Abstract

Single-pixel imaging can capture images using a detector without spatial resolution, which enables imaging in various situations that are challenging or impossible with conventional pixelated detectors. Here we report a compressive single-pixel imaging approach that can simultaneously encode and recover spatial, spectral, and 3D information of the object. In this approach, we modulate and condense the object information in the Fourier space and detect the light signals using a single-pixel detector. The data-compressing operation is similar to conventional compression algorithms that selectively store the largest coefficients of a transform domain. In our implementation, we selectively sample the largest Fourier coefficients, and no iterative optimization process is needed in the recovery process. We demonstrate an 88% compression ratio for producing a high-quality full-color 3D image. The reported approach provides a solution for information multiplexing in single-pixel imaging settings. It may also generate new insights for developing multi-modality computational imaging systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hadamard single-pixel imaging versus Fourier single-pixel imaging

Zibang Zhang, Xueying Wang, Guoan Zheng, and Jingang Zhong
Opt. Express 25(16) 19619-19639 (2017)

Computational-weighted Fourier single-pixel imaging via binary illumination

Jian Huang, Dongfeng Shi, Kee Yuan, Shunxing Hu, and Yingjian Wang
Opt. Express 26(13) 16547-16559 (2018)

Projector-defocusing rectification for Fourier single-pixel imaging

Bingjie Xu, Hongzhi Jiang, Huijie Zhao, Xudong Li, and Shuguang Zhu
Opt. Express 26(4) 5005-5017 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802(R) (2008).
    [Crossref]
  2. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 25(2), 83–91 (2008).
    [Crossref]
  3. Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
    [Crossref]
  4. Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
    [Crossref]
  5. J. Yang, L. Gong, X. Xu, P. Hai, Y. Shen, Y. Suzuki, and L. V. Wang, “Motionless volumetric photoacoustic microscopy with spatially invariant resolution,” Nat. Commun. 8, 780 (2017).
    [Crossref]
  6. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3-D Computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
    [Crossref]
  7. Z. B. Zhang and J. G. Zhong, “Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels,” Opt. Lett. 41, 2497–2500 (2016).
    [Crossref]
  8. M. Sun, M. Edgar, G. Gibson, B. Sun, N. Radwell, R. Lamb, and M. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
    [Crossref]
  9. S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Q. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21, 23068–23074 (2013).
    [Crossref]
  10. L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep. 6, 24752 (2016).
    [Crossref]
  11. Y. Yan, H. Dai, X. Liu, W. He, Q. Chen, and G. Gu, “Colored adaptive compressed imaging with a single photodiode,” Appl. Opt. 55, 3711–3718 (2016).
    [Crossref]
  12. B. Liu, Z. Yang, X. Liu, and L. Wu, “Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform,” J. Mod. Opt. 64, 259–264 (2017).
    [Crossref]
  13. J. Huang and D. F. Shi, “Multispectral computational ghost imaging with multiplexed illumination,” J. Opt. 19, 075701 (2017).
    [Crossref]
  14. S. Jin, W. Hui, Y. Wang, K. Huang, Q. Shi, C. Ying, D. Liu, Q. Ye, W. Zhou, and J. Tian, “Hyperspectral imaging using the single-pixel Fourier transform technique,” Sci. Rep. 7, 45209 (2017).
    [Crossref]
  15. Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-speed compressive microscopy of flowing cells using sinusoidal illumination patterns,” IEEE Photon. J. 9, 3900111 (2017).
    [Crossref]
  16. B. Lochocki, A. Gambín, S. Manzanera, E. Irles, E. Tajahuerce, J. Lancis, and P. Artal, “Single pixel camera ophthalmoscope,” Optica 3, 1056 (2016).
    [Crossref]
  17. W. Zhou, A. Bovik, H. Sheikh, and E. Simoncelli, “Image qualifty assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
    [Crossref]
  18. H. S. Malvar, L. W. He, and R. Cutler, “High-quality linear interpolation for demosaicing of Bayer-patterned color images,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2004), pp. 485–488.
  19. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22, 3977–3982 (1983).
    [Crossref]
  20. L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18, 085704 (2016).
    [Crossref]
  21. G. K. Wallace, “The JPEG still picture compression standard,” IEEE Trans. Consum. Electron. 38, xviii (1992).
    [Crossref]

2017 (5)

J. Yang, L. Gong, X. Xu, P. Hai, Y. Shen, Y. Suzuki, and L. V. Wang, “Motionless volumetric photoacoustic microscopy with spatially invariant resolution,” Nat. Commun. 8, 780 (2017).
[Crossref]

B. Liu, Z. Yang, X. Liu, and L. Wu, “Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform,” J. Mod. Opt. 64, 259–264 (2017).
[Crossref]

J. Huang and D. F. Shi, “Multispectral computational ghost imaging with multiplexed illumination,” J. Opt. 19, 075701 (2017).
[Crossref]

S. Jin, W. Hui, Y. Wang, K. Huang, Q. Shi, C. Ying, D. Liu, Q. Ye, W. Zhou, and J. Tian, “Hyperspectral imaging using the single-pixel Fourier transform technique,” Sci. Rep. 7, 45209 (2017).
[Crossref]

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-speed compressive microscopy of flowing cells using sinusoidal illumination patterns,” IEEE Photon. J. 9, 3900111 (2017).
[Crossref]

2016 (6)

B. Lochocki, A. Gambín, S. Manzanera, E. Irles, E. Tajahuerce, J. Lancis, and P. Artal, “Single pixel camera ophthalmoscope,” Optica 3, 1056 (2016).
[Crossref]

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep. 6, 24752 (2016).
[Crossref]

Y. Yan, H. Dai, X. Liu, W. He, Q. Chen, and G. Gu, “Colored adaptive compressed imaging with a single photodiode,” Appl. Opt. 55, 3711–3718 (2016).
[Crossref]

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18, 085704 (2016).
[Crossref]

Z. B. Zhang and J. G. Zhong, “Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels,” Opt. Lett. 41, 2497–2500 (2016).
[Crossref]

M. Sun, M. Edgar, G. Gibson, B. Sun, N. Radwell, R. Lamb, and M. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

2015 (1)

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref]

2013 (2)

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Q. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21, 23068–23074 (2013).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3-D Computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

2009 (1)

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

2008 (2)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802(R) (2008).
[Crossref]

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 25(2), 83–91 (2008).
[Crossref]

2004 (1)

W. Zhou, A. Bovik, H. Sheikh, and E. Simoncelli, “Image qualifty assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref]

1992 (1)

G. K. Wallace, “The JPEG still picture compression standard,” IEEE Trans. Consum. Electron. 38, xviii (1992).
[Crossref]

1983 (1)

Artal, P.

Baraniuk, R. G.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 25(2), 83–91 (2008).
[Crossref]

Bian, L.

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep. 6, 24752 (2016).
[Crossref]

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18, 085704 (2016).
[Crossref]

Bovik, A.

W. Zhou, A. Bovik, H. Sheikh, and E. Simoncelli, “Image qualifty assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref]

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3-D Computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3-D Computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Q. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21, 23068–23074 (2013).
[Crossref]

Bromberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

Chen, F.

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep. 6, 24752 (2016).
[Crossref]

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18, 085704 (2016).
[Crossref]

Chen, H.

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-speed compressive microscopy of flowing cells using sinusoidal illumination patterns,” IEEE Photon. J. 9, 3900111 (2017).
[Crossref]

Chen, M.

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-speed compressive microscopy of flowing cells using sinusoidal illumination patterns,” IEEE Photon. J. 9, 3900111 (2017).
[Crossref]

Chen, Q.

Cheng, Z.

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-speed compressive microscopy of flowing cells using sinusoidal illumination patterns,” IEEE Photon. J. 9, 3900111 (2017).
[Crossref]

Cutler, R.

H. S. Malvar, L. W. He, and R. Cutler, “High-quality linear interpolation for demosaicing of Bayer-patterned color images,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2004), pp. 485–488.

Dai, H.

Dai, Q.

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18, 085704 (2016).
[Crossref]

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep. 6, 24752 (2016).
[Crossref]

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 25(2), 83–91 (2008).
[Crossref]

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 25(2), 83–91 (2008).
[Crossref]

Edgar, M.

M. Sun, M. Edgar, G. Gibson, B. Sun, N. Radwell, R. Lamb, and M. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Edgar, M. P.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3-D Computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Q. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21, 23068–23074 (2013).
[Crossref]

Fan, J.

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep. 6, 24752 (2016).
[Crossref]

Gambín, A.

Gibson, G.

M. Sun, M. Edgar, G. Gibson, B. Sun, N. Radwell, R. Lamb, and M. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Gong, L.

J. Yang, L. Gong, X. Xu, P. Hai, Y. Shen, Y. Suzuki, and L. V. Wang, “Motionless volumetric photoacoustic microscopy with spatially invariant resolution,” Nat. Commun. 8, 780 (2017).
[Crossref]

Gu, G.

Guo, Q.

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-speed compressive microscopy of flowing cells using sinusoidal illumination patterns,” IEEE Photon. J. 9, 3900111 (2017).
[Crossref]

Guo, Y.

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-speed compressive microscopy of flowing cells using sinusoidal illumination patterns,” IEEE Photon. J. 9, 3900111 (2017).
[Crossref]

Hai, P.

J. Yang, L. Gong, X. Xu, P. Hai, Y. Shen, Y. Suzuki, and L. V. Wang, “Motionless volumetric photoacoustic microscopy with spatially invariant resolution,” Nat. Commun. 8, 780 (2017).
[Crossref]

He, L. W.

H. S. Malvar, L. W. He, and R. Cutler, “High-quality linear interpolation for demosaicing of Bayer-patterned color images,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2004), pp. 485–488.

He, W.

Hu, X.

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18, 085704 (2016).
[Crossref]

Huang, J.

J. Huang and D. F. Shi, “Multispectral computational ghost imaging with multiplexed illumination,” J. Opt. 19, 075701 (2017).
[Crossref]

Huang, K.

S. Jin, W. Hui, Y. Wang, K. Huang, Q. Shi, C. Ying, D. Liu, Q. Ye, W. Zhou, and J. Tian, “Hyperspectral imaging using the single-pixel Fourier transform technique,” Sci. Rep. 7, 45209 (2017).
[Crossref]

Hui, W.

S. Jin, W. Hui, Y. Wang, K. Huang, Q. Shi, C. Ying, D. Liu, Q. Ye, W. Zhou, and J. Tian, “Hyperspectral imaging using the single-pixel Fourier transform technique,” Sci. Rep. 7, 45209 (2017).
[Crossref]

Irles, E.

Jin, S.

S. Jin, W. Hui, Y. Wang, K. Huang, Q. Shi, C. Ying, D. Liu, Q. Ye, W. Zhou, and J. Tian, “Hyperspectral imaging using the single-pixel Fourier transform technique,” Sci. Rep. 7, 45209 (2017).
[Crossref]

Jonathan, P.

Katz, O.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

Kelly, K. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 25(2), 83–91 (2008).
[Crossref]

Lamb, R.

M. Sun, M. Edgar, G. Gibson, B. Sun, N. Radwell, R. Lamb, and M. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Lancis, J.

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 25(2), 83–91 (2008).
[Crossref]

Li, Z.

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep. 6, 24752 (2016).
[Crossref]

Liu, B.

B. Liu, Z. Yang, X. Liu, and L. Wu, “Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform,” J. Mod. Opt. 64, 259–264 (2017).
[Crossref]

Liu, D.

S. Jin, W. Hui, Y. Wang, K. Huang, Q. Shi, C. Ying, D. Liu, Q. Ye, W. Zhou, and J. Tian, “Hyperspectral imaging using the single-pixel Fourier transform technique,” Sci. Rep. 7, 45209 (2017).
[Crossref]

Liu, P.

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-speed compressive microscopy of flowing cells using sinusoidal illumination patterns,” IEEE Photon. J. 9, 3900111 (2017).
[Crossref]

Liu, X.

B. Liu, Z. Yang, X. Liu, and L. Wu, “Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform,” J. Mod. Opt. 64, 259–264 (2017).
[Crossref]

Y. Yan, H. Dai, X. Liu, W. He, Q. Chen, and G. Gu, “Colored adaptive compressed imaging with a single photodiode,” Appl. Opt. 55, 3711–3718 (2016).
[Crossref]

Lochocki, B.

Ma, X.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref]

Malvar, H. S.

H. S. Malvar, L. W. He, and R. Cutler, “High-quality linear interpolation for demosaicing of Bayer-patterned color images,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2004), pp. 485–488.

Manzanera, S.

Mutoh, K.

Padgett, M.

M. Sun, M. Edgar, G. Gibson, B. Sun, N. Radwell, R. Lamb, and M. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Padgett, M. J.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3-D Computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Q. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21, 23068–23074 (2013).
[Crossref]

Radwell, N.

M. Sun, M. Edgar, G. Gibson, B. Sun, N. Radwell, R. Lamb, and M. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Shapiro, J. H.

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802(R) (2008).
[Crossref]

Sheikh, H.

W. Zhou, A. Bovik, H. Sheikh, and E. Simoncelli, “Image qualifty assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref]

Shen, Y.

J. Yang, L. Gong, X. Xu, P. Hai, Y. Shen, Y. Suzuki, and L. V. Wang, “Motionless volumetric photoacoustic microscopy with spatially invariant resolution,” Nat. Commun. 8, 780 (2017).
[Crossref]

Shi, D. F.

J. Huang and D. F. Shi, “Multispectral computational ghost imaging with multiplexed illumination,” J. Opt. 19, 075701 (2017).
[Crossref]

Shi, Q.

S. Jin, W. Hui, Y. Wang, K. Huang, Q. Shi, C. Ying, D. Liu, Q. Ye, W. Zhou, and J. Tian, “Hyperspectral imaging using the single-pixel Fourier transform technique,” Sci. Rep. 7, 45209 (2017).
[Crossref]

Silberberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

Simoncelli, E.

W. Zhou, A. Bovik, H. Sheikh, and E. Simoncelli, “Image qualifty assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref]

Situ, G.

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep. 6, 24752 (2016).
[Crossref]

Sun, B.

M. Sun, M. Edgar, G. Gibson, B. Sun, N. Radwell, R. Lamb, and M. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3-D Computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Sun, B. Q.

Sun, M.

M. Sun, M. Edgar, G. Gibson, B. Sun, N. Radwell, R. Lamb, and M. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 25(2), 83–91 (2008).
[Crossref]

Suo, J.

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep. 6, 24752 (2016).
[Crossref]

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18, 085704 (2016).
[Crossref]

Suzuki, Y.

J. Yang, L. Gong, X. Xu, P. Hai, Y. Shen, Y. Suzuki, and L. V. Wang, “Motionless volumetric photoacoustic microscopy with spatially invariant resolution,” Nat. Commun. 8, 780 (2017).
[Crossref]

Tajahuerce, E.

Takeda, M.

Takhar, D.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 25(2), 83–91 (2008).
[Crossref]

Tian, J.

S. Jin, W. Hui, Y. Wang, K. Huang, Q. Shi, C. Ying, D. Liu, Q. Ye, W. Zhou, and J. Tian, “Hyperspectral imaging using the single-pixel Fourier transform technique,” Sci. Rep. 7, 45209 (2017).
[Crossref]

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3-D Computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Wallace, G. K.

G. K. Wallace, “The JPEG still picture compression standard,” IEEE Trans. Consum. Electron. 38, xviii (1992).
[Crossref]

Wang, L. V.

J. Yang, L. Gong, X. Xu, P. Hai, Y. Shen, Y. Suzuki, and L. V. Wang, “Motionless volumetric photoacoustic microscopy with spatially invariant resolution,” Nat. Commun. 8, 780 (2017).
[Crossref]

Wang, Y.

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-speed compressive microscopy of flowing cells using sinusoidal illumination patterns,” IEEE Photon. J. 9, 3900111 (2017).
[Crossref]

S. Jin, W. Hui, Y. Wang, K. Huang, Q. Shi, C. Ying, D. Liu, Q. Ye, W. Zhou, and J. Tian, “Hyperspectral imaging using the single-pixel Fourier transform technique,” Sci. Rep. 7, 45209 (2017).
[Crossref]

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3-D Computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Welsh, S. S.

Wu, L.

B. Liu, Z. Yang, X. Liu, and L. Wu, “Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform,” J. Mod. Opt. 64, 259–264 (2017).
[Crossref]

Xie, S.

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-speed compressive microscopy of flowing cells using sinusoidal illumination patterns,” IEEE Photon. J. 9, 3900111 (2017).
[Crossref]

Xu, X.

J. Yang, L. Gong, X. Xu, P. Hai, Y. Shen, Y. Suzuki, and L. V. Wang, “Motionless volumetric photoacoustic microscopy with spatially invariant resolution,” Nat. Commun. 8, 780 (2017).
[Crossref]

Yan, Y.

Yang, J.

J. Yang, L. Gong, X. Xu, P. Hai, Y. Shen, Y. Suzuki, and L. V. Wang, “Motionless volumetric photoacoustic microscopy with spatially invariant resolution,” Nat. Commun. 8, 780 (2017).
[Crossref]

Yang, S.

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-speed compressive microscopy of flowing cells using sinusoidal illumination patterns,” IEEE Photon. J. 9, 3900111 (2017).
[Crossref]

Yang, Z.

B. Liu, Z. Yang, X. Liu, and L. Wu, “Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform,” J. Mod. Opt. 64, 259–264 (2017).
[Crossref]

Ye, Q.

S. Jin, W. Hui, Y. Wang, K. Huang, Q. Shi, C. Ying, D. Liu, Q. Ye, W. Zhou, and J. Tian, “Hyperspectral imaging using the single-pixel Fourier transform technique,” Sci. Rep. 7, 45209 (2017).
[Crossref]

Ying, C.

S. Jin, W. Hui, Y. Wang, K. Huang, Q. Shi, C. Ying, D. Liu, Q. Ye, W. Zhou, and J. Tian, “Hyperspectral imaging using the single-pixel Fourier transform technique,” Sci. Rep. 7, 45209 (2017).
[Crossref]

Yu, Z.

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-speed compressive microscopy of flowing cells using sinusoidal illumination patterns,” IEEE Photon. J. 9, 3900111 (2017).
[Crossref]

Zhang, Z.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref]

Zhang, Z. B.

Zhong, J.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref]

Zhong, J. G.

Zhou, W.

S. Jin, W. Hui, Y. Wang, K. Huang, Q. Shi, C. Ying, D. Liu, Q. Ye, W. Zhou, and J. Tian, “Hyperspectral imaging using the single-pixel Fourier transform technique,” Sci. Rep. 7, 45209 (2017).
[Crossref]

W. Zhou, A. Bovik, H. Sheikh, and E. Simoncelli, “Image qualifty assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref]

Zhu, X.

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-speed compressive microscopy of flowing cells using sinusoidal illumination patterns,” IEEE Photon. J. 9, 3900111 (2017).
[Crossref]

Appl. Opt. (2)

IEEE Photon. J. (1)

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-speed compressive microscopy of flowing cells using sinusoidal illumination patterns,” IEEE Photon. J. 9, 3900111 (2017).
[Crossref]

IEEE Signal Proc. Mag. (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 25(2), 83–91 (2008).
[Crossref]

IEEE Trans. Consum. Electron. (1)

G. K. Wallace, “The JPEG still picture compression standard,” IEEE Trans. Consum. Electron. 38, xviii (1992).
[Crossref]

IEEE Trans. Image Process. (1)

W. Zhou, A. Bovik, H. Sheikh, and E. Simoncelli, “Image qualifty assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref]

J. Mod. Opt. (1)

B. Liu, Z. Yang, X. Liu, and L. Wu, “Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform,” J. Mod. Opt. 64, 259–264 (2017).
[Crossref]

J. Opt. (2)

J. Huang and D. F. Shi, “Multispectral computational ghost imaging with multiplexed illumination,” J. Opt. 19, 075701 (2017).
[Crossref]

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18, 085704 (2016).
[Crossref]

Nat. Commun. (3)

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref]

J. Yang, L. Gong, X. Xu, P. Hai, Y. Shen, Y. Suzuki, and L. V. Wang, “Motionless volumetric photoacoustic microscopy with spatially invariant resolution,” Nat. Commun. 8, 780 (2017).
[Crossref]

M. Sun, M. Edgar, G. Gibson, B. Sun, N. Radwell, R. Lamb, and M. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Optica (1)

Phys. Rev. A (2)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802(R) (2008).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

Sci. Rep. (2)

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep. 6, 24752 (2016).
[Crossref]

S. Jin, W. Hui, Y. Wang, K. Huang, Q. Shi, C. Ying, D. Liu, Q. Ye, W. Zhou, and J. Tian, “Hyperspectral imaging using the single-pixel Fourier transform technique,” Sci. Rep. 7, 45209 (2017).
[Crossref]

Science (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3-D Computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Other (1)

H. S. Malvar, L. W. He, and R. Cutler, “High-quality linear interpolation for demosaicing of Bayer-patterned color images,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2004), pp. 485–488.

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Sparsity of natural scene images. The sparsity in Fourier space allows (a) an undersampled Fourier spectrum with a compression ratio of 92% to (b) retrieve a clear image.
Fig. 2.
Fig. 2. Design of multi-spectral mask (also see Supplement 1).
Fig. 3.
Fig. 3. (a) Multi-spectral and (b) color Fourier basis pattern generation. In a regular FSI setting, we use a grayscale basis pattern for sample illumination. Here we modulate the grayscale basis pattern (left) with a spectral mask (middle). The final illumination patterns are shown in the right panel, denoted as multi-spectral basis pattern and color basis pattern.
Fig. 4.
Fig. 4. First experimental setup for spatial-spectral dual-modality imaging.
Fig. 5.
Fig. 5. (a) Two-modality-embedded Fourier spectrum acquired with a compression ratio of 64%. (b) Full-color reconstructed image from the spectrum (a) via a 2D inverse Fourier transform and a color reconstruction algorithm [18]. (c) and (d) are full-sampled counterparts corresponding to (a) and (b). Scale bar = 2    cm .
Fig. 6.
Fig. 6. Second experimental setup for spatial-spectral-depth triple-modality imaging (also see Fig. S5 in Supplement 1).
Fig. 7.
Fig. 7. (a) Three-modality-embedded Fourier spectrum acquired with a compression ratio of 88%. (b) Reconstructed image from the spectrum (a), with a partial enlargement.
Fig. 8.
Fig. 8. (a) Depth information embedded medium-frequency component. (b) Deformed fringe pattern. (c) Extracted modulated phase map from (b). The phase is proportional to the depth.
Fig. 9.
Fig. 9. Full-color 3D reconstruction.

Metrics