Abstract

We disclose an unanticipated link between plasmonics and nonlinear frequency down-conversion in laser-induced gas-plasmas. For two-color femtosecond pump pulses, a plasmonic resonance is shown to broaden the terahertz emission spectra significantly. We identify the resonance as a leaky mode, which contributes to the emission spectra whenever electrons are excited along a direction where the plasma size is smaller than the plasma wavelength. As a direct consequence, such resonances can be controlled by changing the polarization properties of elliptically shaped driving laser pulses. Both experimental results and 3D Maxwell consistent simulations confirm that a significant terahertz pulse shortening and spectral broadening can be achieved by exploiting the transverse driving laser beam shape as an additional degree of freedom.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Scaling behavior of ultrafast two-color terahertz generation in plasma gas targets: energy and pressure dependence

George Rodriguez and Georgi L. Dakovski
Opt. Express 18(14) 15130-15143 (2010)

Excitation-wavelength dependent terahertz wave polarization control in laser-induced filament

Liangliang Zhang, Shijing Zhang, Rui Zhang, Tong Wu, Yuejin Zhao, Cunlin Zhang, and X.-C. Zhang
Opt. Express 25(26) 32346-32354 (2017)

Revealing plasma oscillation in THz spectrum from laser plasma of molecular jet

Na Li, Ya Bai, Tianshi Miao, Peng Liu, Ruxin Li, and Zhizhan Xu
Opt. Express 24(20) 23009-23017 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).
    [Crossref]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  3. M. S. Vitiello, G. Scalari, B. Williams, and P. D. Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23, 5167–5182 (2015).
    [Crossref]
  4. K. Y. Kim, A. J. Taylor, S. L. Chin, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605–609 (2008).
    [Crossref]
  5. H. Hamster, A. Sullivan, S. Gordon, and R. W. Falcone, “Short-pulse terahertz radiation from high-intensity-laser-produced plasmas,” Phys. Rev. E 49, 671–677 (1994).
    [Crossref]
  6. I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105, 053903 (2010).
    [Crossref]
  7. N. Li, Y. Bai, T. Miao, P. Liu, R. Li, and Z. Xu, “Revealing plasma oscillation in THz spectrum from laser plasma of molecular jet,” Opt. Express 24, 23009–23017 (2016).
    [Crossref]
  8. V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
    [Crossref]
  9. V. T. Tikhonchuk, “Comment on ‘Generation of electromagnetic pulses from plasma channels induced by femtosecond light strings’,” Phys. Rev. Lett. 89, 209301 (2002).
    [Crossref]
  10. A. M. Bystrov, N. V. Vvedenskii, and V. B. Gildenburg, “Generation of terahertz radiation upon the optical breakdown of a gas,” J. Exp. Theor. Phys. Lett. 82, 753–757 (2005).
    [Crossref]
  11. V. B. Gildenburg and N. V. Vvedenskii, “Optical-to-THz wave conversion via excitation of plasma oscillations in the tunneling-ionization process,” Phys. Rev. Lett. 98, 245002 (2007).
    [Crossref]
  12. I. Thiele, R. Nuter, B. Bousquet, V. Tikhonchuk, S. Skupin, X. Davoine, L. Gremillet, and L. Bergé, “Theory of terahertz emission from femtosecond-laser-induced microplasmas,” Phys. Rev. E 94, 063202 (2016).
    [Crossref]
  13. P. Sprangle, J. R. Peñano, B. Hafizi, and C. A. Kapetanakos, “Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces,” Phys. Rev. E 69, 066415 (2004).
    [Crossref]
  14. L. M. Gorbunov and A. A. Frolov, “Transition radiation generated by a short laser pulse at a plasma-vacuum interface,” Plasma Phys. Rep. 32, 850–865 (2006).
    [Crossref]
  15. P. González de Alaiza Martínez, X. Davoine, A. Debayle, L. Gremillet, and L. Bergé, “Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: competition between photoionization and Wakefield effects,” Sci. Rep. 6, 26743 (2016).
    [Crossref]
  16. C. Miao, J. P. Palastro, and T. M. Antonsen, “Laser pulse driven terahertz generation via resonant transition radiation in inhomogeneous plasmas,” Phys. Plasmas 23, 063103 (2016).
    [Crossref]
  17. E. Cabrera-Granado, Y. Chen, I. Babushkin, L. Bergé, and S. Skupin, “Spectral self-action of THz emission from ionizing two-color laser pulses in gases,” New J. Phys. 17, 023060 (2015).
    [Crossref]
  18. V. A. Kostin and N. V. Vvedenskii, “Ionization-induced conversion of ultrashort Bessel beam to terahertz pulse,” Opt. Lett. 35, 247–249 (2010).
    [Crossref]
  19. V. A. Kostin and N. V. Vvedenskii, “DC to AC field conversion due to leaky-wave excitation in a plasma slab behind an ionization front,” New J. Phys. 17, 033029 (2015).
    [Crossref]
  20. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004).
    [Crossref]
  21. I. Dey, K. Jana, V. Fedorov, A. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. Lad, S. Tzortzakis, A. Couairon, and G. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
    [Crossref]
  22. S. B. Hasan, C. Etrich, R. Filter, C. Rockstuhl, and F. Lederer, “Enhancing the nonlinear response of plasmonic nanowire antennas by engineering their terminations,” Phys. Rev. B 88, 205125 (2013).
    [Crossref]
  23. J. Dai, X. Xie, and X.-C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Phys. Rev. Lett. 97, 103903 (2006).
    [Crossref]
  24. M. Ammosov, N. Delone, and V. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electric field,” Sov. Phys. JETP 64, 1191–1194 (1986).
  25. G. L. Yudin and M. Y. Ivanov, “Nonadiabatic tunnel ionization: looking inside a laser cycle,” Phys. Rev. A 64, 013409 (2001).
    [Crossref]
  26. J. D. Huba, NRL Plasma Formulary (Naval Research Laboratory, 2013).
  27. I. Thiele, P. González de Alaiza Martínez, R. Nuter, A. Nguyen, L. Bergé, and S. Skupin, “Broadband terahertz emission from two-color femtosecond-laser-induced microplasmas,” Phys. Rev. A 96, 053814 (2017).
    [Crossref]
  28. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
    [Crossref]
  29. N. Marcuvitz, “On field representations in terms of leaky modes or eigenmodes,” IRE Trans. Antennas Propag. 4, 192–194 (1956).
    [Crossref]
  30. L. Goldstone and A. Oliner, “Leaky-wave antennas I: rectangular waveguides,” IRE Trans. Antennas Propag. 7, 307–319 (1959).
    [Crossref]
  31. J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photon. 1, 58–106 (2009).
    [Crossref]
  32. I. Thiele, S. Skupin, and R. Nuter, “Boundary conditions for arbitrarily shaped and tightly focused laser pulses in electromagnetic codes,” J. Comput. Phys. 321, 1110–1119 (2016).
    [Crossref]

2017 (2)

I. Dey, K. Jana, V. Fedorov, A. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. Lad, S. Tzortzakis, A. Couairon, and G. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

I. Thiele, P. González de Alaiza Martínez, R. Nuter, A. Nguyen, L. Bergé, and S. Skupin, “Broadband terahertz emission from two-color femtosecond-laser-induced microplasmas,” Phys. Rev. A 96, 053814 (2017).
[Crossref]

2016 (6)

I. Thiele, S. Skupin, and R. Nuter, “Boundary conditions for arbitrarily shaped and tightly focused laser pulses in electromagnetic codes,” J. Comput. Phys. 321, 1110–1119 (2016).
[Crossref]

N. Li, Y. Bai, T. Miao, P. Liu, R. Li, and Z. Xu, “Revealing plasma oscillation in THz spectrum from laser plasma of molecular jet,” Opt. Express 24, 23009–23017 (2016).
[Crossref]

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref]

I. Thiele, R. Nuter, B. Bousquet, V. Tikhonchuk, S. Skupin, X. Davoine, L. Gremillet, and L. Bergé, “Theory of terahertz emission from femtosecond-laser-induced microplasmas,” Phys. Rev. E 94, 063202 (2016).
[Crossref]

P. González de Alaiza Martínez, X. Davoine, A. Debayle, L. Gremillet, and L. Bergé, “Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: competition between photoionization and Wakefield effects,” Sci. Rep. 6, 26743 (2016).
[Crossref]

C. Miao, J. P. Palastro, and T. M. Antonsen, “Laser pulse driven terahertz generation via resonant transition radiation in inhomogeneous plasmas,” Phys. Plasmas 23, 063103 (2016).
[Crossref]

2015 (3)

E. Cabrera-Granado, Y. Chen, I. Babushkin, L. Bergé, and S. Skupin, “Spectral self-action of THz emission from ionizing two-color laser pulses in gases,” New J. Phys. 17, 023060 (2015).
[Crossref]

M. S. Vitiello, G. Scalari, B. Williams, and P. D. Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23, 5167–5182 (2015).
[Crossref]

V. A. Kostin and N. V. Vvedenskii, “DC to AC field conversion due to leaky-wave excitation in a plasma slab behind an ionization front,” New J. Phys. 17, 033029 (2015).
[Crossref]

2013 (2)

S. B. Hasan, C. Etrich, R. Filter, C. Rockstuhl, and F. Lederer, “Enhancing the nonlinear response of plasmonic nanowire antennas by engineering their terminations,” Phys. Rev. B 88, 205125 (2013).
[Crossref]

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).
[Crossref]

2010 (2)

I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105, 053903 (2010).
[Crossref]

V. A. Kostin and N. V. Vvedenskii, “Ionization-induced conversion of ultrashort Bessel beam to terahertz pulse,” Opt. Lett. 35, 247–249 (2010).
[Crossref]

2009 (2)

2008 (1)

K. Y. Kim, A. J. Taylor, S. L. Chin, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

2007 (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

V. B. Gildenburg and N. V. Vvedenskii, “Optical-to-THz wave conversion via excitation of plasma oscillations in the tunneling-ionization process,” Phys. Rev. Lett. 98, 245002 (2007).
[Crossref]

2006 (2)

L. M. Gorbunov and A. A. Frolov, “Transition radiation generated by a short laser pulse at a plasma-vacuum interface,” Plasma Phys. Rep. 32, 850–865 (2006).
[Crossref]

J. Dai, X. Xie, and X.-C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Phys. Rev. Lett. 97, 103903 (2006).
[Crossref]

2005 (1)

A. M. Bystrov, N. V. Vvedenskii, and V. B. Gildenburg, “Generation of terahertz radiation upon the optical breakdown of a gas,” J. Exp. Theor. Phys. Lett. 82, 753–757 (2005).
[Crossref]

2004 (2)

P. Sprangle, J. R. Peñano, B. Hafizi, and C. A. Kapetanakos, “Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces,” Phys. Rev. E 69, 066415 (2004).
[Crossref]

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004).
[Crossref]

2002 (1)

V. T. Tikhonchuk, “Comment on ‘Generation of electromagnetic pulses from plasma channels induced by femtosecond light strings’,” Phys. Rev. Lett. 89, 209301 (2002).
[Crossref]

2001 (1)

G. L. Yudin and M. Y. Ivanov, “Nonadiabatic tunnel ionization: looking inside a laser cycle,” Phys. Rev. A 64, 013409 (2001).
[Crossref]

1994 (1)

H. Hamster, A. Sullivan, S. Gordon, and R. W. Falcone, “Short-pulse terahertz radiation from high-intensity-laser-produced plasmas,” Phys. Rev. E 49, 671–677 (1994).
[Crossref]

1986 (1)

M. Ammosov, N. Delone, and V. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electric field,” Sov. Phys. JETP 64, 1191–1194 (1986).

1959 (1)

L. Goldstone and A. Oliner, “Leaky-wave antennas I: rectangular waveguides,” IRE Trans. Antennas Propag. 7, 307–319 (1959).
[Crossref]

1956 (1)

N. Marcuvitz, “On field representations in terms of leaky modes or eigenmodes,” IRE Trans. Antennas Propag. 4, 192–194 (1956).
[Crossref]

Ammosov, M.

M. Ammosov, N. Delone, and V. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electric field,” Sov. Phys. JETP 64, 1191–1194 (1986).

Andreeva, V. A.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref]

Antonsen, T. M.

C. Miao, J. P. Palastro, and T. M. Antonsen, “Laser pulse driven terahertz generation via resonant transition radiation in inhomogeneous plasmas,” Phys. Plasmas 23, 063103 (2016).
[Crossref]

Babushkin, I.

E. Cabrera-Granado, Y. Chen, I. Babushkin, L. Bergé, and S. Skupin, “Spectral self-action of THz emission from ionizing two-color laser pulses in gases,” New J. Phys. 17, 023060 (2015).
[Crossref]

I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105, 053903 (2010).
[Crossref]

Bai, Y.

Bergé, L.

I. Thiele, P. González de Alaiza Martínez, R. Nuter, A. Nguyen, L. Bergé, and S. Skupin, “Broadband terahertz emission from two-color femtosecond-laser-induced microplasmas,” Phys. Rev. A 96, 053814 (2017).
[Crossref]

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref]

I. Thiele, R. Nuter, B. Bousquet, V. Tikhonchuk, S. Skupin, X. Davoine, L. Gremillet, and L. Bergé, “Theory of terahertz emission from femtosecond-laser-induced microplasmas,” Phys. Rev. E 94, 063202 (2016).
[Crossref]

P. González de Alaiza Martínez, X. Davoine, A. Debayle, L. Gremillet, and L. Bergé, “Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: competition between photoionization and Wakefield effects,” Sci. Rep. 6, 26743 (2016).
[Crossref]

E. Cabrera-Granado, Y. Chen, I. Babushkin, L. Bergé, and S. Skupin, “Spectral self-action of THz emission from ionizing two-color laser pulses in gases,” New J. Phys. 17, 023060 (2015).
[Crossref]

I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105, 053903 (2010).
[Crossref]

Berini, P.

Bousquet, B.

I. Thiele, R. Nuter, B. Bousquet, V. Tikhonchuk, S. Skupin, X. Davoine, L. Gremillet, and L. Bergé, “Theory of terahertz emission from femtosecond-laser-induced microplasmas,” Phys. Rev. E 94, 063202 (2016).
[Crossref]

Bystrov, A. M.

A. M. Bystrov, N. V. Vvedenskii, and V. B. Gildenburg, “Generation of terahertz radiation upon the optical breakdown of a gas,” J. Exp. Theor. Phys. Lett. 82, 753–757 (2005).
[Crossref]

Cabrera-Granado, E.

E. Cabrera-Granado, Y. Chen, I. Babushkin, L. Bergé, and S. Skupin, “Spectral self-action of THz emission from ionizing two-color laser pulses in gases,” New J. Phys. 17, 023060 (2015).
[Crossref]

Chen, Y.

E. Cabrera-Granado, Y. Chen, I. Babushkin, L. Bergé, and S. Skupin, “Spectral self-action of THz emission from ionizing two-color laser pulses in gases,” New J. Phys. 17, 023060 (2015).
[Crossref]

Chin, S. L.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref]

K. Y. Kim, A. J. Taylor, S. L. Chin, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

Couairon, A.

I. Dey, K. Jana, V. Fedorov, A. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. Lad, S. Tzortzakis, A. Couairon, and G. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Dai, J.

J. Dai, X. Xie, and X.-C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Phys. Rev. Lett. 97, 103903 (2006).
[Crossref]

Davoine, X.

I. Thiele, R. Nuter, B. Bousquet, V. Tikhonchuk, S. Skupin, X. Davoine, L. Gremillet, and L. Bergé, “Theory of terahertz emission from femtosecond-laser-induced microplasmas,” Phys. Rev. E 94, 063202 (2016).
[Crossref]

P. González de Alaiza Martínez, X. Davoine, A. Debayle, L. Gremillet, and L. Bergé, “Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: competition between photoionization and Wakefield effects,” Sci. Rep. 6, 26743 (2016).
[Crossref]

Debayle, A.

P. González de Alaiza Martínez, X. Davoine, A. Debayle, L. Gremillet, and L. Bergé, “Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: competition between photoionization and Wakefield effects,” Sci. Rep. 6, 26743 (2016).
[Crossref]

Delone, N.

M. Ammosov, N. Delone, and V. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electric field,” Sov. Phys. JETP 64, 1191–1194 (1986).

Dey, I.

I. Dey, K. Jana, V. Fedorov, A. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. Lad, S. Tzortzakis, A. Couairon, and G. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Elsaesser, T.

I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105, 053903 (2010).
[Crossref]

Esaulkov, M. N.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref]

Etrich, C.

S. B. Hasan, C. Etrich, R. Filter, C. Rockstuhl, and F. Lederer, “Enhancing the nonlinear response of plasmonic nanowire antennas by engineering their terminations,” Phys. Rev. B 88, 205125 (2013).
[Crossref]

Falcone, R. W.

H. Hamster, A. Sullivan, S. Gordon, and R. W. Falcone, “Short-pulse terahertz radiation from high-intensity-laser-produced plasmas,” Phys. Rev. E 49, 671–677 (1994).
[Crossref]

Fedorov, V.

I. Dey, K. Jana, V. Fedorov, A. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. Lad, S. Tzortzakis, A. Couairon, and G. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Filter, R.

S. B. Hasan, C. Etrich, R. Filter, C. Rockstuhl, and F. Lederer, “Enhancing the nonlinear response of plasmonic nanowire antennas by engineering their terminations,” Phys. Rev. B 88, 205125 (2013).
[Crossref]

Frolov, A. A.

L. M. Gorbunov and A. A. Frolov, “Transition radiation generated by a short laser pulse at a plasma-vacuum interface,” Plasma Phys. Rep. 32, 850–865 (2006).
[Crossref]

Gildenburg, V. B.

V. B. Gildenburg and N. V. Vvedenskii, “Optical-to-THz wave conversion via excitation of plasma oscillations in the tunneling-ionization process,” Phys. Rev. Lett. 98, 245002 (2007).
[Crossref]

A. M. Bystrov, N. V. Vvedenskii, and V. B. Gildenburg, “Generation of terahertz radiation upon the optical breakdown of a gas,” J. Exp. Theor. Phys. Lett. 82, 753–757 (2005).
[Crossref]

Goldstone, L.

L. Goldstone and A. Oliner, “Leaky-wave antennas I: rectangular waveguides,” IRE Trans. Antennas Propag. 7, 307–319 (1959).
[Crossref]

González de Alaiza Martínez, P.

I. Thiele, P. González de Alaiza Martínez, R. Nuter, A. Nguyen, L. Bergé, and S. Skupin, “Broadband terahertz emission from two-color femtosecond-laser-induced microplasmas,” Phys. Rev. A 96, 053814 (2017).
[Crossref]

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref]

P. González de Alaiza Martínez, X. Davoine, A. Debayle, L. Gremillet, and L. Bergé, “Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: competition between photoionization and Wakefield effects,” Sci. Rep. 6, 26743 (2016).
[Crossref]

Gorbunov, L. M.

L. M. Gorbunov and A. A. Frolov, “Transition radiation generated by a short laser pulse at a plasma-vacuum interface,” Plasma Phys. Rep. 32, 850–865 (2006).
[Crossref]

Gordon, S.

H. Hamster, A. Sullivan, S. Gordon, and R. W. Falcone, “Short-pulse terahertz radiation from high-intensity-laser-produced plasmas,” Phys. Rev. E 49, 671–677 (1994).
[Crossref]

Gremillet, L.

P. González de Alaiza Martínez, X. Davoine, A. Debayle, L. Gremillet, and L. Bergé, “Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: competition between photoionization and Wakefield effects,” Sci. Rep. 6, 26743 (2016).
[Crossref]

I. Thiele, R. Nuter, B. Bousquet, V. Tikhonchuk, S. Skupin, X. Davoine, L. Gremillet, and L. Bergé, “Theory of terahertz emission from femtosecond-laser-induced microplasmas,” Phys. Rev. E 94, 063202 (2016).
[Crossref]

Hafizi, B.

P. Sprangle, J. R. Peñano, B. Hafizi, and C. A. Kapetanakos, “Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces,” Phys. Rev. E 69, 066415 (2004).
[Crossref]

Hamster, H.

H. Hamster, A. Sullivan, S. Gordon, and R. W. Falcone, “Short-pulse terahertz radiation from high-intensity-laser-produced plasmas,” Phys. Rev. E 49, 671–677 (1994).
[Crossref]

Hasan, S. B.

S. B. Hasan, C. Etrich, R. Filter, C. Rockstuhl, and F. Lederer, “Enhancing the nonlinear response of plasmonic nanowire antennas by engineering their terminations,” Phys. Rev. B 88, 205125 (2013).
[Crossref]

Herrmann, J.

I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105, 053903 (2010).
[Crossref]

Hu, J.

Huba, J. D.

J. D. Huba, NRL Plasma Formulary (Naval Research Laboratory, 2013).

Ivanov, M. Y.

G. L. Yudin and M. Y. Ivanov, “Nonadiabatic tunnel ionization: looking inside a laser cycle,” Phys. Rev. A 64, 013409 (2001).
[Crossref]

Jana, K.

I. Dey, K. Jana, V. Fedorov, A. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. Lad, S. Tzortzakis, A. Couairon, and G. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Kampfrath, T.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).
[Crossref]

Kapetanakos, C. A.

P. Sprangle, J. R. Peñano, B. Hafizi, and C. A. Kapetanakos, “Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces,” Phys. Rev. E 69, 066415 (2004).
[Crossref]

Kim, K. Y.

K. Y. Kim, A. J. Taylor, S. L. Chin, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

Köhler, C.

I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105, 053903 (2010).
[Crossref]

Kolesik, M.

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004).
[Crossref]

Kosareva, O. G.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref]

Kostin, V. A.

V. A. Kostin and N. V. Vvedenskii, “DC to AC field conversion due to leaky-wave excitation in a plasma slab behind an ionization front,” New J. Phys. 17, 033029 (2015).
[Crossref]

V. A. Kostin and N. V. Vvedenskii, “Ionization-induced conversion of ultrashort Bessel beam to terahertz pulse,” Opt. Lett. 35, 247–249 (2010).
[Crossref]

Koulouklidis, A.

I. Dey, K. Jana, V. Fedorov, A. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. Lad, S. Tzortzakis, A. Couairon, and G. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Krainov, V.

M. Ammosov, N. Delone, and V. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electric field,” Sov. Phys. JETP 64, 1191–1194 (1986).

Kuehn, W.

I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105, 053903 (2010).
[Crossref]

Kumar, G.

I. Dey, K. Jana, V. Fedorov, A. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. Lad, S. Tzortzakis, A. Couairon, and G. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Lad, A.

I. Dey, K. Jana, V. Fedorov, A. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. Lad, S. Tzortzakis, A. Couairon, and G. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Lederer, F.

S. B. Hasan, C. Etrich, R. Filter, C. Rockstuhl, and F. Lederer, “Enhancing the nonlinear response of plasmonic nanowire antennas by engineering their terminations,” Phys. Rev. B 88, 205125 (2013).
[Crossref]

Li, N.

Li, R.

Liu, P.

Makarov, V. A.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref]

Marcuvitz, N.

N. Marcuvitz, “On field representations in terms of leaky modes or eigenmodes,” IRE Trans. Antennas Propag. 4, 192–194 (1956).
[Crossref]

Menyuk, C. R.

Miao, C.

C. Miao, J. P. Palastro, and T. M. Antonsen, “Laser pulse driven terahertz generation via resonant transition radiation in inhomogeneous plasmas,” Phys. Plasmas 23, 063103 (2016).
[Crossref]

Miao, T.

Moloney, J. V.

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004).
[Crossref]

Mondal, A.

I. Dey, K. Jana, V. Fedorov, A. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. Lad, S. Tzortzakis, A. Couairon, and G. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Natale, P. D.

Nelson, K. A.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).
[Crossref]

Nguyen, A.

I. Thiele, P. González de Alaiza Martínez, R. Nuter, A. Nguyen, L. Bergé, and S. Skupin, “Broadband terahertz emission from two-color femtosecond-laser-induced microplasmas,” Phys. Rev. A 96, 053814 (2017).
[Crossref]

Nuter, R.

I. Thiele, P. González de Alaiza Martínez, R. Nuter, A. Nguyen, L. Bergé, and S. Skupin, “Broadband terahertz emission from two-color femtosecond-laser-induced microplasmas,” Phys. Rev. A 96, 053814 (2017).
[Crossref]

I. Thiele, S. Skupin, and R. Nuter, “Boundary conditions for arbitrarily shaped and tightly focused laser pulses in electromagnetic codes,” J. Comput. Phys. 321, 1110–1119 (2016).
[Crossref]

I. Thiele, R. Nuter, B. Bousquet, V. Tikhonchuk, S. Skupin, X. Davoine, L. Gremillet, and L. Bergé, “Theory of terahertz emission from femtosecond-laser-induced microplasmas,” Phys. Rev. E 94, 063202 (2016).
[Crossref]

Oliner, A.

L. Goldstone and A. Oliner, “Leaky-wave antennas I: rectangular waveguides,” IRE Trans. Antennas Propag. 7, 307–319 (1959).
[Crossref]

Palastro, J. P.

C. Miao, J. P. Palastro, and T. M. Antonsen, “Laser pulse driven terahertz generation via resonant transition radiation in inhomogeneous plasmas,” Phys. Plasmas 23, 063103 (2016).
[Crossref]

Panov, N. A.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref]

Peñano, J. R.

P. Sprangle, J. R. Peñano, B. Hafizi, and C. A. Kapetanakos, “Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces,” Phys. Rev. E 69, 066415 (2004).
[Crossref]

Reimann, K.

I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105, 053903 (2010).
[Crossref]

Rockstuhl, C.

S. B. Hasan, C. Etrich, R. Filter, C. Rockstuhl, and F. Lederer, “Enhancing the nonlinear response of plasmonic nanowire antennas by engineering their terminations,” Phys. Rev. B 88, 205125 (2013).
[Crossref]

Rodriguez, G.

K. Y. Kim, A. J. Taylor, S. L. Chin, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

Sarkar, D.

I. Dey, K. Jana, V. Fedorov, A. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. Lad, S. Tzortzakis, A. Couairon, and G. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Scalari, G.

Shaikh, M.

I. Dey, K. Jana, V. Fedorov, A. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. Lad, S. Tzortzakis, A. Couairon, and G. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Shipilo, D. E.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref]

Shkurinov, A. P.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref]

Skupin, S.

I. Thiele, P. González de Alaiza Martínez, R. Nuter, A. Nguyen, L. Bergé, and S. Skupin, “Broadband terahertz emission from two-color femtosecond-laser-induced microplasmas,” Phys. Rev. A 96, 053814 (2017).
[Crossref]

I. Thiele, S. Skupin, and R. Nuter, “Boundary conditions for arbitrarily shaped and tightly focused laser pulses in electromagnetic codes,” J. Comput. Phys. 321, 1110–1119 (2016).
[Crossref]

I. Thiele, R. Nuter, B. Bousquet, V. Tikhonchuk, S. Skupin, X. Davoine, L. Gremillet, and L. Bergé, “Theory of terahertz emission from femtosecond-laser-induced microplasmas,” Phys. Rev. E 94, 063202 (2016).
[Crossref]

E. Cabrera-Granado, Y. Chen, I. Babushkin, L. Bergé, and S. Skupin, “Spectral self-action of THz emission from ionizing two-color laser pulses in gases,” New J. Phys. 17, 023060 (2015).
[Crossref]

I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105, 053903 (2010).
[Crossref]

Solyankin, P. M.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref]

Sprangle, P.

P. Sprangle, J. R. Peñano, B. Hafizi, and C. A. Kapetanakos, “Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces,” Phys. Rev. E 69, 066415 (2004).
[Crossref]

Sullivan, A.

H. Hamster, A. Sullivan, S. Gordon, and R. W. Falcone, “Short-pulse terahertz radiation from high-intensity-laser-produced plasmas,” Phys. Rev. E 49, 671–677 (1994).
[Crossref]

Tanaka, K.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).
[Crossref]

Taylor, A. J.

K. Y. Kim, A. J. Taylor, S. L. Chin, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

Thiele, I.

I. Thiele, P. González de Alaiza Martínez, R. Nuter, A. Nguyen, L. Bergé, and S. Skupin, “Broadband terahertz emission from two-color femtosecond-laser-induced microplasmas,” Phys. Rev. A 96, 053814 (2017).
[Crossref]

I. Thiele, R. Nuter, B. Bousquet, V. Tikhonchuk, S. Skupin, X. Davoine, L. Gremillet, and L. Bergé, “Theory of terahertz emission from femtosecond-laser-induced microplasmas,” Phys. Rev. E 94, 063202 (2016).
[Crossref]

I. Thiele, S. Skupin, and R. Nuter, “Boundary conditions for arbitrarily shaped and tightly focused laser pulses in electromagnetic codes,” J. Comput. Phys. 321, 1110–1119 (2016).
[Crossref]

Tikhonchuk, V.

I. Thiele, R. Nuter, B. Bousquet, V. Tikhonchuk, S. Skupin, X. Davoine, L. Gremillet, and L. Bergé, “Theory of terahertz emission from femtosecond-laser-induced microplasmas,” Phys. Rev. E 94, 063202 (2016).
[Crossref]

Tikhonchuk, V. T.

V. T. Tikhonchuk, “Comment on ‘Generation of electromagnetic pulses from plasma channels induced by femtosecond light strings’,” Phys. Rev. Lett. 89, 209301 (2002).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Tzortzakis, S.

I. Dey, K. Jana, V. Fedorov, A. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. Lad, S. Tzortzakis, A. Couairon, and G. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Vitiello, M. S.

Vvedenskii, N. V.

V. A. Kostin and N. V. Vvedenskii, “DC to AC field conversion due to leaky-wave excitation in a plasma slab behind an ionization front,” New J. Phys. 17, 033029 (2015).
[Crossref]

V. A. Kostin and N. V. Vvedenskii, “Ionization-induced conversion of ultrashort Bessel beam to terahertz pulse,” Opt. Lett. 35, 247–249 (2010).
[Crossref]

V. B. Gildenburg and N. V. Vvedenskii, “Optical-to-THz wave conversion via excitation of plasma oscillations in the tunneling-ionization process,” Phys. Rev. Lett. 98, 245002 (2007).
[Crossref]

A. M. Bystrov, N. V. Vvedenskii, and V. B. Gildenburg, “Generation of terahertz radiation upon the optical breakdown of a gas,” J. Exp. Theor. Phys. Lett. 82, 753–757 (2005).
[Crossref]

Williams, B.

Woerner, M.

I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105, 053903 (2010).
[Crossref]

Xie, X.

J. Dai, X. Xie, and X.-C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Phys. Rev. Lett. 97, 103903 (2006).
[Crossref]

Xu, Z.

Yudin, G. L.

G. L. Yudin and M. Y. Ivanov, “Nonadiabatic tunnel ionization: looking inside a laser cycle,” Phys. Rev. A 64, 013409 (2001).
[Crossref]

Zhang, X.-C.

J. Dai, X. Xie, and X.-C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Phys. Rev. Lett. 97, 103903 (2006).
[Crossref]

Adv. Opt. Photon. (2)

IRE Trans. Antennas Propag. (2)

N. Marcuvitz, “On field representations in terms of leaky modes or eigenmodes,” IRE Trans. Antennas Propag. 4, 192–194 (1956).
[Crossref]

L. Goldstone and A. Oliner, “Leaky-wave antennas I: rectangular waveguides,” IRE Trans. Antennas Propag. 7, 307–319 (1959).
[Crossref]

J. Comput. Phys. (1)

I. Thiele, S. Skupin, and R. Nuter, “Boundary conditions for arbitrarily shaped and tightly focused laser pulses in electromagnetic codes,” J. Comput. Phys. 321, 1110–1119 (2016).
[Crossref]

J. Exp. Theor. Phys. Lett. (1)

A. M. Bystrov, N. V. Vvedenskii, and V. B. Gildenburg, “Generation of terahertz radiation upon the optical breakdown of a gas,” J. Exp. Theor. Phys. Lett. 82, 753–757 (2005).
[Crossref]

Nat. Commun. (1)

I. Dey, K. Jana, V. Fedorov, A. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. Lad, S. Tzortzakis, A. Couairon, and G. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref]

Nat. Photonics (3)

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

K. Y. Kim, A. J. Taylor, S. L. Chin, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

New J. Phys. (2)

E. Cabrera-Granado, Y. Chen, I. Babushkin, L. Bergé, and S. Skupin, “Spectral self-action of THz emission from ionizing two-color laser pulses in gases,” New J. Phys. 17, 023060 (2015).
[Crossref]

V. A. Kostin and N. V. Vvedenskii, “DC to AC field conversion due to leaky-wave excitation in a plasma slab behind an ionization front,” New J. Phys. 17, 033029 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Plasmas (1)

C. Miao, J. P. Palastro, and T. M. Antonsen, “Laser pulse driven terahertz generation via resonant transition radiation in inhomogeneous plasmas,” Phys. Plasmas 23, 063103 (2016).
[Crossref]

Phys. Rev. A (2)

I. Thiele, P. González de Alaiza Martínez, R. Nuter, A. Nguyen, L. Bergé, and S. Skupin, “Broadband terahertz emission from two-color femtosecond-laser-induced microplasmas,” Phys. Rev. A 96, 053814 (2017).
[Crossref]

G. L. Yudin and M. Y. Ivanov, “Nonadiabatic tunnel ionization: looking inside a laser cycle,” Phys. Rev. A 64, 013409 (2001).
[Crossref]

Phys. Rev. B (1)

S. B. Hasan, C. Etrich, R. Filter, C. Rockstuhl, and F. Lederer, “Enhancing the nonlinear response of plasmonic nanowire antennas by engineering their terminations,” Phys. Rev. B 88, 205125 (2013).
[Crossref]

Phys. Rev. E (4)

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004).
[Crossref]

I. Thiele, R. Nuter, B. Bousquet, V. Tikhonchuk, S. Skupin, X. Davoine, L. Gremillet, and L. Bergé, “Theory of terahertz emission from femtosecond-laser-induced microplasmas,” Phys. Rev. E 94, 063202 (2016).
[Crossref]

P. Sprangle, J. R. Peñano, B. Hafizi, and C. A. Kapetanakos, “Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces,” Phys. Rev. E 69, 066415 (2004).
[Crossref]

H. Hamster, A. Sullivan, S. Gordon, and R. W. Falcone, “Short-pulse terahertz radiation from high-intensity-laser-produced plasmas,” Phys. Rev. E 49, 671–677 (1994).
[Crossref]

Phys. Rev. Lett. (5)

I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” Phys. Rev. Lett. 105, 053903 (2010).
[Crossref]

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref]

V. T. Tikhonchuk, “Comment on ‘Generation of electromagnetic pulses from plasma channels induced by femtosecond light strings’,” Phys. Rev. Lett. 89, 209301 (2002).
[Crossref]

V. B. Gildenburg and N. V. Vvedenskii, “Optical-to-THz wave conversion via excitation of plasma oscillations in the tunneling-ionization process,” Phys. Rev. Lett. 98, 245002 (2007).
[Crossref]

J. Dai, X. Xie, and X.-C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Phys. Rev. Lett. 97, 103903 (2006).
[Crossref]

Plasma Phys. Rep. (1)

L. M. Gorbunov and A. A. Frolov, “Transition radiation generated by a short laser pulse at a plasma-vacuum interface,” Plasma Phys. Rep. 32, 850–865 (2006).
[Crossref]

Sci. Rep. (1)

P. González de Alaiza Martínez, X. Davoine, A. Debayle, L. Gremillet, and L. Bergé, “Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: competition between photoionization and Wakefield effects,” Sci. Rep. 6, 26743 (2016).
[Crossref]

Sov. Phys. JETP (1)

M. Ammosov, N. Delone, and V. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electric field,” Sov. Phys. JETP 64, 1191–1194 (1986).

Other (1)

J. D. Huba, NRL Plasma Formulary (Naval Research Laboratory, 2013).

Supplementary Material (1)

NameDescription
» Supplement 1       Detailed description of the physical model as well as the analytical derivations of the plasma slab model.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Illustrated configurations of THz emission from an ellipsoidal plasma induced by a 2C Gaussian laser pulse (FH in red, SH in purple) with strongly elliptical beam shape propagating along z. The laser electric field is (a) y-polarized (along the long axis of the elliptical beam) and (b) x-polarized (along the short axis of the elliptical beam). The plasma is sketched as a blue tri-axial ellipsoid, and its projections are shown in the respective planes. Experimentally measured forward-emitted THz pulses are presented as white lines, demonstrating a significantly shorter pulse duration for an x-polarized pulse, which can be attributed to triggering a plasmonic resonance (see Section 3 for details).
Fig. 2.
Fig. 2. Experimental THz spectra (see text for details) with (a) a y-polarized laser electric field (along the long axis of the elliptical beam) and (b) an x-polarized laser electric field (along the short axis of the elliptical beam). Corresponding on-axis THz waveforms are shown as insets. The dashed lines specify the estimated maximum plasma frequency.
Fig. 3.
Fig. 3. Sketch for 2C laser-induced air-plasma THz generation and detection system. BS, 800-nm beam splitter; HW, half-wave plate; CL1, plano-convex cylindrical lens, focal length f=100cm; CL2, plano-concave cylindrical lens, f=40cm; M1-9, 45 deg incidence high-reflective mirror; Lens L1, f=30cm; L2, f=40cm; DWW, dual-wavelength wave plate; OPM1 (OPM2), off-axis parabolic mirrors, reflected focal length, RFL=10.2cm (7.6 cm); HR Si, high-resistivity silicon plate, RFL=7.6cm; HV, high voltage; APD, Si avalanche photodetector; red line, laser beam; gray area, THz beam.
Fig. 4.
Fig. 4. Results of the UPPE simulation: (a) maximum intensity (black line) and electron density (red line) in the transverse plane and in time along the propagation axis z; (b) electron density profile in the (x,y) plane at the nonlinear focus z5cm. The line-out of the profile along y=0 is presented as a solid white line. The approximation for the plasma slab model is sketched as a dashed white line.
Fig. 5.
Fig. 5. (a) Illustration of the plasma slab model. (b) Imaginary part I{kzLM} of the leaky mode propagation constant versus the slab thickness d in P polarization. Transverse Poynting flux for a δ excitation (see text for details) for (c) S and (d) P polarization. In (d), the real part R{kzLM} of the leaky mode propagation constant is indicated by a white line. (e) Far-field spectra for S and P polarization predicted by the plasma slab model employing source terms obtained from 2D paraxial laser field propagation, reproducing well the 2D and 3D simulation results from Fig. 8. The slab thickness is d=0.4μm, and the plasma frequency is ωp/(2π)=νp=49.15THz. (f)–(h) Same as (c)–(e), but for d=15μm and νp=10THz, reproducing well the experimental results from Fig. 2.
Fig. 6.
Fig. 6. Excitation source terms, which are used to model the THz emission spectra presented in Figs. 5(e) and 5(h): (a) strongly focused configuration leading to a thin plasma and (b) weakly focused configuration leading to a thicker plasma.
Fig. 7.
Fig. 7. Electron density in the (a) zx and (b) yz planes after ionization of an argon gas with initial neutral density na=3×1019cm3 (1bar) by a 2C elliptically shaped laser pulse (Eω=40GV/m, E2ω=20GV/m, t0=50fs, w0,x=λFH=0.8μm, w0,y=8μm). The respective electron density profiles at focus (z=0) are visualized by the bright white lines. The waist of the focused laser is tracked by the light blue lines.
Fig. 8.
Fig. 8. Angularly integrated far-field spectra for the elliptical beams from Fig. 7 (solid lines) and corresponding results from 2D simulations assuming translational invariance in y (dashed lines). The insets show the forward-emitted THz pulses recorded at z=12.7μm behind the plasma.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

tJ+νeiJ=qe2meneE,
n0=nemaxθ(xd/2)θ(d/2x),
ρS/P=|Λv2Λp2αS/P2Λv2+Λp2αS/P2+2ΛvΛpαS/Ptanh(Λpd)|2,
tanh(Λpd)=2ΛvΛpϵpΛv2ϵp2+Λp2.
EL(z,t)R{Eωe(tz/c)2t02iωL(tz/c)1+izzR(ωL)}eL+R{E2ωe(tz/c)2t02i2ωL(tz/c)iφ1+izzR(2ωL)}eL,
ι=qe2ne[EL]meEL.
EL,(r,z=0,t)=exp(x2w0,x2y2w0,y2t2t02)×[Eωcos(ωLt)+E2ωcos(2ωLt+φ)]eL,