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1  μm in a chalcogenide step-index fiber,” Opt. Lett. 41, 2117–2120 (2016).
    [Crossref]
  12. C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Trolès, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25, 15336–15348 (2017).
    [Crossref]
  13. D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. El Amraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4, 1163–1166 (2017).
    [Crossref]
  14. Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2–10  μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41, 958–961 (2016).
    [Crossref]
  15. I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15, 15242–15249 (2007).
    [Crossref]
  16. P. Koonath, D. R. Solli, and B. Jalali, “Limiting nature of continuum generation in silicon,” Appl. Phys. Lett. 93, 091114 (2008).
    [Crossref]
  17. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
    [Crossref]
  18. R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014).
    [Crossref]
  19. M. Brun, P. Labeye, G. Grand, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides for mid-IR applications,” Opt. Express 22, 508–518 (2014).
    [Crossref]
  20. L. Carletti, P. Ma, Y. Yu, B. Luther-Davies, D. Hudson, C. Monat, R. Orobtchouk, S. Madden, D. J. Moss, M. Brun, S. Ortiz, P. Labeye, S. Nicoletti, and C. Grillet, “Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared,” Opt. Express 23, 8261–8271 (2015).
    [Crossref]
  21. L. Carletti, M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, and C. Grillet, “Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses,” Opt. Express 23, 32202–32214 (2015).
    [Crossref]
  22. G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. B. Masaud, H. M. H. Chong, V. Mittal, G. S. Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” J. Lightwave Technol. 35, 624–630 (2017).
    [Crossref]
  23. J. M. Ramirez, V. Vakarin, C. Gilles, J. Frigerio, A. Ballabio, P. Chaisakul, X. Le Roux, C. Alonso-Ramos, G. Maisons, L. Vivien, M. Carras, G. Isella, and D. Marris-Morini, “Low-loss Ge-rich Si0.2Ge0.8 waveguides for mid-infrared photonics,” Opt. Lett. 42, 105–108 (2017).
    [Crossref]
  24. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37, 1685–1687 (2012).
    [Crossref]
  25. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [Crossref]
  26. D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18, 923–930 (2010).
    [Crossref]
  27. M. A. Ettabib, L. Xu, A. Bogris, A. Kapsalis, M. Belal, E. Lorent, P. Labeye, S. Nicoletti, K. Hammani, D. Syvridis, D. P. Shepherd, J. H. V. Price, D. J. Richardson, and P. Petropoulos, “Broadband telecom to mid-infrared supercontinuum generation in a dispersion-engineered silicon germanium waveguide,” Opt. Lett. 40, 4118–4121 (2015).
    [Crossref]
  28. S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
    [Crossref]
  29. N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. G. Duvall, S. Palomba, B. Luther-Davies, S. Madden, D. J. Moss, and B. J. Eggleton, “Midinfrared supercontinuum generation from 2 to 6  μm in a silicon nanowire,” Optica 2, 797–802 (2015).
    [Crossref]
  30. D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450  cm−1 ≤ ω ≤ 4000  cm−1) refractive index values of silicon,” J. Appl. Phys. 97, 123526 (2005).
    [Crossref]
  31. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  32. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers, 1st ed. (Cambridge University, 2010), p. 418.
  33. X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
    [Crossref]
  34. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27, B51–B62 (2010).
    [Crossref]

2017 (5)

2016 (2)

2015 (6)

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8–10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8–10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref]

L. Carletti, P. Ma, Y. Yu, B. Luther-Davies, D. Hudson, C. Monat, R. Orobtchouk, S. Madden, D. J. Moss, M. Brun, S. Ortiz, P. Labeye, S. Nicoletti, and C. Grillet, “Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared,” Opt. Express 23, 8261–8271 (2015).
[Crossref]

M. A. Ettabib, L. Xu, A. Bogris, A. Kapsalis, M. Belal, E. Lorent, P. Labeye, S. Nicoletti, K. Hammani, D. Syvridis, D. P. Shepherd, J. H. V. Price, D. J. Richardson, and P. Petropoulos, “Broadband telecom to mid-infrared supercontinuum generation in a dispersion-engineered silicon germanium waveguide,” Opt. Lett. 40, 4118–4121 (2015).
[Crossref]

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. G. Duvall, S. Palomba, B. Luther-Davies, S. Madden, D. J. Moss, and B. J. Eggleton, “Midinfrared supercontinuum generation from 2 to 6  μm in a silicon nanowire,” Optica 2, 797–802 (2015).
[Crossref]

L. Carletti, M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, and C. Grillet, “Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses,” Opt. Express 23, 32202–32214 (2015).
[Crossref]

L. Carletti, M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, and C. Grillet, “Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses,” Opt. Express 23, 32202–32214 (2015).
[Crossref]

H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
[Crossref]

2014 (4)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3, 247–268 (2014).
[Crossref]

M. Brun, P. Labeye, G. Grand, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides for mid-IR applications,” Opt. Express 22, 508–518 (2014).
[Crossref]

R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014).
[Crossref]

2013 (3)

B. Mizaikoff, “Waveguide-enhanced mid-infrared chem/bio sensors,” Chem. Soc. Rev. 42, 8683–8699 (2013).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

2012 (3)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37, 1685–1687 (2012).
[Crossref]

2011 (1)

2010 (4)

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18, 923–930 (2010).
[Crossref]

S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27, B51–B62 (2010).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

2008 (1)

P. Koonath, D. R. Solli, and B. Jalali, “Limiting nature of continuum generation in silicon,” Appl. Phys. Lett. 93, 091114 (2008).
[Crossref]

2007 (1)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

2005 (1)

D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450  cm−1 ≤ ω ≤ 4000  cm−1) refractive index values of silicon,” J. Appl. Phys. 97, 123526 (2005).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Agarwal, A. M.

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3, 247–268 (2014).
[Crossref]

Aggarwal, I. D.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

Alamgir, I.

Allioux, D.

Alonso-Ramos, C.

Amirtharaj, P. M.

D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450  cm−1 ≤ ω ≤ 4000  cm−1) refractive index values of silicon,” J. Appl. Phys. 97, 123526 (2005).
[Crossref]

Antipov, S.

Atanackovic, P.

Baets, R.

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref]

Ballabio, A.

Bang, O.

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Trolès, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25, 15336–15348 (2017).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Baudisch, M.

H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
[Crossref]

Belal, M.

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Biegert, J.

H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
[Crossref]

Bogris, A.

Boulila, F.

Brilland, L.

Brun, M.

Caillaud, C.

Cao, W.

Cardenas, J.

Carletti, L.

Carras, M.

Casas-Bedoya, A.

Chaisakul, P.

Chandler-Horowitz, D.

D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450  cm−1 ≤ ω ≤ 4000  cm−1) refractive index values of silicon,” J. Appl. Phys. 97, 123526 (2005).
[Crossref]

Chang, Y.-C.

Y.-C. Chang, “Design, fabrication and characterization of mid-infrared strip waveguide for laser spectroscopy in liquid environments” Ph.D. thesis (EPFL, 2012).

Chen, X.

Cheng, T.

Choi, D.-Y.

Chong, H. M. H.

Chou, C.-Y.

Chu, S.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Dadap, J. I.

Diddams, S. A.

Duchesne, D.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers, 1st ed. (Cambridge University, 2010), p. 418.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Duvall, S. G.

Eggleton, B. J.

El Amraoui, M.

Engelsholm, R. D.

Ettabib, M. A.

Ferrera, M.

Foster, M. A.

Frigerio, J.

Fuerbach, A.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Gaeta, A. L.

Gai, X.

Gardes, F. Y.

Gattass, R. R.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Gilles, C.

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

Grand, G.

Green, W. M.

Green, W. M. J.

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

Griffith, A. G.

Grillet, C.

Guo, W.

Halir, R.

Hammani, K.

Hartmann, J. M.

Hartmann, J.-M.

Hemmer, M.

H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
[Crossref]

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

Hsieh, I.-W.

Hu, T.

Hudson, D.

Hudson, D. D.

Isella, G.

Jackson, S. D.

Jalali, B.

P. Koonath, D. R. Solli, and B. Jalali, “Limiting nature of continuum generation in silicon,” Appl. Phys. Lett. 93, 091114 (2008).
[Crossref]

Ji, X.

Kapsalis, A.

Khokhar, A. Z.

Kimerling, L. C.

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3, 247–268 (2014).
[Crossref]

Koonath, P.

P. Koonath, D. R. Solli, and B. Jalali, “Limiting nature of continuum generation in silicon,” Appl. Phys. Lett. 93, 091114 (2008).
[Crossref]

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Kuyken, B.

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref]

Labeye, P.

Lamont, M. R. E.

Lau, R. K. W.

Le Roux, X.

Légaré, F.

Levy, J. S.

Li, L.

Lipson, M.

Little, B. E.

Littlejohns, C. G.

Liu, X.

Lorent, E.

Luther-Davies, B.

Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2–10  μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41, 958–961 (2016).
[Crossref]

L. Carletti, M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, and C. Grillet, “Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses,” Opt. Express 23, 32202–32214 (2015).
[Crossref]

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. G. Duvall, S. Palomba, B. Luther-Davies, S. Madden, D. J. Moss, and B. J. Eggleton, “Midinfrared supercontinuum generation from 2 to 6  μm in a silicon nanowire,” Optica 2, 797–802 (2015).
[Crossref]

L. Carletti, P. Ma, Y. Yu, B. Luther-Davies, D. Hudson, C. Monat, R. Orobtchouk, S. Madden, D. J. Moss, M. Brun, S. Ortiz, P. Labeye, S. Nicoletti, and C. Grillet, “Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared,” Opt. Express 23, 8261–8271 (2015).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8–10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

Ma, P.

Madden, S.

Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2–10  μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41, 958–961 (2016).
[Crossref]

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. G. Duvall, S. Palomba, B. Luther-Davies, S. Madden, D. J. Moss, and B. J. Eggleton, “Midinfrared supercontinuum generation from 2 to 6  μm in a silicon nanowire,” Optica 2, 797–802 (2015).
[Crossref]

L. Carletti, M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, and C. Grillet, “Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses,” Opt. Express 23, 32202–32214 (2015).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8–10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref]

L. Carletti, P. Ma, Y. Yu, B. Luther-Davies, D. Hudson, C. Monat, R. Orobtchouk, S. Madden, D. J. Moss, M. Brun, S. Ortiz, P. Labeye, S. Nicoletti, and C. Grillet, “Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared,” Opt. Express 23, 8261–8271 (2015).
[Crossref]

Madden, S. J.

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

Maisons, G.

Markos, C.

Marris-Morini, D.

Masaud, T. B.

Mashanovich, G. Z.

Matsumoto, M.

Messaddeq, Y.

Michel, J.

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3, 247–268 (2014).
[Crossref]

Miller, S. A.

Mitchell, C. J.

Mittal, V.

Mizaikoff, B.

B. Mizaikoff, “Waveguide-enhanced mid-infrared chem/bio sensors,” Chem. Soc. Rev. 42, 8683–8699 (2013).
[Crossref]

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Monat, C.

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18, 923–930 (2010).
[Crossref]

Moss, D. J.

Murugan, G. S.

Nagasaka, K.

Nedeljkovic, M.

Nguyen, V. Q.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

Nicoletti, S.

Ohishi, Y.

Okawachi, Y.

Orobtchouk, R.

Ortiz, S.

Osgood, R. M.

Palomba, S.

Panoiu, N. C.

Peacock, A. C.

Peccianti, M.

Penades, J. S.

Petersen, C. R.

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Trolès, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25, 15336–15348 (2017).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Petropoulos, P.

Pires, H.

H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
[Crossref]

Price, J. H. V.

Pureza, P. C.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

Qi, S.

Qu, Z.

Ramirez, J. M.

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Razzari, L.

Read, A.

Richardson, D. J.

Rochette, M.

Roelkens, G.

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref]

Sanchez, D.

H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
[Crossref]

Sanghera, J. S.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Shaw, L. B.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

Shepherd, D. P.

Singh, N.

Sinobad, M.

Solli, D. R.

P. Koonath, D. R. Solli, and B. Jalali, “Limiting nature of continuum generation in silicon,” Appl. Phys. Lett. 93, 091114 (2008).
[Crossref]

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

Stankovic, S.

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Suzuki, T.

Syvridis, D.

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers, 1st ed. (Cambridge University, 2010), p. 418.

Tezuka, H.

Trolès, J.

Tuan, T. H.

Vakarin, V.

Van Campenhout, J.

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

Verheyen, P.

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

Vivien, L.

Vlasov, Y. A.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15, 15242–15249 (2007).
[Crossref]

Vu, K.

Wang, R.

Wilkinson, J. S.

Xia, F.

Xu, L.

Xue, X.

Yang, Z.

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

Yu, M.

Yu, Y.

Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2–10  μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41, 958–961 (2016).
[Crossref]

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. G. Duvall, S. Palomba, B. Luther-Davies, S. Madden, D. J. Moss, and B. J. Eggleton, “Midinfrared supercontinuum generation from 2 to 6  μm in a silicon nanowire,” Optica 2, 797–802 (2015).
[Crossref]

L. Carletti, M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, and C. Grillet, “Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses,” Opt. Express 23, 32202–32214 (2015).
[Crossref]

L. Carletti, P. Ma, Y. Yu, B. Luther-Davies, D. Hudson, C. Monat, R. Orobtchouk, S. Madden, D. J. Moss, M. Brun, S. Ortiz, P. Labeye, S. Nicoletti, and C. Grillet, “Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared,” Opt. Express 23, 8261–8271 (2015).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8–10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

Zhai, C.

Zhang, B.

Zhang, L.

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3, 247–268 (2014).
[Crossref]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Appl. Phys. Lett. (1)

P. Koonath, D. R. Solli, and B. Jalali, “Limiting nature of continuum generation in silicon,” Appl. Phys. Lett. 93, 091114 (2008).
[Crossref]

Chem. Soc. Rev. (1)

B. Mizaikoff, “Waveguide-enhanced mid-infrared chem/bio sensors,” Chem. Soc. Rev. 42, 8683–8699 (2013).
[Crossref]

J. Appl. Phys. (1)

D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450  cm−1 ≤ ω ≤ 4000  cm−1) refractive index values of silicon,” J. Appl. Phys. 97, 123526 (2005).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

Nanophotonics (1)

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3, 247–268 (2014).
[Crossref]

Nat. Photonics (5)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Opt. Express (7)

D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18, 923–930 (2010).
[Crossref]

I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15, 15242–15249 (2007).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref]

M. Brun, P. Labeye, G. Grand, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides for mid-IR applications,” Opt. Express 22, 508–518 (2014).
[Crossref]

L. Carletti, P. Ma, Y. Yu, B. Luther-Davies, D. Hudson, C. Monat, R. Orobtchouk, S. Madden, D. J. Moss, M. Brun, S. Ortiz, P. Labeye, S. Nicoletti, and C. Grillet, “Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared,” Opt. Express 23, 8261–8271 (2015).
[Crossref]

L. Carletti, M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, and C. Grillet, “Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses,” Opt. Express 23, 32202–32214 (2015).
[Crossref]

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Trolès, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25, 15336–15348 (2017).
[Crossref]

Opt. Fiber Technol. (1)

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

Opt. Lett. (7)

Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2–10  μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41, 958–961 (2016).
[Crossref]

R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8–10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1  μm in a chalcogenide step-index fiber,” Opt. Lett. 41, 2117–2120 (2016).
[Crossref]

M. A. Ettabib, L. Xu, A. Bogris, A. Kapsalis, M. Belal, E. Lorent, P. Labeye, S. Nicoletti, K. Hammani, D. Syvridis, D. P. Shepherd, J. H. V. Price, D. J. Richardson, and P. Petropoulos, “Broadband telecom to mid-infrared supercontinuum generation in a dispersion-engineered silicon germanium waveguide,” Opt. Lett. 40, 4118–4121 (2015).
[Crossref]

J. M. Ramirez, V. Vakarin, C. Gilles, J. Frigerio, A. Ballabio, P. Chaisakul, X. Le Roux, C. Alonso-Ramos, G. Maisons, L. Vivien, M. Carras, G. Isella, and D. Marris-Morini, “Low-loss Ge-rich Si0.2Ge0.8 waveguides for mid-infrared photonics,” Opt. Lett. 42, 105–108 (2017).
[Crossref]

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37, 1685–1687 (2012).
[Crossref]

Optica (3)

Prog. Quantum Electron. (1)

H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Other (2)

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers, 1st ed. (Cambridge University, 2010), p. 418.

Y.-C. Chang, “Design, fabrication and characterization of mid-infrared strip waveguide for laser spectroscopy in liquid environments” Ph.D. thesis (EPFL, 2012).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Calculated group velocity dispersion (GVD) (solid lines) and mode confinement (dashed lines) of waveguide (1) in the TE mode (blue) and waveguide (2) in the TM mode (red). The arrows indicate the related cutoff wavelengths.
Fig. 2.
Fig. 2. Measured propagation loss for the TE mode of waveguide (1) (blue) and the TM mode of waveguide (2) (red). Inset: 3D scanning electron microscopy image of a cleaved SiGe 40%/Si waveguide.
Fig. 3.
Fig. 3. Experimental setup used in SCG measurements. Elements are (1) tunable OPA, (2) optical waveplate and polarizers, (3) chopper connected to the lock-in amplifier, (4) sample and ChG lenses, (5) an optical spectrum analyzer (OSA), and (6) the MCT photodetector.
Fig. 4.
Fig. 4. (a) Spectra measured out of the 7 cm long waveguide (1) for increasing the coupled average power (quoted in regular font) and corresponding peak power (italic font). (b) Related spectra simulated by the split-step Fourier method for this waveguide geometry using the same peak power (italic font) as in (a). The arrows indicate the 30  dB bandwidth of the SC.
Fig. 5.
Fig. 5. On-chip SC power versus coupled average power measured for the 7 cm long waveguide (1) in TE at 4.0 μm (blue squares), simulated results for the 7 cm waveguide (blue line) and simulated results for a 2 cm long similar waveguide (red line).
Fig. 6.
Fig. 6. Spectra measured out of the 7 cm long waveguide (2) pumped in TM at 4.15 μm for increasing coupled average power (indicated in regular font on the right side of each spectrum) and corresponding peak power (italic font). The dashed red curve highlights the absorption of crystalline silicon extracted from [30]. The two black arrows on the left highlight the 10  dB bandwidth and 30  dB bandwidth of 4.9 μm and 5.3 μm, respectively.
Fig. 7.
Fig. 7. Simulation of the pulse propagation along the 7 cm long waveguide (1) under 16 mW (2.35 kW) coupled (peak) average power at 4 μm.
Fig. 8.
Fig. 8. Bandwidth at 30  dB versus coupled peak power experimentally measured for the waveguide (1) (blue) and waveguide (2) (red). The dashed curves are guides for the eye.

Tables (2)

Tables Icon

Table 1. Summary of the Waveguide Parameters for the Two Designsa

Tables Icon

Table 2. Comparison of Current Results with Literature Data on Si-based Platforms Used for the Mid-IR and Results Achieved with the On-chip ChG Platforma

Metrics